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Abstract

We present a new formulation of monotonically convergent algorithms which allows to optimize

both the control duration and the laser fluence. A standard algorithm designs a control field of fixed

duration which both brings the system close to the target state and minimizes the laser fluence,

whereas here we include in addition the optimization of the duration in the cost functional. We

apply this new algorithm to the control of spin systems in Nuclear Magnetic Resonance. We show

how to implement CNOT gates in systems of two and four coupled spins.
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I. INTRODUCTION

The optimal control of quantum systems is a long-standing goal [1–3] which remains very

attractive both from a practical and a fundamental point of views [4, 7, 8]. By finding

the optimal balance between the minimization of the distance to the target state and the

minimization of the energy of the laser, the optimal solution allows to bring the system close

to the target state while avoiding parasitic phenomena due to a too large laser fluence. In this

context, the control duration is also a crucial parameter which has to be taken into account

in the optimization process. For instance, a too long duration could be problematic if other

concurrent physical or chemical processes with the same time scale occur during the control.

This question is particularly interesting in quantum computing where coherence has to be

preserved [9]. Since a control field cannot generally fully compensate the dissipation effects

[35], a too long interaction of the system with the environment can destroy its coherence

and the quantum superposition or the entanglement produced by the control.

Solving time-optimal control problems remains however a challenging task. One way is

to use the Pontryagin maximum principle and geometric optimal control theory [10, 11].

However, such techniques can only be applied for the moment to small dimensional quan-

tum problems with very few energy levels [12, 14–17]. On the other hand, monotonically

convergent algorithms are an efficient way to solve optimal control problems and have been

widely used in the control of chemical and physical processes since the pioneering papers by

Tannor et al. [18] and Rabitz et al. [19] which were based on the work of Krotov [36]. This

approach can be applied to very different and large quantum systems (See e.g. [20–24]) and

to a variety of non-standard situations such as the nonlinear interaction between the system

and the control field [25, 26] or to take into account spectral constraints on the optimal

solution [27, 28]. Up to now, however, these algorithms have generally be used with a cost

penalizing the laser fluence and a fixed control duration. By construction of these algo-

rithms, a formulation in terms of a time-optimal control, i.e. with a duration which is not

fixed, is a very difficult question since these methods imply the backward propagation of the

adjoint state from the final time of the control. Other time-optimal control algorithms have

already been proposed in [31, 32], but these propositions differ from our approach in the

sense that a second Lagrange multiplier on the control duration (in addition of the adjoint

state) is added. This leads to a more complicated algorithm than the one proposed below.
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We present in this paper a new formulation of monotonically convergent algorithms with

a cost penalizing both the laser fluence and the control duration, which allows us to find the

best compromise between these two parameters. Using a rescaling of time, we first rewrite

the optimal equations on a fixed time interval independent on the control duration T , which

appears as a new parameter in the time-dependent Schrödinger equation. We then consider

a monotonic iterative algorithm whose each step is decomposed into two substeps consisting

in an optimization of the energy of the field with T fixed and an optimization of the time

T with a fixed control field. The first substep is realized through a standard monotonically

convergent algorithm, while a gradient or another discrete optimization procedure is used

for the second substep. We impose that each substep increases the cost functional leading

thus to a monotonic algorithm.

To test the efficiency of this approach, we consider the control of spin systems [5], and

in particular the implementation of quantum gates in such systems. Different technologies

have been developed so far to exploit the powerful of quantum computing. One of the most

promising solution is Nuclear Magnetic Resonance (NMR) [30]. The control technology

developed over the past fifty years allows the use of sophisticated control fields and permits

the implementation of complex quantum algorithms such as the Deutsch-Jozsa and the

Grover ones [6]. NMR is therefore an ideal testbed to experiment new ideas in quantum

control. In this paper, we show how to implement two and four qubits CNOT gates. These

different numerical computations allow to extract the main properties of our algorithm and

to highlight the differences with respect to a standard approach.

The paper is organized as follows. In Sec. II, we describe the new monotonically algorithm

for pure state quantum systems. The proof of its monotonic character is established. Section

III is devoted to the application of this approach in a two and four spin systems in order to

implement CNOT gates. We conclude in Sec. IV.

II. TIME-OPTIMAL CONTROL ALGORITHMS

We present in this section the algorithm in a general setting for pure quantum states. The

formalism can be straightforwardly extended to mixed-state quantum systems [21] or to the

control of evolution operators [29]. It is this latter generalization that will be used in Sec. III

for the implementation of quantum gates. We consider the maximization of the projection
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onto a target state, but the algorithm could be equivalently defined for maximizing the

expectation value of a given observable.

A. Methodology

Let |φ0〉 and |φf〉 be the initial and target states of the dynamics. We consider the time-

optimal control problem of maximization of the cost functional JT (ET ) over the control

duration T and the control field ET . Note that the subscript T is added in this paper to

any quantity depending upon this time. The functional JT is defined by

JT (ET ) = 2<[〈ψT (T )|ψf〉]− α

∫ T

0

E2
T (t)dt (1)

where α is a positive parameter which weights the relative importance of the energy of the

control field with respect to the projection onto the target state. <[·] is the real part of a

complex number. The state |ψT (t)〉 of the system satisfies the time-dependent Schrödinger

equation which is written in units such that ~ = 1:

i
∂

∂t
|ψT (t)〉 = (H0 − µET (t))|ψT (t)〉 (2)

with as initial condition |ψT (0)〉 = |φ0〉. The Hamiltonian H0 is the field-free Hamiltonian

and the operator µ describes the interaction between the system and the control field, which

is assumed to be linear.

The first step of the approach is to define a fixed time interval, for instance [0, 1]. We

consider for that purpose the time rescaling s = t/T . Introducing |ψ(s)〉 = |ψT (s · T )〉 and

E(s) = ET (s · T ), we obtain from Eq. (2) that

i
∂

∂s
|ψ(s)〉 = T (H0 − µE(s))|ψ(s)〉 (3)

with the initial condition |ψ(0)〉 = |φ0〉. The cost functional is also changed by the time

rescaling and becomes

J(E) = 2<[〈ψ(1)|ψf〉]− αT

∫ 1

0

E2(s)ds. (4)

The new optimal control problem consists now in maximizing the cost functional J with

respect to the control field E and the time T which plays here the role of a parameter. The

control duration is fixed to 1.
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B. Monotonically algorithm

The algorithm is decomposed into two substeps. We alternatively optimize the functional

J with respect to the control field E by a standard monotonic algorithm and with respect

to the duration T by a discrete procedure such as a gradient method. We prove that the

cost increases at each step of the algorithm.

a. Optimization of the control field. We introduce the triplets (|ψ(t)〉, E(t), T ) and

(|ψ̃(t)〉, Ẽ(t), T ) corresponding to the initial and final states of this substep of the algorithm.

The variation of the cost is given by:

∆J = J(Ẽ)− J(E)

= 2<[〈ψ̃(1)− ψ(1)|ψf〉]− αT

∫ 1

0

(Ẽ2(s)− E2(s)ds.

We introduce the adjoint state |χ(t)〉 which satisfies

i
∂

∂s
|χ(s)〉 = T (H0 − µE(s))|χ(s)〉 (5)

with the final condition |χ(1)〉 = |φf〉. We then have

<[〈ψ̃(1)− ψ(1)|φf〉] = <[〈ψ̃(1)− ψ(1)|χ(1)〉] (6)

which can be transformed into

<[〈ψ̃(1)− ψ(1)|φf〉] = <[ ∫ 1

0

ds[〈 ∂

∂s
χ|ψ̃ − ψ〉+ 〈χ| ∂

∂s
(ψ̃ − ψ)〉]]. (7)

Using Eqs. (3) and (5), one deduces that

<[〈ψ̃(1)− ψ(1)|φf〉] = 2T=[

∫ 1

0

ds〈χ|µ(Ẽ − E)|ψ̃〉]. (8)

One finally arrives to

∆J = αT

∫ 1

0

ds(E − Ẽ)(E + Ẽ +
2

α
=[〈χ|µ|ψ̃〉]). (9)

Knowing E(s), the choice Ẽ = −=[〈χ|µ|ψ̃〉]/α ensures that ∆J ≥ 0 for this substep.

This part of the algorithm can be summarized as follows. Starting from the quadruplet

(|ψ(s)〉, |χ(s)〉, E(s), T ), we construct the quadruplet of the next sub-iteration by propagat-

ing backward the adjoint state |χ̃(s)〉 from |φf〉 with the field E(s). We then propagate

forward the state |ψ̃(s)〉 from |φ0〉 with the field Ẽ(s) which is computed at the same time

by the relation Ẽ(s) = −=[〈χ̃(s)|µ|ψ̃(s)〉]/α.
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b. Optimization of the control duration. At this stage of the algorithm, we consider

the triplets (|ψ(s)〉, E(s), T ) and (|ψ̃(s)〉, E(s), T̃ ). We recall that the state |ψ̃(s)〉 satisfies

i
∂

∂s
|ψ̃(s)〉 = T̃ (H0 − µE(s))|ψ̃(s)〉. (10)

We compute the variation of the cost functional ∆J which is equal to:

∆J = 2<[〈ψ̃(1)− ψ(1)|ψf〉]− α(T̃ − T )

∫ 1

0

E2(s)ds. (11)

Introducing the adjoint state |χ(s)〉 whose dynamics is governed by Eq. (5), one obtains

after similar computations as for the previous case that

∆J = α(T − T̃ )

∫ 1

0

dsE(s)(
2

α
=[〈χ|µ|ψ̃〉] + E(s)). (12)

The parameter T̃ has to be chosen such that ∆J ≥ 0. A solution consists in using a gradient

method by noting that

∇T J = −α

∫ 1

0

dsE(s)(
2

α
=[〈χ|µ|ψ〉] + E(s)). (13)

We define the new time T̃ from the preceding one as:

T̃ = T − r∇T J(E(s), T ), (14)

where r is a real parameter. We choose numerically r small enough to ensure the mono-

tonicity of the cost functional. The computation of the optimal value of r requires however

several new propagations to determine the cost J since the evolution of |ψ̃〉 (needed to cal-

culate 〈ψ̃(1)|ψf〉) depends on the value of T̃ (see Eq. (10)). Other methods ensuring the

monotonic behavior of the cost can be used for this substep as the following procedure. In

this approach, we define the new duration T̃k as a function of the old duration Tk as follows:

T̃k = (1 + a)Tk

where a is a small positive or negative parameter. Practically, we can choose e.g. a = ±10−3,

but this value can also be adjusted through the computation. This leads to two new costs

J̃+
k and J̃−k . The final time at step k is the time associated to the maximum value between

J̃+
k , J̃k and J̃−k . This method has the advantage over the gradient approach to limit at

each step the number of propagations of Eq. (3) to 2. This point can be interesting when

very heavy computations are considered. This systematic procedure has been used in the

numerical examples of Sec. III. In particular cases, we have checked that the gradient and

this systematic approach give equivalent results.
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III. CONTROL OF SPINS SYSTEMS

A. Description of the model

The principles of control in NMR are detailed in different books and review articles.

Here we only give a brief account needed to introduce the model used [5]. We consider the

control of a system of coupled spins by different magnetic fields acting as local controls on

each spin. This means that each field only controls one spin and does not interact with the

others, i.e. the spins are assumed to be selectively addressable. This hypothesis has the

advantage to render the system completely controllable. Similar models have been used in

numerical studies analyzing the realization of quantum algorithms in NMR [33].

More precisely, we introduce a system of n coupled spins whose evolution is described by

the following Hamiltonian:

H = H0 +
n∑

j=1

(ujxHjx + ujyHjy),

the couplings being given by:

Hjx = σjx, Hjy = σjy

where the operators (σjx, σjy) are Pauli matrices which only act on the jth- spin. We assume

that the free evolution Hamiltonian H0 is associated to the topology of a chain of coupled

spins with only nearest-neighbor interactions. The corresponding Hamiltonian is given by:

H0 =
n−1∑
j=1

σjz ⊗ σj+1; z,

where the approximation is valid in heteronuclear spin systems if the coupling between the

spins is small with respect to the frequency shifts [5]. The coupling between the spins is

taken to be uniform and equal to 1. The different equations being linear, other couplings

could be considered from a standard rescaling of the time and of the amplitude of the control

fields. Note that the algorithm could also be used with different couplings between the spins.

B. Optimal implementation of a CNOT gate

Our goal is to apply the time-optimal control algorithm to implement a Cn−1NOT gate

(Controlled-Not) in a system of n qubits with n = 2 or 4. A Cn−1NOT gate is a gate in
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which the target qubit flips if and only if the (n − 1) control qubits are equal to 1. For

n = 2, the CNOT transformation is represented by the unitary operator UCNOT which can

be written as:

UCNOT =




1 0 0 0

0 1 0 0

0 0 0 1

0 0 1 0




.

The logical states involved in a Cn−1NOT gate can be mapped onto the spin states in

different ways. A straightforward and natural way used in this paper to map the logical

states onto the spin states is to encode the first qubit in the first spin, the second qubit in

the second spin, and so on if more than two spins are considered.

To implement quantum gates, we formulate the control problem in terms of evolution

operators U(t). This means that the objective of the control is to reach the target state

UCNOT , while optimizing the control duration and the energy of the fields. The time-optimal

monotonically convergent algorithm for evolution operators can be sketched along the same

way as for the wave function case of Sec. II. This algorithm can be obtained by substituting

the wave function |ψT (t)〉 by UT (t), and the scalar product 〈ψ(t)|χ(t)〉 by Tr[U † V ] where

V (t) is the adjoint propagator. The corresponding cost functional is given by:

J(E) = 2<[
Tr[UCNOT UT (T )]

]− α

∫ T

0

E2
T (t)dt, (15)

the evolution operator UT (t) satisfying the Schrödinger equation

i
∂UT (t)

∂t
= (H0 − µET (t))UT (t). (16)

Note that, in the example considered, 2n fields are simultaneously optimized. The efficiency

of the process is measured by the projection P = 1
2n<

[
Tr[UCNOT UT (T )]

]
.

From a numerical point of view, two different parameters, α0 and E0(t), have to be

adjusted when using this algorithm. These parameters do not play the same role since α is

a parameter characteristic of the algorithm, while E0(t) is the initial field used to initiate

the optimization process. More precisely, we assume that the parameter α depends on time

and can be written as α(t) = α0 sin2(πt/T ) where α0 is a constant. This switching function

is introduced to provide a smooth on and off switch of the field [13]. In order to not enforce
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the algorithm to follow a given pathway, we consider that the initial trial field E0(t) is zero

over a given duration T0. The dependance of the final solution on the two parameters T0

and α0 will be analyzed in Sec. III C.

C. Numerical results

We first analyze the computational results for a system of two spins. Figure 1 displays

the optimal solution computed by the algorithm for the values of parameters T0 = 0.5 and

α0 = 0.08. The parameter a which describes the evolution of the control duration at each

step of the algorithm is taken to be 5×10−4. Other values of a have been used leading either

to worse results or to a slower convergence of the algorithm. As can be seen in Fig. 1, the

evolution of the optimal control fields and of the probability is rather smooth with no rapid

oscillation. A very good efficiency larger than 0.99 has been reached in 5000 iterations with

a final duration of the order of T = 2.035. Note that a standard monotonically algorithm

with this total duration leads to a solution very close to the ones obtained with this new

algorithm. More precisely, for the standard algorithm, we have obtained a projection P larger

than 0.999 for a control duration such that 1.9 < T < 2.4. This computation shows that

the time-optimal control algorithm has found the best compromise between the duration,

the minimization of the distance to the target state and the energy of the field. As could

be expected, the modification of the control duration slows down the convergence of the

algorithm since a projection larger than 0.99 is obtained respectively after 2512 and 700

iterations for the new and standard methods, respectively. The monotonic behavior of the

algorithm can be checked in Fig. 2 together with the evolution of the duration Tk. As for the

cost Jk, one sees that this parameter presents a rapid increase for the first 3000 iterations

and then an approximatively constant behavior. This means qualitatively that the time-

optimal procedure first optimizes the control duration before decreasing the energy of the

field without changing the total cost J . A crucial property that this algorithm must satisfy

(at least locally) is the independence of the final solution with respect to the value of T0, i.e.

of the starting guess used to initiate the algorithm. This point is illustrated in Fig. 3 where

two attraction points for the sequence (Tk) have been found when the time T0 varies. We

numerically determine the two basins of attraction and we found a boundary of the order of

T0 ' 0.75. Other attraction points exist for larger initial values of the control duration T0
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FIG. 1: Evolution of the probability P and of the corresponding optimal fields acting on the first

or second spin. Numerical values are taken to be α0 = 0.08 and T0 = 0.5. The final probability is

P = 0.9964.

which are not represented in Fig. 3. Note that this attraction point characterizes not only

the final control duration but also the final control fields and the final probability density as

can been checked in Fig. 3. In Fig. 3, we see that a better efficiency is reached for T0 = 0.9

with a longer and lower energetic optimal solution. This point indicates the importance of

the control duration in the accuracy of the computation.

In Fig. 4, we study the evolution of the final time Tf and of the probability density P

as a function of the parameter α0. We observe that P increases and Tf decreases as the

parameter α0 decreases. As could be expected, the smaller α0 is, the more energetic the

optimal solution is since α0 controls the relative weight of the pulse energy in the cost J .

With a more energetic optimal solution, the algorithm can find an optimal solution with a

lower duration and a better efficiency.

We extend these numerical results to the case of a four-spin system and a C3NOT gate.

Due to the complexity of this gate, a larger duration and a larger number of iterations are

required to reach a sufficient efficiency. The parameter a is taken to be 5× 10−4. As for the

two-spin case, we find two possible optimal solutions according to the value of T0 which are

displayed in Fig. 5. The time evolution of the probability density shows that the structure

of these two solutions is very close even if the duration is different.
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used.
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FIG. 3: (top) Evolution of the time Tk for different initial times T0 as a function of the number k

of iterations. For T0 ≤ 0.7, the algorithm converges towards the same optimal duration close to the

value 2. The parameter α0 is taken to be 0.08. (bottom) Same as before but for the probability

density P . A better efficiency is reached for T0 = 0.9.

IV. CONCLUSION AND PERSPECTIVES

This work deals with the time-optimal control of spin systems in NMR. We propose

a monotonically convergent algorithm which both optimizes the control duration and the

energy of the field. We show that the change of the duration at each iteration of the algorithm

leads to a more flexible algorithm and thus allows a better convergence with respect to a

standard version of such algorithms. This algorithm has the advantage of simplicity and

general applicability whatever the quantum optimal control problem considered. We have
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finally demonstrated the possibility of implementing quantum gates from the control fields

computed by this algorithm. Since there exists no unique optimal solution, we have shown

that we can select the control fields by changing the initial control duration.
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