
HAL Id: hal-00654125
https://hal.science/hal-00654125

Submitted on 17 Feb 2014

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Flow-based Bayesian estimation of nonlinear differential
equations for modeling biological networks

Nicolas Brunel, Florence d’Alché-Buc

To cite this version:
Nicolas Brunel, Florence d’Alché-Buc. Flow-based Bayesian estimation of nonlinear differential equa-
tions for modeling biological networks. 5th IAPR international conference on Pattern recognition in
bioinformatics (PRIB’10), Sep 2010, Nijmegen, Netherlands. pp.443–454, �10.1007/978-3-642-16001-
1_38�. �hal-00654125�

https://hal.science/hal-00654125
https://hal.archives-ouvertes.fr


Flow-based Bayesian estimation of nonlinear

differential equations for modeling biological

networks

Nicolas Brunel(1) and Florence d’Alché-Buc(1,2)
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Abstract. We consider the problem of estimating parameters and unob-
served trajectories in nonlinear ordinary differential equations (ODEs)
from noisy and partially observed data. We focus on a class of state-
space models defined from the integration of the differential equation in
the evolution equation. Within a Bayesian framework, we derive a non-
sequential estimation procedure that infers the parameters and the initial
condition of the ODE, taking into account that both are required to fully
characterize the solution of the ODE. This point of view, new in the con-
text of state-space models, modifies the learning problem. To evaluate
the relevance of this approach, we use an Adaptive Importance Sam-
pling in a population Monte Carlo scheme to approximate the posterior
probability distribution. We compare this approach to recursive estima-
tion via Unscented Kalman Filtering on two reverse-modeling problems
in systems biology. On both problems, our method improves on classi-
cal smoothing methods used in state space models for the estimation of
unobserved trajectories.

1 Introduction

1.1 Context

In recent years, there has been a growing interest in identifying complex dy-
namical systems in biochemistry and biology [15]. In this context, Ordinary
Differential Equations (ODEs) have been widely studied for analyzing the dy-
namics of gene regulatory and signaling networks [11, 14]. They also appear as
good candidates for the reverse-modeling task. In the present work, we consider
the problem of estimating parameters and unobserved trajectories in differential
equations from experimental data. Nowadays, parameter estimation in differ-
ential equations is still considered as a challenging problem when the dynami-
cal system is only partially observed through noisy measurements and exhibit
nonlinear dynamics. This is usually the case in reverse-modeling of regulatory
and signaling networks [2, 16]. Some approaches address the estimation problem
based on a Bayesian estimation of state-space models that integrate the ODE in
the evolution equation. This framework has shown to be relevant in producing



efficient algorithms [20, 16, 21]. However, they suffer from two drawbacks: first
they largely neglect the role of the initial condition and second, they assume
the gaussianity of the posterior probability distribution of the parameters. In
the present work, we are mainly interested in eliminating the first drawback by
taking into account that the initial condition is a key parameter of the ODE
solution. This means that we search the system parameters and the initial con-
ditions that fit the observed data and also provide a proper solution to the ODE.
Then, as a secondary contribution, we also also improve the Bayesian approach
derived in [16] and in [21] by a better approximation of the posterior probability
distribution.

1.2 Strategy

We first define the estimation task by introducing into the equations the flow
of the ordinary differential equation. The flow of an ODE puts emphasis on the
sensitivity of its solution with respect to the initial conditions. Then, we use
an augmented approach that encapsulates the initial conditions and the ODEs
parameters into the same augmented initial condition vector. Within this frame-
work, the deterministic nature of the hidden process provides a non-recursive
definition of hidden states from the augmented initial condition, with an inte-
gration of the ODE in the whole time interval of observation.

At this stage, we propose to address the problem with a Bayesian approach,
searching for the posterior probability distribution of the augmented initial con-
dition. The solutions previously proposed for recursive estimation in the case
of nonlinear systems are based on nonlinear extensions of Kalman filtering and
smoothing. We notice that procedures like Unscented Transform methods used
for computing the posterior probability of the states make a strong assumption
about the Gaussianity of the posterior distribution. Whereas particle filters do
not make this assumptions, they do not deal correctly with deterministic pro-
cesses as pointed out by the work of [13].

The idea of approximating the posterior probability by a weighted sample is
computationally attractive while being a versatile approach adapted to a large
variety of distributions. With respect to these considerations, we investigate the
use of Monte-Carlo methods [9] for the approximation of the posterior distri-
bution by a weighted sample built from an iterative importance sampling re-
sampling scheme. As recently shown by [7] and [3], this approach consists in
an adaptive selection of the importance distribution, which is crucial in high-
dimensional sampling. The updating mechanism of the importance distribution
consists in moving the population with a transition kernel (D-kernel [7]). The
non-recursive estimation of the augmented initial condition is applied on two
typical systems biology models: the α-pinene network [19] and the Repressilator
network ([8]).

The paper is organized as follows. In section 2, we introduce the new setting
of parameter estimation in terms of augmented initial condition estimation and
exploit it in the context of Bayesian estimation. In section 3, we recall the main
features of Population Monte-Carlo schemes and focus on an adaptive algorithm



that corrects the importance distribution. Section 4 is devoted to numerical
experiments. Finally, we draw a conclusion and perspectives to this work in the
section 5.

2 The initial condition learning problem

2.1 Flow of an ODE and statistical modeling

We consider a biological dynamical system, for instance a gene regulatory net-
work, modeled by the following ordinary differential equation:

ẋ(t) = f(t, x(t), θ) (1)

defined on the time interval [0, T ] (T > 0). x(t) is the state vector of dimension d:
in the case of a regulatory network, it corresponds to the vector of the expression
levels of d genes. f is a (time-dependent) vector field from R

d to R
d, indexed by

a parameter θ ∈ Θ ⊂ R
p. Examples of functions f abound in the literature of

systems biology [15]: Hill kinetics, law of mass equations, . . .
A relevant way to characterize the differential equation under study is to

define its flow φθ : (t, x0) 7→ φθ (t, x0) which represents the influence of x(0) = x0

on the solution, i.e. t 7→ φθ (t, x0) is the solution to (1) starting from x0. Hence,
the flow puts emphasis on the sensitivity of a solution of (1) with respect to the
initial conditions. It can also be seen as a map defined in the phase space that
shows how the points are transported by the vector field.

Now, let us introduce N noisy measurements, yn ∈ R
m, n = 0...N − 1, that

are acquired from a smooth observation function h : Rd → Rm (m ≥ 1) at N

times t0 = 0 < t1 < . . . < tN−1 = T :

yn = h(φθ (tn, x0)) + ǫn (2)

where the noise ǫn is supposed to be Gaussian and homoscedastic.
If we want to fully identify the ODE, we must estimate both the parameter

θ and the initial condition x(0) so that the solution φ
θ̂
(·, x̂0) of the system fits

the observations y0:N−1 = (y0, . . . , yN−1). The estimation of ODE parameters
by classical approaches (such as least squares [12]) is standard but gives rise to
difficult global optimization problem [1]. To solve this kind of problem, variants
of least square methods have been recently developed and use approximations
of the solution in a spline basis (in the spirit of functional data analysis) as the
generalized smoothing proposed by Ramsay et al [17], or two-step estimators [6].
When some states are hidden (typically m < d), the estimation (optimization
step) is particularly difficult and alternative approaches have been proposed,
building on the state-space model interpretation of the couple of equations (1-
2). Indeed, Sitz et al. [20] first introduced a state-space model that encapsulates a
differential equation in the hidden process and make use of filtering algorithms for
deriving an estimate of θ. Subsequent works have exploited the same framework
[16, 21, 6], but the initial condition of the system is estimated as a by-product of



the filtering/smoothing steps, and the estimated states are also approximations
of the solution of the ODE.

In this work, we keep the same state-space model, and we develop a Bayesian
estimator which is a quite natural in state-space models, and permits the use of
prior information for ameliorating the estimation. Moreover, our aim is to modify
the iterative approach and to show that there is a benefit in jointly estimating θ

and the initial condition x0 in this framework. A classical evaluation of the esti-
mated system ẋ(t) = f(t, x(t), θ̂) is to measure the quality of the fit between the

true sequence y0:N−1 and the predicted sequence ŷn = φ
(

tn, (θ̂, x̂0)
)

. Now this

simple evaluation requires to know the initial value x0 of the system, due to the
one-to-one relationship between the solution of an Initial Value Problem (IVP)
and an initial value x0. Hence, despite the little interest of x0 in general appli-
cations, it is in fact fundamental to estimate correctly x0 in order to disentangle
the influence of the parameter from the one of the initial value. Therefore, we
suppose that the initial condition x0 is unknown, so that we are also interested
in its estimation. Finally, we want to estimate the augmented initial condition
z0 = (x0, θ) ∈ Rd+p of the augmented state ODE model:

{

ẋ(t) = f (t, x(t), θ(t))

θ̇(t) = 0
(3)

with initial condition z0 = (x0, θ). The solution is the function t 7→ φ (t, z0)
from [0, T ] to Rp+d. For sake of notational simplicity, we will note again this
augmented ODE in Rp+d with the same vector field f :

ż(t) = f(t, z(t)) (4)

and z(0) = z0. Hence, the estimation of z0 consists only in estimating the initial
condition z0 in (4), from y0:N−1:

yn = h(z(tn)) + ǫn

where we keep the notation h for the observation function from Rp+d to Rm

h : z = (x, θ) 7→ h(x). Now, the observed and discretized differential equation
(4) fits itself in the (discrete-time) framework of state-space models in Rp+d with
a deterministic hidden state evolution:

{

zn+1 = zn +
∫ tn+1

tn
f(τ, z(τ), θ)dτ

yn = h(zn) + σǫn
(5)

The state-space representation is usually exploited for deriving recursive esti-
mation either in Maximum Likelihood approaches or in Bayesian setting as de-
scribed in [5]. However, we notice an important feature of the last setting (5):
the deterministic evolution of the states implies that we can compute exactly the
states at each time from the initial condition (parameter) z0, and in particular
the hidden part of zn. In equation (5), the evolution equation can be replaced
by the following non-recursive definition of zn:

zn = φ(tn, z0) = z0 +

∫ tn

0

f(τ, z(τ), θ)dτ (6)



φ, as a function of the initial state z0 is the flow of the ODE and describes the
way the differential equation move the points in the phase space: the Bayesian
estimation of z0 consists in retrieving the starting point when we observe imper-
fectly the flow at different times.

2.2 Flow-based Bayesian Estimation

We consider the Bayesian inference framework for the estimation of the aug-
mented initial condition. We call Flow-based Bayesian Estimation (FBE), the
Bayesian approach that consists in estimating the augmented initial condition.
Since ǫn is Gaussian, the likelihood can be written as follows:

L(y0:N−1; z0) ∝ exp (−e(y0:N−1, z0)) (7)

where e(y0:N−1, z0) = 1
2σ2

∑N−1
n=0 ‖yn − h(φ(tn, z0))‖

2
is the classical squared

error term. In the Bayesian framework, we complete the information on the
parameter by a prior distribution for z0 whose density is π−1, which gives the
following posterior distribution

πN−1(z0) = p(z0|y0:N−1) ∝ exp (−e(y0:N−1, z0))π−1(z0) (8)

As usual, the normalizing constant of the posterior distribution is unknown.
Moreover, we have the additional computational complexity due to the absence
of closed-form for the flow φ. Hence the Bayesian inference relies on the computa-
tion of a reliable approximation of πN−1(z0), from which we can derive Bayesian
estimators such as the posterior mean E(Z0|y0:N−1) or the Maximum A Pos-

teriori (MAP) estimate argmaxz0 πN−1(z0). In the MAP case, as the flow is
highly nonlinear and produces wiggly likelihood functions ([17]), the direct com-
putation of ( 8) is difficult and the corresponding global optimization algorithm
requires intensive computations. This motivates the use of fast approximate op-
timization or computation of the posterior distribution, which are widely devel-
oped for non-linear state-space models. Indeed, the computation of this posterior
probability can be done efficiently by recursive smoothing algorithms [5], such
as Extended Kalman Filtering/Smoothing (EKF/EKS) [21], Unscented Kalman
Filtering/Smoothing (UKF/UKS [20, 16] and more generally sequential Monte
Carlo methods (particle filters). These classical algorithms are based on recursive
computations of the filtering probabilities p(zn|y0:n) and several versions do ex-
ist for the computation of the smoothing probabilities p(zn|y0:N−1). However, in
these algorithms, the initial condition is estimated as an initial state and not as a
parameter of the flow. The filtering probability is even characterized by the for-
getting of the initial condition as the number of observations N tends to infinity.
This implies that the more data we observe, the less information we get on the
parameter z0. As a consequence, the use of refined smoothing strategies remains
problematic and calls for careful adaptations ([13, 10]). Moreover, the estimated
(smoothed) trajectories of the hidden states are yet not solutions of the ODE on
the whole time interval [0, T ]: the simulated trajectories may differ significantly



from the smoothed trajectories (obtained by Kalman recursions or Particle fil-
tering). Therefore, it might be preferable to turn to a non-recursive estimation
of the augmented initial condition based on the non-recursive definition pointed
out in (6). Taking into account the flow of the differential equation, we maximize
the likelihood of exact solutions starting from different initial conditions, instead
of selecting parameters admissible for describing the local transitions (based only
the parameter θ).

3 Posterior probability estimation using Population

Monte Carlo

To test our hypothesis about the potential interest of a better estimation of the
initial conditions in a Bayesian setting, we need to estimate the posterior dis-
tribution probability defined in (8). The intractability of the posterior distribu-
tion is a well-known problem in Bayesian estimation. Several general simulation
methods have been developed such as Markov Chain Monte Carlo (MCMC),
Importance Sampling (IS) and variants [18] are commonly used and both are
well-suited to the Bayesian setting. However, one difficulty of this Monte Carlo
methods is that they can be very (computationally) intensive: this is typically
the case for general Hastings-Metropolis algorithms, even if some optimization
can be performed. A challenging difficulty of ODE learning is that the evaluation
of the likelihood is costly due to the integration of the ODE. This point motivates
us to focus on importance sampling algorithms. These methods require only a
”reasonable” amount of likelihood evaluations if the importance distribution is
not too far from the true posterior distribution.The pitfalls of this method are
well-known and are recalled in the next section, but they can be reduced by
using some recently introduced adaptive schemes that we will recall.

3.1 Adaptive Importance Sampling and Population Monte-Carlo

algorithm

The principle of importance sampling is to use a Monte Carlo approximation
derived thanks to a proposal (or importance) distribution q easier to simulate
than πN−1 and to make a change of measure by introducing the weight function
w = πN−1

q
:

EπN−1
(h(Z0)) = Eq(h(Z0)w(Z0)) ≃

1

M

M
∑

i=1

h(ξi)w(ξi) (9)

where ξi are i.i.d. realizations of the distribution q. Hence, the importance
sampling estimators are expressed as weighted means 1

M

∑M

i=1 ωih(ξi). Since
the posterior distribution is known only up to a normalizing constant, self-
normalized importance sampling estimators are rather used i.e.

∑M

i=1 ω̃ih(ξi),
where ω̃i =

ωi∑
M
i=1

ωi
. The values ω̃i are called the (normalized) importance weight,



and one can interpret identity (9) as the approximation of πN−1 by the weighted

empirical measure µ̂M (z) =
∑M

i=1 ω̃iδξi(z). Nevertheless, applications of IS can
be very delicate as a ”good” proposal distribution depends on the unknown tar-
get distribution. If the distribution q has a weak overlap with πN−1 (i.e. high
variance of the so-called importance weights w(ξi) = ωi), then the IS estimators
can be very poorly behaved. In that case, we have a so-called weight degener-
acy, which means that all the weights vanish except on. This situation can be
detected by checking the Shannon entropy of the weighted population. Another
pitfall , harder to detect, is when the samples ξi have explored insufficiently the
tails of the target distribution.

Hence a reasonable prior knowledge of the target distribution is needed to
avoid these pitfalls is needed but it remains hard to have especially when dealing
with posterior distribution. In order to come up with these limitations, we pro-
pose to use the Population Monte Carlo framework developed by Cappé et al [4]
for deriving an adaptive Importance Sampling algorithm for dynamical systems.

Population Monte Carlo algorithm Population Monte Carlo (PMC) is a
sequential Monte Carlo method, i.e. it is an iterated Importance Sampling Re-
sampling algorithm (ISR) which sequentially moves and re-weights a population
of weighted particles (ξi, ω̃i), i = 1, . . . ,M . An essential feature of this algorithm
is the resampling step that enables to discard particles with low weights, and to
duplicate particles with high weights: this mechanism prevents then the degen-
eracy of the weights (i.e. all the weights vanish except one), as it is commonly
used in particle filtering for instance. In all generality, a PMC scheme is defined
for t = 0, 1, . . . , T and a sequence of proposal distributions qt defined on (Rd+p)

1. Generate (ξi,0)1≤i≤M ∼ qt (i.i.d sampling) and compute normalized weights
ω̃i,t,

2. Resample (ξ̃i,0)1≤i≤M by multinomial sampling with weights ω̃i,t, i = 1, . . . ,M

3. Construct qt+1 from ((ξ̃i,t′ , ω̃i,t′))1≤i≤M,0≤t′≤t

The essential interest of PMC is to introduce a sequence of proposal distributions
that are allowed to depend on all the past which enables to consider adaptive
IS procedure based on the performance of the previous populations. PMC offers
then a great versatility through the construction of the sequence of distribution
qt. In that case, the PMC estimator is still unbiased and the weights depends

of step t, i.e. wi,t =
πN−1(ξi,t)
qi,t(ξi,t)

. Next, we present a possible construction of a

sequence of proposal distributions.

3.2 Markovian transition and adaptive kernels

A simple way to randomly perturb a population is to add an independent noise
to each particle ξi,t−1, i.e. to modify independently each particle ξi,t = ξi,t−1+ǫi,t
with ǫi,t ∼ N(0, Σt) (usually Σt = σ2

t Id+p). Then, at each iteration t, we have
ξi,t ∼ N(ξi,t−1, Σt). General moves from ξi,t−1 to ξi,t are described with a



(Markov) transition kernel Ki,t(ξi,t−1, ·). Through the resampling mechanism,
particles moving in good regions are duplicated and particles moving to low
credibility regions do vanish which permits a global amelioration of the popu-
lation. This evolution rule described above is a simple random walk, and the
mean size of the jumps is controlled by σt. The variance of the proposal is re-
lated to the speed at which we do move from an uninteresting region a space to
an interesting one. This move is very basic, and it is interesting to propose at
least several size of jumps by using a mixture of D Gaussian transition kernels:
ǫi,t ∼

∑D

d=1 αdN(0, Σd,t). With such a D-kernel, the population is moved at each
iteration t at different speed Σd,t selected with probability αd. The D-kernel used
in [4] can behave in a satisfying manner, but this algorithm is not fully adaptive
as the evolution rule is not updated, whatever the success of the proposed move.
Hence a better adaptive kernel is to change the move according to the survival
rate of a given move. This problem of determining the weights of the mixture
of kernel proposals can be seen as an estimation problem where the weights αd

used are chosen for minimizing a Kullback-Leibler divergence with an EM-like
algorithm [7].

4 Experimental results and discussion

In this section, we compare the results provided by Unscented Kalman Smooth-
ing (UKS) and Flow-based Bayesian Estimation using the Importance Sampling
scheme (FBE-IS) and the adaptive Population Monte Carlo (FBE-PMC). We
measure the quality of the approximation (estimates of the posterior covariance
matrices) and also the quality of the reconstruction of the hidden states. In both
cases, we consider a relatively small number of observations so that the posterior
distribution is far from being approximately Gaussian. Then, we need to use ap-
proximation that can take into account multi-modality. In the cases worked out,
we have used a so-called multi-start UKS based on 50 random initializations of z0
for initiating the smoothing algorithm as described in [6]. We select the solution
with the smallest quadratic error (along a trajectory) among the 50 different
approximated posterior means and the corresponding posterior covariances. We
first present results on a nonlinear dynamical biochemical system fully observed
with noise. In this case, the state-space model reduces to the discretization of
a system of ODEs, observed with some additional gaussian noise. We use this
model to test the relevance of the FBE algorithm in a simple case. Then, we
turn to the Repressilator which is a partially observed and nonlinear model of a
gene regulatory network .

4.1 α-pinene

The α-pinene model presented here is a biochemical system of 5 interacting
chemical species. It describes the isomerization of α-pinene, and the dynamics
of the concentrations of the 5 species involved is described through the following



time homogeneous linear ODE:























ẋ1 = −(p1 + p2)x1

ẋ2 = p1x1

ẋ3 = p2x1 − (p3 + p4)x3 + p5x5

ẋ4 = p3x3

ẋ5 = p4x3 + p5x5

(10)

The evolution of the system is controlled by 5 rate constants θ = (p1, . . . , p5)
that we wish to estimate from noisy time series. This estimation problem is
relatively classical and it has been introduced as a benchmark for the estimation
of ODE, [19]. The system is completely observed and the number of observations
is N = 8. In [19], the parameter θ has been estimated by global optimization
of the least squares criterion. We use their estimate as a reference value (see
reference value θref in table 1) as it provides a good fit to the data. In this
case, the situation is relatively simple as the initial condition x0 is known and
equals to [100, 0, 0, 0, 0]⊤ and the system is completely observed. For the Bayesian
estimation, we use a non-informative uniform distribution for θ and defined on
[θref + 10−3]. We compare the 3 methods (UKS, FBE−IS and FBE−PMC D-
kernel) only for the estimation of the parameters, see table 1, since we can set
x0 to its true value directly in FBE−IS and FBE−PMC. Finally, we use M =
5000 particles, and the resampled population of FBE–IS is used as the starting
population for FBE–PMC. The proposal for FBE–IS is Gaussian (not centered
on θref ) and is homoskedastic with standard deviation equals to 3×10−6. We use
D = 7 kernels with different variances: σ1 = 10−11, σ2 = 10−10, σ3 = 10−9, σ4 =
10−8, σ5 = 10−7, σ6 = 10−6, σ7 = 10−5. The results in table 1 show that FBE–
PMC improves on the other estimates, as it is closer to the reference value, and it
gives also a smaller standard deviation than UKS and FBE–IS. Moreover, results
provided by FBE–PMC are more reliable than FBE–IS (or UKS), as the entropy
of the PMC population SPMC = 4.3 is bigger than the entropy of IS population
SIS = 0.15, which indicates that FBE–PMC enables to avoid degeneracy of the
population, and the weights are well scattered. Finally, at iteration t = 20 of
FBE–PMC, it remains only 1 component with variance 10−9 and a population
with entropy equals to 4.5. Finally, the reconstructed trajectories obtained by
UKS and FBE–PMC are presented in figure ??, which shows that the data best
fitting and predicting model is provided by FBE–PMC, thanks to the initial
value parametrization.

4.2 An example of a partially observed system: the Repressilator

network in E. coli

The Repressilator network was proposed in 2000 [8] to describe sustained oscilla-
tions observed in a small system in the bacterium E. coli, composed of three genes
that code for 3 proteins. The first repressor protein, LacI from E. coli, inhibits the
transcription of the second repressor gene, TetR, from the tetracycline-resistance
transposon Tn10, whose protein product in turn inhibits the expression of a third



Reference (×10−5) UKS (×10−5) FBE–IS (×10−5) FBE–PMC (D-Kernels) (×10−5)

p1 5.9259 3.66± 5.6 5.98± 1.3× 10−2 5.93± 4.7× 10−2

p2 2.9634 2.5± 4.8 2.92± 1.3× 10−2 2.96± 5× 10−2

p3 2.0473 1.78± 20.4 2.05± 5.69× 10−2 2.06± 2× 10−2

p4 27.4490 27.3± 31.1 26.7± 5.69× 10−2 27.89± 10× 10−2

p5 3.9980 4.24± 26 3.53± 13.1× 10−2 4.11± 5.2× 10−2

∥

∥

∥
θ̂ − θref

∥

∥

∥
0 2.3× 10−5 8.2× 10−6 4.5× 10−6

Table 1. Estimated parameter values with UKS, FBE–IS and FBE–PMC with stan-
dard deviation.

gene, CI from λ phage. Finally, CI inhibits LacI expression, completing the cy-
cle. Hill kinetics are used to model the dynamics. For sake of simplicity in nota-
tions, x1, x2, x3 denote respectively the expression of genes Lacl, TetR1, Cl and
x4, x5, x6 the concentrations of corresponding proteins. The network evolution
is described by the following ODE:







































ẋ1 = vmax
1

kn
12

kn
12

+xn
5

− kmRNA
1 x1

ẋ2 = vmax
2

kn
23

kn
23

+xn
6

− kmRNA
2 x2

ẋ3 = vmax
3

kn
31

kn
31

+xn
4

− kmRNA
3 x3

ẋ4 = k1x1 − k
protein
1 x4

ẋ5 = k2x2 − k
protein
2 x5

ẋ6 = k3x3 − k
protein
3 x6

(11)

In the simulations, the RNA concentrations x1, x2, x3 are supposed to be ob-
served through a noisy measurement process (modeled by a Gaussian with σ = 3)
while the proteins concentrations x4, x5, x6 are not measured. The initial values
are also supposed to be unknown, and need then to be estimated. The true
parameter values and initial conditions are available in tables (2, 3) respec-
tively. We use a Gaussian distribution centered at ztrue0 as a prior, and the
proposal distribution q is a Gaussian distribution with a shifted mean (ztrue0 +2)
and homoskedastic covariance (with standard deviation = 5). For measuring
the performance of the 3 estimators, we perform a Monte Carlo study with
NMC = 100 independent replicates (and we use populations of size M = 1000).
The mean results in tables (2,3) show that FBE–PMC is unbiased and gives
reliable confidence results whereas UKS provide significantly different estimates,
and important standard deviation. In the case of Importance Sampling the mean
estimates are correct, but the standard deviation are very small. This come from
the weights degeneracy of FBE–IS: indeed, in 84% of simulations, a single par-
ticle has a weight greater than 90% (the mean entropy of the weights of the IS
population is 0.12). This is not the case for FBE–PMC which avoids this curse
with T = 10 steps starting from the population used by Importance Sampling (
the mean entropy is 2.24). In particular from table 3 one can see that FBE–PMC
enables to gives more credible values for the hidden states, and guarantees also
that the corresponding solution with estimated z0 is close to the data.



Parameter True Parameter UKS FBE–IS FBE–PMC

vmax
1 150 147.3± 0.9 150.2± 0.09 150.0± 0.46

vmax
2 80 81.9± 1.7 80.7± 0.49 80.2± 0.66

vmax
3 100 102.2± 1.7 100.7± 0.25 100.1± 0.91

k1 50 53.0± 0.9 50.7± 0.05 50.1± 0.35

k2 30 37.1± 0.94 30.9± 0.08 29.9± 0.38

k3 40 47.6± 0.8 40.72± 0.03 40.0± 0.36

Table 2. Estimated Parameters using UKS, FBE–IS and FBE–PMC (D-kernel) T = 25
observations. Average Means and Standard Deviations computed on 100 samples.

Parameter True Parameter UKS estimation FBE–IS FBE–PMC

p1(0) 1 97.8± 5.9 3.11± 0.21 2.86± 0.09

p2(0) 2 143.6± 3.0 3.83± 0.21 3.51± 0.10

p3(0) 3 148.5± 8.6 4.76± 0.17 4.75± 0.27
Table 3. Estimated Initial Conditions of Hidden States using UKS, FBE–IS and FBE–
PMC (D-kernel) approach T = 25 observations. Average Means and Standard Devia-
tions computed on 100 samples.

5 Conclusion and perspective

We have proposed to learn both the initial condition and the parameters in
such a way that they convey a proper solution of the ODE. As in biological or
biochemical experiments, the initial condition vector can be fully observed, we
turn the ODE estimation problem into a state-space model estimation task where
the only parameter to estimate is an augmented initial condition. A Bayesian
approach to this problem, called FBE, has been derived using an Importance
Sampling schme (FBE–IS) and a Population Monte Carlo scheme (FBE–PMC)
for the approximation of the posterior probability. The FBE–PMC approach
overcomes classical limitations of standard estimation methods in state-space
models. The versatility of the PMC schemes gives new estimation methods, based
on the learning of proposal distribution qt that permits a better exploration of
the space. The engineering of proposal distributions adapted to the dynamical
systems remains quite unexplored and links with particle filters might be pointed
out. Finally, a promising research direction for reverse-modelling of biological
networks is to combine the augmented initial condition estimation with the graph
structure estimation in the Bayesian framework.
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[3] Cappé, O., Douc, R., Guillin, A., Marin, J.M., Robert, C.P.: Adaptive impor-
tance sampling in general mixture classes. Statistics and Computing 18(4), 447–459
(2008)
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