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Abstract

Link prediction is addressed as an output
kernel learning task through semi-supervised
Output Kernel Regression. Working in the
framework of RKHS theory with vector-
valued functions, we establish a new repre-
senter theorem devoted to semi-supervised
least square regression. We then apply it to
get a new model (POKR: Penalized Output
Kernel Regression) and show its relevance us-
ing numerical experiments on artificial net-
works and two real applications using a very
low percentage of labeled data in a transduc-
tive setting.

1. Introduction

Recent years have witnessed a surge of interest for net-
work inference in social networks as well as in biolog-
ical networks. Link prediction (Huynen et al., 2003;
Liben-Nowell & Kleinberg, 2007), defined as a super-
vised task, aims at building pairwise classifiers able to
predict if two components interact, from a dataset of
labeled pairs of components. The underlying hypothe-
sis is that some input features relative to each node in
a pair provide valuable information about the presence
or the absence of a link. The main approaches devoted
to this task fall into two families: probabilistic graph-
ical models (Miller et al., 2009; Taskar et al., 2003)
provide posterior probabilities of links while kernel or
similarity based methods take benefit from the versa-
tility of kernels to encode various structured knowledge
in the input space as well as in the output space (Ya-
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manishi et al., 2004; Ben-Hur & Noble, 2005; Geurts
et al., 2006; 2007a;b).

However in many fields, there exists additional infor-
mation about the nodes, even if we don’t know their
interactions. For instance, in biology, it is much eas-
ier to get a detailed description of the properties of a
protein compared to the cost of experimental meth-
ods used to detect physical interactions between two
proteins. The question of semi-supervised link pre-
diction is thus really meaningful and curiously has not
been well explored in the literature. Moreover, in some
cases, we already know the finite set of candidate nodes
in the target graph and the problem can therefore be
stated as a transductive one: we want to complete a
partially known network we have at hand.

The aim of this paper is to develop methods that ex-
ploit unlabeled data. To address this issue, we have
chosen to convert the binary pairwise classification
problem into an output kernel learning problem, as
in (Geurts et al., 2006; 2007b). A target output kernel
is assumed to encode the similarity of data as nodes in
the graph and the goal of learning is to approximate
this function by using appropriate input features. Us-
ing the kernel trick in the output space allows one to
reduce the problem of learning from pairs to learning a
single variable function with values in the output fea-
ture space. This supervised regression task is referred
as Output Kernel Regression (OKR). Once the out-
put kernel is learnt, a link prediction is performed by
thresholding the kernel value for a pair of inputs. Tree-
based methods have been developed to solve OKR and
have been applied to supervised biological networks in-
ference (Geurts et al., 2007a).

To benefit from the usually large amount of unla-
beled data, we need to extend OKR to semi-supervised
learning. A powerful approach to semi-supervised re-
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gression is based on graph-based regularization that
forces the prediction function to be smooth on the
graph describing similarities between inputs. Enforc-
ing smoothness of the function permits to propagate
output labels over close inputs as shown in (Zhou et al.,
2004; Belkin & Niyogi, 2004). Belkin et al. (2006)
have proposed to explicitly embed such ideas into the
framework of regularization within Reproducing Ker-
nel Hilbert Space (RKHS) for real-valued functions.
This allows one to benefit from a representer theorem
devoted to semi-supervised learning that provides a
basis for new models and algorithms.

Exploiting this regularization framework in the case
of OKR requires to define an appropriate input ker-
nel in the proper RKHS theory. Here, the function
to be learnt is not real-valued but vector-valued in a
Hilbert space. We therefore need to turn to the RKHS
theory, devoted to vector-valued functions (Senkene &
Tempel’man, 1973; Micchelli & Pontil, 2005). In this
theory, kernels are operator-valued and applied to vec-
tors of the given Hilbert space. In particular, similarly
to the theory in the scalar case, a RKHS can be build
from a positive definite kernel and representer theo-
rems can be proven (Micchelli & Pontil, 2005). While
being very powerful, this theory is still underused. We
must emphasize the series of works (Caponnetto et al.,
2008; Argyriou et al., 2009) that developed this theory
to solve a multi-tasks learning problem and the recent
work of Kadri et al. (2010) who achieved functional re-
gression by applying this theory for input and output
functional space.

In this work, the RKHS theory with vector-valued
functions provides us with a general framework for
OKR. Starting from the results existing in the su-
pervised case for Tikhonov regularization (Micchelli
& Pontil, 2005), we show that with an appropriate
choice of the operator-valued kernel based on some in-
put scalar kernel, we directly retrieve the extension
of kernel ridge regression to output kernels proposed
by Cortes et al. (2005). We propose a new repre-
senter theorem devoted to semi-supervised learning
that leads us to define a new model, expressed as a
closed-form solution. While the development of the
approach overcomes the link prediction problem, we
use the obtained model to approximate the output ker-
nel on several tasks: a first set of artificial networks,
the NIPS co-authorship network and the well known
yeast protein-protein interaction network dataset.

In the rest of this paper, we first introduce the ex-
isting framework of OKR for link prediction. In sec-
tion 3, we briefly recall the RKHS theory devoted to
functions with values in a Hilbert space. Section 4 is

devoted to supervised learning and the derivation of
a closed-form solution in the case of penalized least
square cost by choosing an adequate operator-valued
input kernel. Section 5 presents the core results of the
paper: a new representer theorem devoted to semi-
supervised learning in the case of vector-valued func-
tions and a resulting new model, still expressed in a
closed-form. In section 6, we present experimental re-
sults in a transductive setting and in section 7, we
draw some conclusions and perspectives.

2. Link prediction with Output Kernel

Regression

Let us define O the set of descriptions of the objects
(individuals, proteins, authors) we are interested in.
Assume that there exists some relation ftarget : O ×
O → {0, 1} that we want to approximate. ftarget could
be social relationships like friendship or co-authorship
if the nodes are individuals, or physical interactions if
nodes are proteins. During the training phase we are
given Gℓ = (Oℓ, Aℓ), a non oriented graph defined by
the subset Oℓ ⊆ O and the adjacency matrix Aℓ of size
ℓ × ℓ such that Aℓ(i, j) = ftarget(oi, oj). Supervised
link prediction consists of learning a binary pairwise
classifier f : O×O → {0, 1} that predicts if two objects
interact or not, from the training information Gℓ.

In this work, we convert the binary pairwise classi-
fication task into an output kernel learning task as
in (Geurts et al., 2006). This is made possible by
noticing that a Gram matrix KYℓ

can be defined from
the adjacency matrix Aℓ using any kernel that en-
codes the proximities of nodes in a given graph. Typi-
cally, we use in this work the diffusion kernel (Kondor
& Lafferty, 2002) matrix KYℓ

= exp(−βLYℓ
) where

LYℓ
= Dℓ − Aℓ, with Dℓ the degree matrix.

In the training information, the matrix Aℓ is now re-
placed by a positive semi-definite matrix KYℓ

. We as-
sume that a positive definite kernel κy: O × O →
R underlies this Gram matrix such that ∀i, j ≤
ℓ, KYℓ

(i, j) = κy(oi, oj). Moreover, there exists an
Hilbert space Fy, called the feature space, and a
feature map y : O → Fy such that ∀(o, o′) ∈
O, κy(o, o′) = 〈y(o), y(o′)〉Fy

.

The idea underlying output kernel learning is the fol-
lowing: we assume that an approximation of the kernel
function κy will provide valuable information about
the proximity of the objects of O as nodes in the un-
known whole graph defined on O. Given that assump-
tion, a classifier fθ is defined from the approximation
κ̂y by thresholding its output values:

fθ(o, o
′) = sgn(κ̂y(o, o′) − θ) .
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We build an approximation of κy from the inner prod-
uct between the outputs of a single variable function
h : O → Fy: κ̂y(o, o′) = 〈h(o), h(o′)〉Fy

. By this way,
the approximation κ̂y is a kernel by construction and
there is no need to solve a pre-image problem. Instead
of learning a pairwise classifier, we need to learn a sin-
gle variable function with output values in a Hilbert
space (the output feature space Fy). In the follow-
ing, we show how the RKHS theory devoted to vector-
valued functions can provide a theoretical framework
both in the supervised and semi-supervised cases.

3. Supervised Input Output Kernel

Regression with RKHS theory

The RKHS theory for real valued functions provides a
powerful theoretical framework for regularization. Nu-
merous models including ridge regression and support
vector machines can be derived from the application of
the representer theorem and different data-dependent
cost functions.

In the following, we briefly recall the main elements
of the RKHS theory that we need for regularization
of vector-valued functions. We especially focus on the
penalization of the least square cost in order to benefit
from the kernel trick in the output space.

For a given Hilbert space Fy, we note L(Fy), the set of
all bounded linear operators from Fy to itself. Given
A ∈ L(Fy), A∗ denotes the adjoint of A.

Definition 1 (Operator-valued kernel (Senkene &
Tempel’man, 1973; Caponnetto et al., 2008)). Let O
be a set and Fy an Hilbert space. Kx : O×O → L(Fy)
is a kernel if:

• ∀(o, o′) ∈ O ×O, Kx(o, o′) = Kx(o, o′)∗

• ∀m ∈ N, ∀{(oi,yi)}
m
i=1 ⊆ O ×Fy,

m∑

j=1

〈yi,Kx(oi, oj)yj〉Fy
≥ 0 .

The following theorem says that one can build a RKHS
from a given operator-valued kernel.

Theorem 2 (Senkene & Tempel’man (1973); Micchelli
& Pontil (2005)). Let O be a set and Fy be an Hilbert
space. If Kx : O × O → L(Fy) ∈ Fy is an operator-
valued kernel, then there exists a unique RKHS HKx

which admits Kx as the reproducing kernel, that is

∀o ∈ O,∀y ∈ Fy, 〈h,Kx(o, ·)y〉H = 〈h(o),y〉Fy
. (1)

For sake of simplicity we omit Kx and use H = HKx

in the rest of the paper. As in the scalar case, one of

the most appealing feature of RKHS is to provide a
theoretical framework for regularization, the so-called
representer theorems. We focus here on the represen-
ter theorem devoted to penalized least square.

Theorem 3 (Micchelli & Pontil (2005)). Let O be a
set and Fy be an Hilbert space. Given a set of labeled
examples Sℓ = {(oi,yi)}

ℓ
i=1 ⊆ O × Fy, a RKHS H

with reproducing kernel Kx : O × O → L(Fy), the

minimizer ĥ of the following optimization problem:

argmin
h∈H

J(h) =

ℓ∑

i=1

‖h(oi) − yi‖
2
Fy

+ λ1‖h‖
2
H , (2)

with λ1 > 0, admits an expansion:

ĥ(·) =

ℓ∑

j=1

Kx(oj , ·)cj , (3)

where the vectors cj ∈ Fy, j = {1, · · · , ℓ} satisfy the
equations:

yj =

ℓ∑

i=1

(Kx(oi, oj) + λ1δij)ci , (4)

where δ is the Kronecker symbol: δii = 1 and ∀j 6= i,
δij = 0.

To benefit from the RKHS theory, we must define a
suitable input operator-valued kernel in the context of
OKR. In the following, we slightly change OKR by
assuming that an input (scalar) kernel is given and
then we define a simple operator-valued kernel.

4. Input Output Kernel Regression

within the appropriate RKHS theory

4.1. Scalar input kernel

OKR is extended to data described by some input ker-
nel. The training input set is now defined by an input
Gram matrix KXℓ

, which encodes for the properties of
the training objects Oℓ. As in the output case, the
coefficients of the Gram matrix are supposed to be
defined from a positive definite input kernel function
κx : O × O → R, with ∀i, j ≤ ℓ, KXℓ (i,j) = κx(oi, oj).
Given κx, there exists an Hilbert space Fx and a fea-
ture map x : O → Fx, such that ∀(o, o′) ∈ O ×O, we
have κx(o, o′) = 〈x(o), x(o′)〉Fx

. But contrary to the
output case, the input kernel function κx is assumed to
be known, which is useful to make predictions on new
data. We note that this extension of OKR directly fits
the first step of Kernel Dependency Estimation (KDE)
reformulation of Cortes et al. (2005).1

1The second step of KDE being the pre-image problem.
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4.2. Operator-valued kernel

We define Kx as follows:

Kx : O ×O → L(Fy) (5)

(o, o′) 7→ κx(o, o′) × IFy
,

with IFy
, the identity matrix of size dim(Fy) .

We can briefly show that the kernel Kx satisfies the
properties of a nonnegative kernel: it is symmetric thus
hermitian. Moreover the positive semi-definite prop-
erty of κx leads to Kx being positive definite: ∀m ∈ N,
∀{(oi,yi)}

m
i=1 ⊆ O ×Fy,

m∑

i,j=1

〈yi,Kx(oi, oj)yj〉Fy
=

m∑

i,j=1

κx(oi, oj)〈yi,yj〉Fy
≥ 0.

Given that an operator-valued kernel is defined
from (5), Theorem 2 ensures that a RKHS, HKx

can
be built from it. The way to build HKx

is detailed
in the proof of Theorem 2 given in (Senkene & Tem-
pel’man, 1973; Micchelli & Pontil, 2005). Theorem 3
can then be applied and leads to the following closed-
form solution:

Proposition 4. When Kx is defined by mapping (5),
the solution of Problem (2) reads

C = Yℓ(KXℓ
+ λ1Iℓ)

−1 ,

where Yℓ = (yT
1 , · · · ,yT

ℓ ) is a matrix of dimension
dim(Fy) × ℓ. KXℓ

is the Gram matrix of size ℓ × ℓ

associated to kernel κx. Finally, Iℓ is the identity ma-
trix of size ℓ.

Proposition 4 provides thus for the h model:

∀o ∈ O, h(o) = CXT
ℓ x(o) ,

where Xℓ = (x(o1)
T , · · · , x(oℓ)

T ) denotes a matrix of
dimension dim(Fx) × ℓ. It is worth noting that The-
orem 3 and Proposition 4 provide a principled way
to retrieve the linear model proposed by Cortes et al.
(2005) in the framework of the reformulation of KDE.

5. Semi-supervised Output Kernel

Regression

In the case of real-valued functions, Belkin et al. have
introduced new representer theorem devoted to semi-
supervised learning (2006, Theorem 2). A graph-based
regularizer is added to the cost functional to enforce
the smoothness of the target function h. We define
the Laplacian L, of dimension (ℓ + u) × (ℓ + u), given
by L = D − W , where W is a matrix measuring the

similarity of objects in the input space2 and the general
term of the diagonal matrix D is Dii =

∑ℓ+u

j=1 Wij .

On the following, we state and prove a representer the-
orem devoted to semi-supervised learning in the con-
text of RKHS with functions in a Hilbert space. In-
deed, Theorem 5 extends to vector-valued functions
the representer theorem proposed by Belkin et al.
(2006) in the scalar case. Besides, it also extends The-
orem 3 to the semi-supervised framework.

Theorem 5. Let O be a set and Fy an Hilbert space.
Given a set of labeled examples Sℓ =
{(oi,yi)}

ℓ
i=1 ⊆ O × Fy, a set of unlabeled examples

Su = {oi}
ℓ+u
i=ℓ+1 ⊆ O, a RKHS H with reproducing

kernel Kx : O × O → L(Fy), and a matrix W with
positive values measuring the similarity of objects
in the input space, the minimizer ĥ of the following
optimization problem:

argmin
h∈H

J(h) =

ℓ∑

i=1

‖h(oi) − yi‖
2
Fy

+ λ1‖h‖
2
H

+λ2

ℓ+u∑

i,j=1

Wij‖h(oi) − h(oj)‖
2
Fy

,

(6a)

(6b)

with λ1 and λ2 > 0, admits an expansion:

ĥ(·) =

ℓ+u∑

j=1

Kx(oj , ·)cj , (7)

where the vectors cj ∈ Fy, j = {1, · · · , (ℓ + u)} satisfy
the equations:

Vj yj = Vj

ℓ+u∑

i=1

Kx(oi, oj)ci + λ1cj

+ 2λ2

ℓ+u∑

i=1

Lij

ℓ+u∑

m=1

Kx(om, oi)cm ,

(8a)

(8b)

where the matrix Vj of dimension dim(Fy)× dim(Fy)
is the identity matrix if j ≤ ℓ and the null matrix if
ℓ < j ≤ (ℓ + u).

Sketch of the proof. Problem (6) admits a unique so-

lution ĥ given by (7), if for any h ∈ H, J(h) > J(ĥ).

To show this, we define g = h − ĥ and establish that
J(h) = J(g+ ĥ) = J(ĥ)+c, with c > 0 . The complete
proof is provided in the supplementary material. 3

�

Now, if we use the operator-valued Kx defined by (5),
we can again apply theorem 2 and build the corre-
sponding RKHS. Now when integrating the definition

2In particular, one can choose Wij = κx(oi, oj).
3 http://amis-group.fr/?q=supp downloads

http://amis-group.fr/?q=supp_downloads
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(5) into condition (8) of Theorem 5, we get the follow-
ing closed-form solution:

Proposition 6. When Kx is defined by mapping (5),
the solution of Problem (6) reads

C = YℓU(KXℓ+u
UT U + λ1Iℓ+u + 2λ2KXℓ+u

L)−1, (9)

where C is a matrix of dimension dim(Fy) × (ℓ + u)
that gather the vectors cj of the expansion (7),
Yℓ = (yT

1 , · · · ,yT
ℓ ) is a matrix of dimension dim(Fy)×

ℓ. U denotes a matrix of dimension ℓ × (ℓ + u) that
contains an identity matrix of size ℓ×ℓ on the left hand
side and a zero matrix of size ℓ × u on the right hand
side. KXℓ+u

is the Gram matrix of size (ℓ+u)× (ℓ+u)
associated to kernel κx. Finally, Iℓ+u is the identity
matrix of size (ℓ + u).

Thus, Equation (9) provides for the model h:

∀o ∈ O, h(o) = CXT
ℓ+ux(o) ,

where Xℓ+u = (x(o1)
T , · · · , x(oℓ+u)T ) denotes a ma-

trix of dimension dim(Fx) × (ℓ + u). Hence, the com-
putation of this solution mainly requires the inversion
of a matrix of size (ℓ + u) × (ℓ + u).

6. Experiments

6.1. Transductive Link Prediction

Once the problem of semi-supervised output kernel re-
gression is solved, we come back to link prediction by
building the following classifier as announced in Sec-
tion 2: ∀(o, o′) ∈ O ×O,

f̂θ(o, o
′) = sgn(〈ĥ(o), ĥ(o′)〉Fy

− θ) . (10)

As the input kernel function κx is assumed to be known
as well as the values on Oℓ ×Oℓ of the output kernel
function κy (that is, KYℓ

), we can learn the classifier
and make prediction on new data. Using the operator-
valued kernel Kx defined by (5) and the corresponding

solution ĥ obtained in (9) gives: ∀(o, o′) ∈ O ×O,

〈ĥ(o), ĥ(o′)〉Fy
=

〈
CXT

ℓ+ux(o), CXT
ℓ+ux(o′)

〉
Fy

= x(o)T Xℓ+uBT KYℓ
BXT

ℓ+ux(o′) ,

with B = U(KXℓ+u
UT U +λ1Iℓ+u +2λ2KXℓ+u

L)−1 and
where Xℓ+u, KXℓ+u

, U and Iℓ+u are defined in Propo-
sition 6. Varying the threshold θ in (10) allows us to
build ROC and Precision-Recall curves.

In our experiments, we evaluate the approach in the
transductive setting, assuming that all the nodes are
known at the beginning of the learning phase and
that only a subgraph defined on a subset of nodes is

given. Note that a comparison with frameworks such
as the link propagation proposed in (Kashima et al.,
2009) would not be appropriate since they deal with
a slightly different assumption. Indeed, in the link
propagation framework, arbitrary interactions may be
considered labeled while the Penalized Output Kernel
Regression (POKR) framework requires a subgraph of
known interactions.

6.2. Experimental protocol

We perform experiments on three kinds of datasets:
a collection of synthetic datasets, a co-authorship net-
work and a Protein-Protein Interaction (PPI) network.
For different values of ℓ, the number of labeled nodes,
we have randomly picked 10 times a subsample of
training examples and used the remaining as testing
examples. Labeled interactions correspond to interac-
tions between two nodes from the training set and the
goal is to complete the interaction matrix. Note that a
10% selection of labeled nodes actually corresponds to
only 1% of labeled interactions. Performance is eval-
uated by the areas under the ROC and the Precision-
Recall curves (respectively denoted Auc-roc and Auc-
pr) averaged over 10 random choices of training sets.

The input kernel KXℓ+u
is build through a gaussian

kernel, whose hyperparameter σ is chosen to maxi-
mize an information criterion (σ = 5.7). The out-
put kernel is a diffusion kernel of parameter β. An-
other diffusion kernel of parameter β2 is also used for
the smoothing penalty instead of the graph Laplacian:

exp(−β2L) =
∑∞

i=0
(−β2L)i

i! . We set W = KXℓ+u
. The

hyperparameters λ1, λ2, β, and β2 are selected by a
5-fold cross-validation procedure on the training set to
maximize the Auc-roc.

6.3. Synthetic networks

We illustrate our method on synthetic networks. In
these experiments, we want to measure the improve-
ment brought by the semi-supervised method in ex-
treme cases (i.e. for low percentage of labeled nodes)
when the input kernel is a very good approximation of
the output kernel. We produce the data by sampling
random graphs from a Erdős-Renyi law. The sampled
graphs contain 700 nodes and their densities4 have re-
spectively been fixed to 0.01, 0.02 and 0.03. The input
feature vectors have been obtained by applying Kernel
PCA on the diffusion kernel associated with the graph,
whose diffusion parameter is chosen to maximize an
information criterion. Finally, we use the components

4The graph density corresponds to the probability of
presence of edges in the graph.
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Figure 1. Averaged and standard deviation values of Auc-roc (top line) and Auc-pr (bottom line) for the reconstruction
of three synthetics networks, given a percentage of 5%, 10% and 20% labeled nodes. The columns correspond to different
graph densities (denoted p dens) which are 0.01, 0.02 and 0.03 respectively.

that capture 95% of the variance as input features.

Figure 1 reports the averaged AUC and the standard
deviations obtained for different densities of networks
and for different percentage values of labeled nodes.
One can observe that the semi-supervised approach
improves upon the supervised one on both kinds of
AUC, especially for a small percentage of labeled data
(up to 10%). Based on these results one can formulate
the hypothesis that supervised link prediction is harder
in the case of more dense networks and that the con-
tribution of unlabeled data seems more helpful in this
case. One can also assume that using unlabeled data
increases the AUCs for low percentage of labeled data.
But when enough information can be found in the la-
beled data, semi-supervised learning does not improve
the performance.

6.4. NIPS co-authorship network

We apply our method on a co-authorship dataset
(Globerson et al., 2007) containing information on
publications of the NIPS conferences from 1988 to
2003. The vertices of the network represent authors
and an edge connects two authors if they have at least
one joint publication. Among the 2865 authors, we
consider only the ones with at least two links in the
co-authorship network and we therefore focus on a net-

work containing 2026 authors with an empirical link
density of 0.002. Each author is described by a vector
of 14036 values, corresponding to the frequency with
which he uses each given word in his papers.

Averaged AUC results in both settings are shown in
Table 1. As previously we can observe that the semi-
supervised method improves the performance com-
pared to the supervised method. For a percentage
value of labeled authors of 5 %, this improvement
reaches 4.8 in Auc-roc and 0.6 in Auc-pr.

6.5. Protein-protein interaction network

We also perform experiments on a PPI network of the
yeast Saccharomyces Cerevisiae composed of 984 pro-
teins linked by 2438 interactions. Several input fea-
tures have already been used to infer this network:
gene expressions, phylogenetic profiles, localization
data and protein interaction data derived from yeast
two-hybrid (Yamanishi et al., 2004; Kato et al., 2005;
Geurts et al., 2006; Bleakley et al., 2007). Among
these data, gene expression appears to be the most
important source of information for this task. There-
fore, we use the gene expressions as input features.

Supervised setting. Several supervised methods
for network inference use this biological network as a
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Table 1. Reconstruction of the NIPS co-authorship network for the authors with a minimum of two links in the network.
The percentage values correspond to the proportions of labeled authors. The averaged Auc-roc and the Auc-pr are
reported for the POKR method, together with the standard deviations, in the supervised and the transductive settings.

Methods
Auc-roc Auc-pr

5% 10% 20% 5% 10% 20%
Supervised 71.1 ± 1.1 77.5 ± 0.7 82.2 ± 0.8 7.7 ± 1.8 15.9 ± 1.2 29.3 ± 2.7

Semi-supervised 75.9 ± 1.3 80.7 ± 0.8 84.7 ± 0.3 8.3 ± 1.3 17.2 ± 1.2 29.0 ± 0.9

benchmark. We complete the comparison provided in
(Bleakley et al., 2007) with our method and the Out-
put Kernel Tree with extra-trees method (OK3+ET )
(Geurts et al., 2007a). The protocol described in
(Bleakley et al., 2007) is used: each method is eval-
uated through a 5-fold cross-validation experiment
and the hyperparameters are tuned using the train-
ing folds. Auc-roc and Auc-pr are computed only for
the possible interactions between proteins in the test
set and proteins in the training set.

Table 2. Auc estimated by 5-CV for the yeast PPI network
reconstruction from expression data in the supervised set-
ting. The first three lines come from (Bleakley et al., 2007):
em stands for em projection method (Tsuda et al., 2003),
Pkernel for tensor product pairwise kernel with SVM (Ben-
Hur & Noble, 2005) and local for local models with SVM
(Bleakley et al., 2007). The results for OK3+ET (Geurts
et al., 2007a) and POKR are also given.

Methods Auc-Roc Auc-Pr

em 80.6 ± 1.1 6.3 ± 1.2
Pkernel 83.8 ± 1.4 7.6 ± 1.0
local 78.1 ± 1.1 2.6 ± 0.4

OK3+ET 84.6 ± 1.4 11.2 ± 3.3
POKR 83.3 ± 2.1 13.7 ± 4.4

Table 2 reports the results presented in (Bleakley
et al., 2007) that exhibit the best Auc-roc and Auc-pr,
and the results for the OK3+ET and the POKR meth-
ods. In terms of Auc-roc, the POKR method behaves
as well as the OK3+ET and the Pkernel methods, with
a slight advantage for OK3+ET. Regarding Auc-pr,
the POKR method achieves rather good performances
compared to the others.

Transductive setting. Now, we can experiment
the POKR method in the transductive setting follow-
ing the experimental protocol described in 6.2.

Averaged and standard deviations of the Auc-roc and
Auc-pr values are summarized in Table 3. It is worth
noting that PPI network inference problems are char-
acterized by a small number of labeled proteins, and we
can observe that the semi-supervised method reaches
slight improvement in this case.

7. Conclusion

We presented a new method for semi-supervised and
transductive link prediction based on Output Kernel
Regression. This recent framework allows to convert
the problem of learning a pairwise classifier into the
task of learning a single output kernel regressor, which
means that functions of interest are vector-valued.

To achieve semi-supervised regression with a smooth-
ing constraint that is known to be performing on
semi-supervised setting, we started from the theory of
RKHS with operator-valued kernels (Senkene & Tem-
pel’man, 1973; Micchelli & Pontil, 2005). We stated
and proved a new representer theorem devoted to semi-
supervised learning in RKHS with vector-valued func-
tions with a penalized least-square cost. Then, given
a simple definition of the operator-valued kernel, we
derived a close-formed solution that extends the refor-
mulated KDE proposed by Cortes et al. (2005) to the
semi-supervised case.

We extensively studied the behaviour of the provided
models on transductive link prediction using artificial
data and two real datasets: a protein-protein inter-
action network and a co-authorship network. The ex-
periments show that using the unlabeled data improve
performances for a very low percentage of known links.

Future works encompass the study of OKR with other
choices of the operator-valued kernel as well as other
data-dependent costs. Moreover, through this work
we have shown a new application of RKHS theory with
operator-valued kernel which is quite different from the
existing ones. This theory opens a large avenue to the
exploitation of complex and structured output data.
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Table 3. Auc results for the reconstruction of the PPI network from gene expression data with the POKR method in the
supervised and the semi-supervised settings. The percentage values correspond to the proportions of labeled proteins.

Methods
Auc-roc Auc-pr

5% 10% 20% 5% 10% 20%
Supervised 76.9 ± 4.3 80.3 ± 0.9 82.1 ± 0.6 5.4 ± 1.6 7.1 ± 1.1 8.1 ± 0.7

Semi-supervised 79.6 ± 0.9 80.7 ± 1.0 81.9 ± 0.7 6.6 ± 1.1 7.6 ± 0.8 8.4 ± 0.5
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