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Abstract

A method is proposed for estimating the parameters in a parametric statistical model
when the observations are fuzzy and are assumed to be related to underlying crisp
realizations of a random sample. This method is based on maximizing the observed-
data likelihood defined as the probability of the fuzzy data. It is shown that the
EM algorithm may be used for that purpose, which makes it possible to solve a wide
range of statistical problems involving fuzzy data. This approach, called the Fuzzy
EM (FEM) method, is illustrated using three classical problems: normal mean and
variance estimation from a fuzzy sample, multiple linear regression with crisp inputs
and fuzzy outputs, and univariate finite normal mixture estimation from fuzzy data.

Keywords: Statistics, fuzzy data analysis, estimation, maximum likelihood princi-
ple, regression, mixture models.



1 Introduction

Recent years have seen a surge of interest in extending statistical inferential procedures
to fuzzy data [5]. Basically, two views of fuzzy data have been proposed [13].

The first approach assumes the data to be intrinsically fuzzy and uses the mathe-
matical formalism of fuzzy random variables, defined as mappings from a probability
space to the set of fuzzy subsets of R or R

n [17, 24, 25, 29], with certain measurability
properties. This model fits well with a physical interpretation of fuzzy data, in which
a fuzzy datum is regarded as an existing object, not necessarily connected to any
underlying precise variable [13]. Recent work on applying this approach to estimation
and hypothesis testing problems may be found, for example, in [2, 19, 21].

The second approach is based on an epistemic interpretation of fuzzy data, which
are assumed to “imperfectly specify a value that is existing and precise, but not
measurable with exactitude under the given observation conditions” [13, page 316].
In this model, a fuzzy datum is thus seen as a possibility distribution associated to a
precise realization of a random variable that has been only partially observed. This
viewpoint will be adopted in this paper.

Under the latter interpretation of fuzzy data, a conceptually simple approach is
to “fuzzify” standard statistical computations using Zadeh’s extension principle [34].
This approach makes it possible to compute fuzzy versions of classical statistics, such
as the mean, variance or correlation coefficients [8, 33], and even to extend significance
tests using fuzzy p-values [8, 32]. However, it usually implies solving complex nonlinear
optimization problems, except in very simple cases. Furthermore, fuzzy estimates are
often too complex objects to be easily handled and interpreted by end-users.

When a parametric statistic model is postulated, an alternative approach to pa-
rameter estimation based on fuzzy data relies on the extension of the likelihood func-
tion using Zadeh’s definition of the probability of a fuzzy event [35]. A maximum
likelihood estimate (MLE) of the parameter of interest may then be defined as a
crisp value maximizing the probability of observing the fuzzy data. This model was
initially suggested in [28]. In the 1980’s, it was studied by Gil and her colleagues
in conjunction with fuzzy information systems [14, 15, 16]. These authors showed
that the main properties of the MLE (equivariance under one-to-one transformations,
asymptotic normality and asymptotic efficiency) are preserved in the fuzzy case under
very general conditions [13, pages 327–333].

Although conceptually appealing and well-founded theoretically, the maximum
likelihood (ML) approach to statistical inference from fuzzy data has not been widely
used, essentially because of the difficulty of putting it to work in realistic statistical
problems. As noted by Gebhardt et al. [13, page 329]: “In spite of these valuable
properties and although the application of the maximum likelihood principle to some
examples is very simple, to determine solutions in most situations becomes too com-
plex”.

In this paper, we propose to solve the above problem using the Expectation-
Maximization (EM) algorithm. This algorithm, formalized by Dempster et al. [6],
provides a very general mechanism for computing MLEs from incomplete data. This
method has been successfully applied to a wide range of problems involving partially
observed data such as inference from censored or grouped data, finite mixture models,
factor analysis, etc [26]. As will be shown, the EM algorithm can be adapted to handle
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estimation problems involving fuzzy data, viewed as imperfectly specifying underly-
ing crisp values. As will be shown, this approach makes the ML principle practically
applicable to solve a wide range of statistical problems involving fuzzy data.

The rest of this paper is organized as follows. Section 2 first presents in greater
detail the problem addressed in this paper, trying to clarify the considered semantics
of fuzzy data. Section 3 recalls the EM algorithm and demonstrates its application
in the case of fuzzy data. Section 4 then describes three applications: normal mean
and variance estimation of a normal distribution, multiple regression with crisp input
and fuzzy output data, and univariate normal mixture estimation. Finally, Section 5
concludes the paper.

2 Problem description

The problem addressed in this paper may be described as follows. We assume the
existence of a random vector X, referred to as the complete data vector, taking values
in a sample space X and describing the result of a random experiment. The probability
density function (p.d.f.) of X is denoted by g(x; Ψ), where Ψ = (Ψ1, . . . ,Ψd)

′ is a
vector of unknown parameters with parameter space Ω. Although X will be generally
assumed to be a continuous random vector (unless otherwise specified), g(x; Ψ) can
still be viewed as a p.d.f. in the case where X is discrete by the adoption of the
counting measure.

Let x be a realization of X. If x was known exactly, we could compute the
maximum likelihood estimate (MLE) of Ψ as any value maximizing the complete-
data likelihood function

L(Ψ;x) = g(x;Ψ). (1)

In this paper, we consider the more difficult problem where x is not observed precisely,
and only partial information about x is available in the form of a fuzzy subset x̃ of
X , with Borel measurable membership function µx̃ : X → [0, 1].

Before tackling the problem of parameter estimation from such data, we have to
examine carefully the nature of the partial information about x, in relation to the
underlying random experiment. This issue will be addressed in Subsection 2.1. A
generalized likelihood function will then be introduced and discussed in Subsection
2.2. Finally, another model, which leads formally to the same likelihood function with
a completely different interpretation, will be discussed in Subsection 2.3.

2.1 Interpretation of fuzzy data

In the model considered here, the fuzzy observation x̃ will be understood as encoding
the observer’s partial knowledge about the realization x of random vector X. In
this setting, the membership function µx̃ is seen as a possibility distribution [36, 11]
interpreted as a soft constraint on the unknown quantity x. The fuzzy set x̃ can be
considered to be generated by a two-step process:

1. A realization x is drawn from X;

2. The observer encodes his/her partial knowledge of x in the form of a possibility
distribution µx̃.
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It must be stressed that, in this model, only step 1 is considered to be a random
experiment. Step 2 implies gathering information about x and modeling this informa-
tion as a possibility distribution. It is not assumed that this process may be repeated
indefinitely in the same experimental conditions, i.e., it is not considered as a random
experiment. Consequently, x̃ is not considered as a realization of a fuzzy random
variable in this paper. It must also be recognized that two kinds of uncertainty are
involved in this setting:

• Step 1 is associated with aleatory uncertainty, which is due to the random nature
of the data generation process; this uncertainty cannot be reduced before the
experiment, and disappears after the experiment has been performed.

• Step 2 is associated by epistemic uncertainty, which is related to the observer’s
state of knowledge. This uncertainty can sometimes be reduced by gathering
additional information about x.

Example 1 Assume that n skull fragments have been found in some archaeological
site, and we are interested in the volumes of these skulls. The unknown volume xi of
skull i may be regarded as a realization of a random variable Xi induced by random
sampling from a total population of skulls (corresponding to a certain region and
period of interest). The complete data x = (x1, . . . , xn) is thus a realization from
a random vector X = (X1, . . . ,Xn). As only fragments are available, archaeologists
have to use various indirect methods and hypotheses to assess the volume of each
skull. Assume that, following a procedure reported, e.g., in [8] and [20], two intervals
are determined for each skull i:

• an interval [ai, di] certainly containing xi;

• an interval [bi, ci] containing highly plausible values for xi.

This information may be encoded as a trapezoidal fuzzy number x̃i = (ai, bi, ci, di) with
support [ai, di] and core [bi, ci], interpreted as a possibility distribution constraining
the unknown value xi. Information about x may be represented by the joint possibility
distribution

µx̃(x) = µx̃1
(x1)× · · · × µx̃1

(xn). (2)

The epistemic uncertainty modeled by this possibility distribution might be reduced
by carrying out further analysis of the skull fragments. This uncertainty is clearly of
a different nature than the aleatory uncertainty involved in the sampling process. �

We may note that, in the special case where the observed data x̃ is crisp, it corre-
sponds to some form of censored data as frequently encountered in statistics. Usually,
censored data are handled by postulating some stochastic censoring mechanism, and
maximizing the observed data likelihood using, e.g., the EM algorithm. As we will see,
our approach is computationally very similar, although no random censoring mecha-
nism is assumed.

The relationship between the unknown crisp realization x and the fuzzy observa-
tion x̃ can be described by considering the random set view of fuzzy sets (see, e.g., [10,
page 46]). In this view, x̃ is seen as being induced by a uniform probability measure
on [0, 1] and the set-valued mapping α → αx̃, where αx̃ denotes the α-cut of x̃. If
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the observer knew that α = α0, then he/she would assert that x ∈ α0 x̃. However,
the observer’s knowledge of α is uncertain and is described by the uniform probability
distribution. In this model, µx̃(u) is the observer’s subjective probability that the
available evidence can be interpreted as specifying an interval that contains u. We
should stress here that, in the model adopted in this paper, the known subjective
probability distribution on α and the unknown objective probability distribution on
X are assumed to be of different natures; as such they will be treated in completely
different ways in the approach described below.

2.2 Generalized likelihood function

Once x̃ is given, and assuming its membership function to be Borel measurable, we can
compute its probability according to Zadeh’s definition of the probability of a fuzzy
event [35] (see Appendix A.1). By analogy with (1), the observed-data likelihood can
then be defined as:

L(Ψ; x̃) = P (x̃;Ψ) =

∫

X

µx̃(x)g(x;Ψ)dx. (3)

To understand the meaning of P (x̃;Ψ) and, consequently, of L(Ψ; x̃), we can remark1,
as done by Höhle [23], that P (x̃;Ψ) can also be written as:

P (x̃;Ψ) =

∫ 1

0
P (αx̃;Ψ)dα,

where αx̃ denotes the α-cut of x̃ (see also [10, page 52]). Using the random set view
of fuzzy sets outlined in the previous section, P (x̃;Ψ) can thus be seen as the average
value of P (αx̃;Ψ) over the random set underlying x̃.

The above remark can be reformulated in terms of likelihoods. If we knew that
x ∈ αx̃, then the likelihood function would be:

L(Ψ; αx̃) = P (αx̃;Ψ).

Assuming α to be uncertain, and our belief on α to be described by a uniform proba-
bility distribution on [0, 1], the likelihood averaged over all values of α is

∫ 1

0
L(Ψ; αx̃)dα = L(Ψ; x̃).

In the special case where the complete data x = (x1, . . . , xn) is a realization of
an independent identically distributed (i.i.d.) random vector X = (X1, . . . ,Xn), and
assuming the joint membership function µx̃ to be decomposable as in (2), the likelihood
function (3) can be written as a product of n terms:

L(Ψ; x̃) =

n∏

i=1

∫
µx̃i

(x)g(x;Ψ)dx, (4)

and the observed-data log likelihood is

log L(Ψ; x̃) =

n∑

i=1

log

∫
µx̃i

(x)g(x;Ψ)dx. (5)

1We thank an anonymous referee for bringing this point to our attention.
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2.3 Fuzzy Information System model

Although the model outlined in Subsection 2.1 will be adopted throughout this paper,
it is interesting to compare it with another model that has been extensively used in
the fuzzy statistics literature in the 1980’s (see, e.g., [16, 14, 15]). In this alternative
model, we assume the existence of fuzzy information system (FIS) , defined as a fuzzy
partition F = {ξ̃1, . . . , ξ̃K} of X , i.e., a set of K fuzzy subsets of X verifying the
orthogonality condition:

K∑

k=1

µ
ξ̃k

(x) = 1,

where µ
ξ̃k

denotes the membership function of ξ̃k. When observing a realization x of

X, the experimenter selects the element of F that best describes his/her perception
of x. If we make the (strong) assumption that, conditionally on x, each ξ̃k is selected
with probability µ

ξ̃k
(x), then the overall probability of selecting ξ̃k is

P (ξ̃k) =

∫

X

µ
ξ̃k

(x)g(x;Ψ)dx = EΨ

[
µ

ξ̃k
(X)

]
, (6)

assuming µ
ξ̃k

to be Borel measurable. We observe that (6) coincides with Zadeh’s

definition of the probability of a fuzzy event [35]. However, in the particular model
considered here, P (ξ̃k) is the objective probability (i.e., the limit frequency) of selecting
ξ̃k as the best fuzzy description of x, based on the experimenter’s perception. The
usual case of categorized data is recovered as a special case when the elements of F
are crisp subsets of X .

Having observed x̃, the likelihood function is

L(Ψ) = P (X̃ = x̃;Ψ) =

∫

X

µx̃(x)g(x;Ψ)dx, (7)

which is formally identical to (3), with a completely different interpretation. Conse-
quently, the problem of finding the MLE in this model can be addressed in exactly
the same way as in the model considered in Subsection 2.1, which will be adopted
hereafter for clarity, unless otherwise specified. A solution to this problem is provided
in the next section.

3 The Fuzzy EM method

The problem tackled in this section consists in maximizing the observed-data log
likelihood, as defined in Section 2.2, in situations where the observed data is fuzzy
and can be seen as an incomplete specification of a complete data vector x. The EM
algorithm is a broadly applicable mechanism for computing MLEs from incomplete
data, in situations where ML estimation would be straightforward if complete data
were available [6]. In its basic form, this algorithm assumes that the observed data
corresponds to a crisp set of possible values for the complete data. This algorithm thus
needs to be adapted to handle fuzzy data. The EM algorithm will first be recalled in
Subsection 3.1, and its application to fuzzy data, referred to as the Fuzzy EM (FEM)
method, will then be presented in Subsection 3.2.
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3.1 The EM algorithm

With the same notations as in Section 2, let us assume that we have a random vector
X with p.d.f. g(x;Ψ). A realization x has been drawn from X, but it is incompletely
observed. The observed data consists in a subset X of X such that x ∈ X. The
observed-data likelihood is

L(Ψ; X) =

∫

X

g(x;Ψ)dx. (8)

The EM algorithm approaches the problem of maximizing the observed-data log
likelihood log L(Ψ; X) by proceeding iteratively with the complete-data log likelihood
log L(Ψ;x) = log g(x;Ψ). Each iteration of the algorithm involves two steps called
the expectation step (E-step) and the maximization step (M-step).

The E-step requires the calculation of

Q(Ψ,Ψ(q)) = E
Ψ

(q) [log L(Ψ;X) | X] ,

where Ψ(q) denotes the current fit of Ψ at iteration q, and E
Ψ

(q) denotes expectation

using the parameter vector Ψ(q).
The M-step then consists in maximizing Q(Ψ,Ψ(q)) with respect to Ψ over the

parameter space Ω, i.e., finding Ψ(q+1) such that

Q(Ψ(q+1),Ψ(q)) ≥ Q(Ψ,Ψ(q))

for all Ψ ∈ Ω. The E- and M-steps are iterated until the difference L(Ψ(q+1); X) −
L(Ψ(q); X) becomes smaller than some arbitrarily small amount.

It is proved in [6] that the observed-data likelihood L(Ψ; X) is not decreased after
an EM iteration, that is,

L(Ψ(q+1); X) ≥ L(Ψ(q); X)

for q = 0, 1, 2, . . .. Hence, convergence to some value L∗ is ensured as long as the
sequence L(Ψ(q); X) for q = 0, 1, 2, . . . is bounded from above. As noted in [26, page
85], L∗ is, in most practical applications and except in pathological cases, a local
maximum of the incomplete data log likelihood L(Ψ; X).

Remark 1 In [6], Dempster et al. postulate the existence of a sample space Y, and
a many-to-one mapping ϕ from X to Y. To each observed y ∈ Y thus corresponds a
subset X = ϕ−1(y) of X . If y is a realization of a random variable Y, then the set X

also becomes random. To be consistent with the model described in Subsection 2.1,
the set X is not considered to be random in this section. This is why Y and ϕ are not
needed here. The EM algorithm remains unchanged under this interpretation.

3.2 Application to fuzzy data

Let us now assume, as we did in Section 2, that the observed data consist in a fuzzy
subset x̃ of X , with Borel measurable membership function µx̃. The observed data
likelihood is now given by (3), which is a direct generalization of (8). To maximize
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this function, we propose to adapt the EM algorithm as follows. Let the E-step now
consist in the calculation of

Q(Ψ,Ψ(q)) = E
Ψ

(q) [log L(Ψ;X) | x̃] (9)

=

∫
µx̃(x) log[L(Ψ;x)]g(x;Ψ(q))dx

L(Ψ(q); x̃)
, (10)

where the expectation of log L(Ψ;X) is now taken with respect to the conditional
p.d.f. of x given x̃, using parameter vector Ψ(q):

g(x|x̃;Ψ(q)) =
µx̃(x)g(x;Ψ(q))∫
µx̃(u)g(u;Ψ(q))du

.

(See (20) in Appendix A.1 for the general expression of the p.d.f. of a random variable
conditionally on a fuzzy event).

The M-step is unchanged and requires the maximization of Q(Ψ,Ψ(q)) with respect
to Ψ. The proposed algorithm alternately repeats the E- and M-steps above until the
increase of observed-data likelihood becomes smaller than some threshold.

To show that the above algorithm actually maximizes the observed-data likeli-
hood (3), we may remark that it is formally equivalent to the standard EM algorithm
recalled in Subsection 3.1, applied to a different statistical model with crisp observa-
tions, in which the fuzzy data play the role of known parameters2. More precisely, let
Y denote a Bernoulli random variable such that P (Y = 1|X = x) = µx̃(x), and let
Z = (X, Y ) be the “complete data”. Its density when Y = 1 is

g(x, 1;Ψ) = µx̃(x)g(x;Ψ).

Assume that we have observed Y = 1. Then the likelihood function based on this
observation is

L(Ψ;Y = 1) = P (Y = 1;Ψ) =

∫
g(x, 1;Ψ)dx =

∫
µx̃(x)g(x;Ψ)dx,

which is identical to (3). This likelihood may be maximized using the classical EM
algorithm. The E-step of this algorithm computes

Q′(Ψ,Ψ(q)) = E
Ψ

(q) [log L(Ψ;Z) | Y = 1] (11)

=

∫
µx̃(x) log[µx̃(x)g(x;Ψ)]g(x;Ψ(q))dx

∫
µx̃(u)g(u;Ψ(q))du

(12)

=

∫
µx̃(x) log[µx̃(x)]g(x;Ψ(q))dx
∫

µx̃(u)g(u;Ψ(q))du
+ Q(Ψ,Ψ(q)). (13)

As the first term in the right-hand side of (13) does not depend of Ψ, it need not be
calculated. Maximizing Q′(Ψ,Ψ(q)) is equivalent to maximizing Q(Ψ,Ψ(q)), which
shows the formal equivalence between the computations under the two models.

The above line of reasoning shows that the Fuzzy EM method introduced in this
section can be considered, from a purely formal point of view, as the application of
the classical EM algorithm to a different statistical model. An immediate consequence
is that the proposed procedure generates a nondecreasing sequence of observed-data
likelihood values, which converges to some limit if it is bounded.

2This argument was suggested to the author by an anonymous referee.
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4 Applications

In the previous section, we have shown that the EM algorithm can be adapted to
compute MLEs from fuzzy data. In this section, we will now demonstrate the ap-
plication of this method to three classical estimation problems: mean and variance
of univariate normal data (Subsection 4.1), multiple regression with crisp inputs and
fuzzy outputs (Subsection 4.2) and univariate normal mixture estimation from fuzzy
data (Subsection 4.3).

4.1 Mean and variance of univariate normal data

Let us assume that the complete data x = (x1, . . . , xn)′ is a realization of an i.i.d.
random sample from a normal distribution with mean m and standard deviation
σ. The observed data is supposed to take the form of a fuzzy subset x̃ of R

n with
membership function

µx̃(x) =

n∏

i=1

µx̃i
(xi) (14)

where x = (x1, . . . , xn)′ and the x̃i, i = 1, . . . , n are fuzzy numbers.
The complete-data p.d.f is

g(x;Ψ) =

n∏

i=1

g(xi;Ψ),

where Ψ = (m,σ)′ and

g(xi;Ψ) =
1

σ
√

2π
exp

(
−(xi −m)2

2σ2

)
.

The complete-data log likelihood is thus

log L(Ψ;x) =

n∑

i=1

log g(xi;Ψ)

= −n

2
log(2π)− n log σ − 1

2σ2

n∑

i=1

(xi −m)2

= −n

2
log(2π)− n log σ − 1

2σ2

(
n∑

i=1

x2
i − 2m

n∑

i=1

xi + nm2

)
.

The observed-data log likelihood is given by (5).
At iteration q + 1, the E-step of the EM algorithm requires the calculation of

Q(Ψ,Ψ(q)) = E
Ψ

(q) [log L(Ψ;X)|x̃] = −n

2
log(2π) − n log σ

− 1

2σ2

(
n∑

i=1

E
Ψ

(q)(X2
i |x̃i)− 2m

n∑

i=1

E
Ψ

(q)(Xi|x̃i) + nm2

)
.
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When the x̃i are trapezoidal fuzzy numbers, the conditional expectations α
(q)
i =

E
Ψ

(q)(X2
i |x̃i) and β

(q)
i = E

Ψ
(q)(Xi|x̃i) can be computed using Equation (23)-(28) in

Appendix A.2.
The M-step of the EM algorithm involves maximizing Q(Ψ,Ψ(q)) with respect to

Ψ. This is easily achieved by solving the likelihood equations. From

∂Q(Ψ,Ψ(q))

∂m
= −2

n∑

i=1

β
(q)
i + 2nm,

we get

m(q+1) =
1

n

n∑

i=1

β
(q)
i .

Now,

∂Q(Ψ,Ψ(q))

∂σ
= −n

σ
+

1

σ3

(
n∑

i=1

α
(q)
i − 2m

n∑

i=1

β
(q)
i + nm2

)
.

Substituting m(q+1) for m in the equation

∂Q(Ψ,Ψ(q))

∂σ
= 0

and solving for σ, we get

σ(q+1) =

√√√√ 1

n

n∑

i=1

α
(q)
i − (m(q+1))2.

The EM algorithm for this problem is summarized in Algorithm 1.

Example 2 To illustrate the above algorithm, we consider real data3 collected during
the experiment reported in [20]. In this experiment, subjects were asked about their
perception of the relative length of different line segments with respect to a fixed
longer segment that was used as a standard for comparison. The subjects had to
describe their perception by providing the support and the core of trapezoidal fuzzy
numbers. In the version of the database used in this example, there were 17 subjects,
and segments with various relative lengths were presented in random order, with
three repetitions for each length. We considered the n = 17 × 3 = 51 fuzzy numbers
corresponding to the true relative length 61.47. Figure 1 shows the first 10 of these
trapezoidal fuzzy numbers.

The model described in Subsection 2.1 can be applied to this data if we assume
that each reported fuzzy number x̃i acts a soft constraint on the observer’s perceived
relative length xi, considered to be a realization of a random variable Xi = m + ε,
where m = 61.47 and ε ∼ N (0, σ2). Note that this model is different from that used
in [20], in which x̃i is treated as a realization of a fuzzy random variable. A detailed
comparison between these two models would go beyond the scope of this paper.

3The dataset can be downloaded from the webpage of the SMIRE research group at
http://bellman.ciencias.uniovi.es/SMIRE/Perceptionsdata.html.
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Algorithm 1 EM algorithm for the estimation of the mean and standard deviation
of a normal population using a fuzzy random sample.

Input: x̃1, . . . , x̃n, ǫ > 0.
Output: m̂, σ̂

q ← 0
Initialization: pick m(0) and σ(0)

L(Ψ(0); x̃)←∑n
i=1 log E

Ψ
(0)(µx̃i

(Xi)) % using (21)-(22)
repeat

% E-step
for i = 1 : n do

α
(q)
i ← E

Ψ
(q)(X2

i |x̃i) % using (21)-(28)

β
(q)
i ← E

Ψ
(q)(Xi|x̃i) % using (21)-(25)

end for

% M-step

m(q+1) ← 1
n

∑n
i=1 β

(q)
i

σ(q+1) ←
√

1
n

∑n
i=1 α

(q)
i − (m(q+1))2

L(Ψ(q+1); x̃)←∑n
i=1 log E

Ψ
(q+1)(µx̃i

(Xi)) % using (21)-(22)

D ← (L(Ψ(q+1); x̃)− L(Ψ(q); x̃))/|L(Ψ(q); x̃)|
q ← q + 1

until D < ǫ
m̂← m(q); σ̂ ← σ(q)
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Figure 1: Ten trapezoidal fuzzy numbers considered in Example 2. The heights have
been jittered to better separate the membership functions.
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Figure 2: Contour plot of the observed data log likelihood function and trajectory in
parameter space (broken line) from the initial parameter values (m(0), σ(0)) (o) to the
final MLE (m̂, σ̂) (x), for the data of Example 2.

As initial estimates of m and σ, we used the sample mean and standard deviations
computed over the centers of cores of each trapezoidal fuzzy numbers, equal to m(0) =
60.5455 and σ(0) = 6.1423. The EM converged after 10 iterations. The stopping
criterion was based on the relative change of the log likelihood, with a tolerance value
ǫ = 10−8. The final MLEs were m̂ = 61.0155 and σ̂ = 5.2494.

Figure 2 shows a contour plot of the observed data log likelihood function as well
as the trajectory in parameter space from the initial parameter values (m(0), σ(0)) to
the final MLE (m̂, σ̂). We can check that the MLE corresponds in this case to a
global maximum of the observed data log likelihood. In more complex problem, the
algorithm may be trapped in local maxima. It is then necessary to start it several
times with different random initial conditions. �

Example 3 To illustrate experimentally the asymptotic behavior of the MLEs of m
and σ under the model described in Subsection 2.3 (which lends itself easily to ran-
dom simulation), we performed the following experiment. We considered i.i.d random
samples of size n from the standard normal distribution. Each realization of x was
fuzzified using the FIS shown in Figure 3, and the MLEs m̂ and σ̂ for the fuzzy sample
were computed using the FEM method. For each value of n (ranging from 10 to 1000),
the whole procedure was repeated 100 times and the expectation and standard error
of m̂ and σ̂ were estimated. The results are shown in Figures 4 and 5, which illustrate
the convergence of both estimators towards the true parameter values. We note that
similar results are obtained if each fuzzy number ξ̃k in the FIS is replaced by its cut
at level 0.5, defining a crisp partition of the real line. �
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Figure 3: Fuzzy information system used to encode the simulated fuzzy data of Ex-
ample 3.
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Figure 4: Mean plus or minus one standard deviation (over 100 trials) of m̂ for a fuzzy
sample of size n from a standard normal distribution, as a function of n (Example 3).
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Figure 5: Mean plus or minus one standard deviation (over 100 trials) of σ̂ for a fuzzy
sample of size n from a standard normal distribution, as a function of n (Example 3).

4.2 Multiple regression

Let us now consider the case of multiple regression with crisp inputs and fuzzy outputs.
This is an old problem in fuzzy data analysis (see, e.g., [4, 27] and references therein).
As we will show in this section, the FEM method provides a new and well motivated
solution to this problem, with very simple implementation.

The fuzzy data x̃ will be assumed to have the same form as in the previous section.
However, we now assume that each component xi of the complete data vector x is
a realization of a normal random variable Xi with mean u′

ib and standard deviation
σ, where ui = (1, ui1, . . . , ui,p−1)

′ is a constant p-dimensional input vector and b is
vector of p coefficients4. The complete parameter vector is thus Ψ = (b, σ)′.

Denoting by U the matrix of n rows and p columns, with row i equal to ui, and
assuming independence between the Xi, the observed data vector x is multivariate
Gaussian with mean Ub and variance σ2Ip, where Ip denotes the p-dimensional iden-
tity matrix. The complete-data log likelihood is thus:

log L(Ψ;x) = −n

2
log(2π)− n log σ − 1

2σ2
(x−Ub)′(x−Ub)

= −n

2
log(2π)− n log σ − 1

2σ2

(
x′x− 2b′U′x + b′U′Ub

)
.

Taking the expectation of log L(Ψ;X) conditionally on the observed fuzzy data and

4To be consistent with our previous notations, we have to depart from the usual convention in
regression analysis, where the dependent and independent variables are denoted by Y and x, respec-
tively. We hope that the reader will not be confused by this change of notation.
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using the fit Ψ(q) of Ψ to perform the E-step, we get

Q(Ψ,Ψ(q)) = E
Ψ

(q) [log L(Ψ;X)|x̃] = −n

2
log(2π) − n log σ

− 1

2σ2

(
n∑

i=1

E
Ψ

(q)(X2
i |x̃i)− 2b′U′

E
Ψ

(q)(X|x̃) + b′U′Ub

)
. (15)

As before, let us denote α
(q)
i = E

Ψ
(q)(X2

i |x̃i), β
(q)
i = E

Ψ
(q)(Xi|x̃i) and

β(q) = E
Ψ

(q)(X|x̃) = (E
Ψ

(q)(X1|x̃1), . . . , EΨ
(q)(Xn|x̃n))′.

With these notations, (15) becomes:

Q(Ψ,Ψ(q)) = −n

2
log(2π)− n log σ − 1

2σ2

(
n∑

i=1

α
(q)
i − 2b′U′β(q) + b′U′Ub

)
.

The M-step requires maximizing Q(Ψ,Ψ(q)) with respect to Ψ. This can be
achieved by differentiating Q(Ψ,Ψ(q)) with respect to b and σ, which results in

∂Q(Ψ,Ψ(q))

∂b
= − 1

σ2

(
−U′β(q) + U′Ub

)

and
∂Q(Ψ,Ψ(q))

∂σ
= −n

σ
+

1

σ3

(
n∑

i=1

α
(q)
i − 2b′U′β(q) + b′U′Ub

)
.

Equating these derivatives to zero and solving for b and σ, we get the following
unique solution:

b(q+1) = (U′U)−1U′β(q)

and

σ(q+1) =

√√√√ 1

n

(
n∑

i=1

α
(q)
i − 2 b(q+1)′U′β(q) + b(q+1)′U′Ub(q+1)

)

=

√√√√ 1

n

(
n∑

i=1

α
(q)
i − 2 x̂(q+1)′β(q) + x̂(q+1)′ x̂(q+1)

)
,

with x̂(q+1) = Ub(q+1).

Example 4 The above algorithm was applied to the perception data reported in [20]
and already described in Example 2. We considered the responses of subject 12 for the
9 different relative lengths. There were 3 repetitions for each relative length, yielding
n = 9 × 3 = 27 observations. Here the true relative length and the perceived length
are taken as the independent and dependent variables, respectively. The data are
shown in Figure 6. The EM algorithm was initialized as in Example 2, with the same
stopping criterion. The initial values were b(0) = (−5.0942, 0.9919)′ and σ(0) = 6.6158.
The algorithm converged to the MLE b̂ = (−3.9832, 0.9916)′ and σ̂ = 4.9218 in 13
iterations.
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Figure 6: Data of Example 4, and fit of the regression line. The support and core
of each fuzzy number are represented by solid and bold line segments, respectively.
Jitter has been added to the ui to avoid superposition of fuzzy numbers.

Example 5 To demonstrate the interest of expressing partial information about ill-
known data in the form of possibility distributions, as explained in Subsection 2.1,
we performed the following experiment. We generated n = 100 values ui from the
uniform distribution in [0, 2], and we generated corresponding values xi using the linear
regression model with b = (2, 1)′ and σ = 0.2. To model the situation where only
partial knowledge of values x1, . . . , xn is available, triangular fuzzy numbers x̃1, . . . , x̃n

were generated as follows:

• For each i, a “guess” x′

i was randomly generated from a normal distribution
with mean xi and standard deviation σi, were σi was drawn randomly from a
uniform distribution in [0, 0.5];

• x̃i was defined as the triangular fuzzy number with core x′

i and support [x′

i −
2σi, x

′

i + 2σi].

This procedure simulates the situation where the observer has only approximate
knowledge of the data, and can only provide a guess x′

i and an interval of plausi-
ble values [x′

i − 2σi, x
′

i + 2σi]. It should be emphasized that, although the x̃i are
randomly generated for the purpose of this simulation experiment, the relationship
between xi and x̃i is not considered to be random under the model considered here
(as explained in Subsection 2.1).

Three strategies were compared for estimating the parameter vector Ψ = (b, σ)′:

1. Using the fuzzy data x̃1, . . . , x̃n (method 1).
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triangular fuzzy numbers x̃i.

1 2 3

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

di
st

an
ce

method

Figure 8: Box plots of the distributions of ‖Ψ̂ − Ψ‖ over 1000 trials for the three
methods and the experiment described in Example 5. Boxes whose notches do not
overlap indicate that the medians of the two groups differ at the 5% significance level.
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2. Using only 0.5-cuts of the fuzzy data, i.e., the interval data 0.5x̃1, . . . ,
0.5x̃n

(method 2);

3. Using only the crisp guesses x′

1, . . . , x
′
n(method 3).

For each of these three methods, the L2 distance ‖Ψ̂−Ψ‖ between the true parameter
vector and its MLE was computed. The whole experiment was repeated 1000 times.
Results are shown as box plots in Figure 8. As we can see, method 1 using fuzzy
assessments of ill-known data and the FEM method indeed yields better estimates
than those obtained using interval or crisp data. �

4.3 Univariate normal mixture with common unknown variance

As a third and last illustration of the FEM method, we will consider a more complex
situation where a fuzzy sample is seen as an imprecise specification of a crisp sample
from a univariate normal mixture with unknown means, variance and mixing propor-
tions. A similar problem was addressed in [22] using the standard EM algorithm, with
interval data in place of fuzzy data.

As before, the observed data vector will be assumed to consist of n fuzzy num-
bers, denoted here w̃1, . . . , w̃n. Each fuzzy number w̃i is interpreted as a possibility
distribution constraining an unknown value wi. The joint possibility distribution of
the n values w1, . . . , wn is identified with the fuzzy subset w̃ of R

n with membership
function

µw̃(w) =

n∏

i=1

µw̃i
(wi),

for all w = (w1, . . . , wn). The n values w1, . . . , wn are assumed to be a realization of
an i.i.d. random sample W1, . . . ,Wn from a finite normal mixture with p.d.f.

g(w;Ψ) =

g∑

i=1

πkgk(w;θk),

where gk(w;θk) is a normal p.d.f. with parameters θk = (mk, σk)
′, πk is the mixing

proportion of the k-th component, g is the number of components, and

Ψ = (θ′

1, . . . ,θ
′

g, π1, . . . , πg)
′

is the vector of parameters.
Using a classical device when handling finite mixture problems using the EM

algorithm, let us introduce a vector z = (z′1, . . . , z
′
n)′, where zi is a vector or zero-

one indicator variables such that zik = 1 if wi arose from the k-th component of the
mixture, and zik = 0 otherwise. The complete data vector is thus

x = (w′, z′)′,

and the complete-data p.d.f. is

g(x;Ψ) =
n∏

i=1

g(zi;Ψ)g(w|zi;Ψ) =
n∏

i=1

(
g∏

k=1

πk
zik

)(
g∏

k=1

gk(w;θk)
zik

)
,
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from which we can deduce the expression of the complete-data log likelihood:

log L(Ψ;x) =

n∑

i=1

g∑

k=1

zik log πk +

n∑

i=1

g∑

k=1

zik log gk(wi;θk)

=

g∑

k=1

log πk

n∑

i=1

zik −
n

2
log(2π)− n log σ − 1

2σ2

n∑

i=1

g∑

k=1

zik(wi −mk)
2.

To perform the E-step of the EM algorithm, we need to compute the conditional
expectation of the complete-data log likelihood conditionally on the observed data w̃,
using the current fit Ψ(q) of the parameter vector:

Q(Ψ,Ψ(q)) = E
Ψ

(q) [log L(Ψ;X) | w̃]

=

g∑

k=1

log πk

n∑

i=1

E
Ψ

(q)(Zik|w̃i)−
n

2
log(2π)− n log σ

− 1

2σ2

n∑

i=1

g∑

k=1

(
E

Ψ
(q)(ZikW

2
i |w̃i)− 2mkE

Ψ
(q)(ZikWi|w̃i) + m2

kE
Ψ

(q)(Zik|w̃i)
)
. (16)

We thus have to compute the three conditional expectations E
Ψ

(q)(Zik|w̃i), E
Ψ

(q)(ZikW
2
i |w̃i)

and E
Ψ

(q)(ZikWi|w̃i). Let t
(q)
ik = E

Ψ
(q)(Zik|w̃i). From Bayes’ theorem, we have

t
(q)
ik = P

Ψ
(q)(Zik = 1|w̃i) =

P
Ψ

(q)(w̃i|Zik = 1)P
Ψ

(q)(Zik = 1)

P
Ψ

(q)(w̃i)
=

γ
(q)
ik π

(q)
k

p
(q)
i

,

with

γ
(q)
ik =

∫
µw̃i

(w)gk(w;θ
(q)
k )dw

and

p
(q)
i =

g∑

k=1

π
(q)
k

∫
µw̃i

(w)gk(w;θ
(q)
k )dx =

g∑

k=1

π
(q)
k γ

(q)
ik .

Now,

E
Ψ

(q)(ZikW
2
i |w̃i) = E

Ψ
(q)(W 2

i |w̃i, Zik = 1)P
Ψ

(q)(Zik = 1|w̃i) = ξ
(q)
ik t

(q)
ik ,

with

ξ
(q)
ik = E

θ
(q)
k

(W 2
i |zik = 1, w̃i) =

1

γ
(q)
ik

∫
w2µw̃i

(w)gk(w;θ
(q)
k )dw.

Similarly,

E
Ψ

(q)(ZikWi|w̃i) = η
(q)
ik t

(q)
ik

with

η
(q)
ik = E

θ
(q)
k

(Wi|Zik = 1, w̃i) =
1

γ
(q)
ik

∫
wµw̃i

(w)gk(w;θ
(q)
k )dw.
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The expected complete-data log-likelihood can thus be written as:

Q(Ψ,Ψ(q)) =

g∑

k=1

log πk

n∑

i=1

t
(q)
ik −

n

2
log(2π) − n log σ

− 1

2σ2

n∑

i=1

g∑

k=1

[
t
(q)
ik

(
ξ
(q)
ik − 2mkη

(q)
ik + m2

k

)]
. (17)

Let us now consider the M-step. Maximizing the first term on the right-hand side
of (15) with respect to the mixing proportions πk, under the constraint

∑
k πk = 1

yields the classical solution

π
(q+1)
k =

∑n
i=1 t

(q)
ik∑g

ℓ=1

∑n
i=1 t

(q)
iℓ

=
1

n

n∑

i=1

t
(q)
ik .

Now,

∂Q(Ψ,Ψ(q))

∂mk

= − 1

σ2

(
−

n∑

i=1

t
(q)
ik η

(q)
ik + mk

n∑

i=1

t
(q)
ik

)
.

Equating this derivative to zero and solving for mk yields:

m
(q+1)
k =

∑n
i=1 t

(q)
ik η

(q)
ik∑n

i=1 t
(q)
ik

.

Finally, the derivative of Q(Ψ,Ψ(q)) with respect to σ is

∂Q(Ψ,Ψ(q))

∂σ
= −n

σ
+

1

σ3

n∑

i=1

g∑

k=1

[
t
(q)
ik

(
ξ
(q)
ik − 2mkη

(q)
ik + m2

k

)]
.

Equating this derivative to zero and substituting m
(q+1)
k for mk, we get the following

fit for σ at iteration q + 1:

σ(q+1) =

√√√√ 1

n

n∑

i=1

g∑

k=1

[
t
(q)
ik

(
ξ
(q)
ik − 2m

(q+1)
k η

(q)
ik + (m

(q+1)
k )2

)]
.

Example 6 To illustrate the behavior of the above algorithm, we used again the
perception dataset reported in [20] and already described in Examples 2 and 4. We
considered the assessments of 8 subjects for the relative lengths around 61.47, 50 and
38.3 (the relative lengths may vary slightly because of screen resolution, as explained
in [20]). The considered dataset was thus composed of n = 72 trapezoidal fuzzy sets,
partitioned in three classes of equal size. A subset of the data is shown in Figure 9.
The above algorithm was applied to this dataset with g = 3. The means mk were
initialized randomly using a uniform distribution in [0,100], while the initial standard
deviation and proportions were set to fixed values as shown in Table 1. The EM
algorithm was run 10 times, and the results corresponding to the best value of the
objective criterion were retained. The MLE estimates are shown in Table 1, and the
corresponding mixture density estimated is shown in Figure 9. We can see that the
three relative length estimates are very close to their true values.
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Figure 9: Subset of the data of Example 6 (with 5 fuzzy numbers in each class), and
normalized estimated mixture p.d.f. (bold line). The heights of fuzzy membership
functions have been jittered for better visualization.

Table 1: Initial parameter values and MLEs with g = 3 components for the data of
Example 6.
parameter m1 m2 m3 σ π1 π2 π3

initial value 89.2054 12.7208 78.3867 10 0.3333 0.3333 0.3333
MLE 60.9896 37.4851 49.9999 2.1915 0.2940 0.3283 0.3777
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To conclude this section, we can remark that determining the number of compo-
nents in a mixture model is an important problem that has been addressed by many
authors (see, e.g., [31, 1]). Some approaches are based on a Bayesian approach, which
results in the addition of a regularization term to the log-likelihood criterion. Whether
these or other approaches can be extended to the context of fuzzy data is an interesting
question that goes beyond the scope of this paper and is left for further study.

5 Conclusions

We have shown that the EM algorithm can be adapted to handle estimation problems
in which the observed data are fuzzy and are assumed to be related to underlying
crisp data, making it possible to implement the maximum likelihood principle in this
context. The proposed FEM method is very general and can be applied to a wide
range of statistical problems. In this paper, it has been applied to classical parameter
estimation tasks including multiple regression analysis with crisp input data and fuzzy
output data, and univariate finite normal mixture estimation from fuzzy data. More
complex problems such as principal component analysis [18, 9], discriminant analy-
sis, and clustering [3, 12, 30] of multidimensional fuzzy data can be handled by this
method as well. Another direction of research concerns the application of a similar
methodology to more general types of imprecise and uncertain data such as described,
e.g., by belief functions. Preliminary results in this direction have been reported in
[7].
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Maŕıa Ángeles Gil and Gil González-Rodŕıguez, for making the perception dataset
publicly available. He also expresses his thanks to the two anonymous referees for
their constructive and very helpful comments.

A Probability of fuzzy events

The notion of probability was extended to fuzzy events by Zadeh [35]. In this appendix,
we recall the main definitions and we derive some of the formula used in the paper.

A.1 Basic definitions

Let (Rn,A, P ) be a probability space in which A is the σ-field of Borel sets and P
is a probability measure on R

n. Then a fuzzy event in R
n is a fuzzy subset Ã of R

n

whose membership function µ
Ã

is Borel measurable. The probability of Ã is defined
as the expectation of µ

Ã
with respect to P :

P (Ã) =

∫
µ

Ã
(x)dP. (18)
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Two fuzzy events Ã and B̃ in the probability space (Rn,A, P ) are said to be
independent if

P (ÃB̃) = P (Ã)P (B̃),

where ÃB̃ is the fuzzy subset of R
n with membership function

µ
ÃB̃

(x) = µ
Ã
(x) · µ

B̃
(x),

for all x in R
n. The conditional probability of Ã given B̃ is defined by

P (Ã|B̃) =
P (ÃB̃)

P (B̃)
, (19)

provided P (B̃) > 0).
In particular, assume that P is the probability distribution of a continuous random

variable X with p.d.f. g(x). For a crisp subset A and a fuzzy subset B̃, Equation (19)
becomes

P (A|B̃) =

∫
µA(x)µ

B̃
(x)g(x)dx∫

µ
B̃

(u)g(u)du
=

∫

A

µ
B̃

(x)g(x)∫
µ

B̃
(u)g(u)du

dx.

The conditional density of X given B̃ can thus be defined as:

g(x|B̃) =
µ

B̃
(x)g(x)∫

µ
B̃

(u)g(u)du
. (20)

A.2 Trapezoidal fuzzy events and univariate normal distribution

To illustrate the above definitions, let us assume that P is the distribution of a uni-
variate normal random variable X with mean m, standard deviation σ and p.d.f. g(x).
Let x̃ = (a, b, c, d) be a trapezoidal fuzzy number, with membership function

µx̃(x) =





x−a
b−a

if a ≤ x ≤ b,

1 if b ≤ x ≤ c,
d−x
d−c

if c ≤ x ≤ d,

0 otherwise.

Denoting by g(x) the p.d.f. of X and using (18), the probability of x̃ can be calculated
as

P (x̃) = E[µx̃(X)] =

∫ b

a

x− a

b− a
g(x)dx +

∫ c

b

g(x)dx +

∫ d

c

d− x

d− c
g(x)dx

=
1

b− a

∫ b

a

xg(x)dx − a

b− a
(Φ(b∗)− Φ(a∗)) + Φ(c∗)− Φ(b∗)

+
d

d− c
(Φ(d∗)− Φ(c∗))− 1

d− c

∫ d

c

xg(x)dx, (21)

where Φ denotes the c.d.f. of the standard normal distribution, and x∗ denotes (x−
m)/σ for all x. It is easy to show that

∫ b

a

xg(x)dx =
σ√
2π

[
exp

(
−a∗2

2

)
− exp

(
−b∗2

2

)]
+ m (Φ(b∗)− Φ(a∗)) , (22)
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which makes it possible to complete the calculation of P (x̃) using (21).
Let us now compute the expectation of X given x̃, using the expression (20) for

the conditional density of X. We have

E(X|x̃) =

∫
µx̃(x) x g(x)dx

P (x̃)
, (23)

where the denominator is given by (21). The numerator is

∫
µx̃(x)xg(x)dx =

∫ b

a

x− a

b− a
x g(x)dx +

∫ c

b

x g(x)dx +

∫ d

c

d− x

d− c
x g(x)dx

=
1

b− a

∫ b

a

x2 g(x)dx − a

b− a

∫ b

a

x g(x)dx +

∫ c

b

x g(x)dx

+
d

d− c

∫ d

c

x g(x)dx − 1

d− c

∫ d

c

x2 g(x)dx, (24)

which can be computed using (22) and

∫ b

a

x2g(x)dx =
σ2

√
2π

[
a∗ exp

(
−a∗2

2

)
− b∗ exp

(
−b∗2

2

)]

+
2σm√

2π

[
exp

(
−a∗2

2

)
− exp

(
−b∗2

2

)]

+ (m2 + σ2) (Φ(b∗)− Φ(a∗)) . (25)

Finally, let us compute

E(X2|x̃) =

∫
µx̃(x) x2 g(x)dx

P (x̃)
. (26)

The numerator is

∫
µx̃(x)x2g(x)dx =

∫ b

a

x− a

b− a
x2 g(x)dx +

∫ c

b

x2 g(x)dx +

∫ d

c

d− x

d− c
x2 g(x)dx

=
1

b− a

∫ b

a

x3 g(x)dx− a

b− a

∫ b

a

x2 g(x)dx +

∫ c

b

x2 g(x)dx

+
d

d− c

∫ d

c

x2 g(x)dx − 1

d− c

∫ d

c

x3 g(x)dx, (27)

which can be computed using (25) and

∫ b

a

x3g(x)dx =
σ3

√
2π

[
(2 + a∗) exp

(
−a∗2

2

)
− (2 + b∗) exp

(
−b∗2

2

)]

+
3σ2m√

2π

[
a∗ exp

(
−a∗2

2

)
− b∗ exp

(
−b∗2

2

)
+
√

2π (Φ(b∗)− Φ(a∗))

]

+
3σm2

√
2π

[
exp

(
−a∗2

2

)
− exp

(
−b∗2

2

)]

+ m3 (Φ(b∗)− Φ(a∗)) . (28)
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