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 and Elie Kahale

2

Université d'Evry, 91020 EVRY, FRANCE 

Trajectory generation is a fundamental part of planning for an autonomous aerial vehicle. For the purpose 
of flight path generation, it is usually sufficient to treat only the translational motion. One component of the 
weather that greatly affects an aircraft trajectory is the wind. Study of the accessibility of this nonlinear affine 
system with drift makes use of the Lie algebra rank condition. The second part of this paper presents 3D time 
optimal translational trajectories characterization for an aircraft in steady wind. If unaccounted for, winds can 
substantially degrade the performance of an autonomous aircraft guidance system.  We consider finding a time 
optimal trajectory for an airplane from some starting point and orientation to some final point and orientation, 
assuming that the system has independent bounded control over the acceleration as well as the turning rates 
for the flight path and heading angles. Through the use of the Pontryagin maximum principle, we characterize the 
time optimal trajectories for the system. 

I. Introduction 

ROM the earliest days of aeronautical experimentations, the natural wind proved itself to be a major parameter 

to successful flights. The wind mostly affects a trajectory through its speed. In general, the wind speed can be 

modeled as a sum of two components: a nominal deterministic component (available through meteorological 

forecasts or measured with a Doppler radar) and a stochastic component, representing deviations from the nominal 

one. The closed loop controller takes care of the stochastic part considered as perturbations, while the deterministic 

component is introduced into the motion planner. The path of the airplane with respect to the moving air frame will 

be referred to as the air path and with respect to the ground is referred as the ground path. In general, the optimality 

of a trajectory can be defined according to several objectives, like minimizing the transfer time or the energy.  

Traditionally, trajectories are optimized by the application of numerical optimal control methods that are based on 

the calculus of variations. Dubins
1
 considered a particle moving at a constant velocity in the plane with a constraint 

of trajectory curvature. He proved the existence of shortest paths for his problem and showed that the optimal 

trajectories are a combination of arc of circles and segments of lines.  Boukraa et al
2
 presented a 3D trim trajectories 

planner algorithm for an autonomous plane. The proposed algorithm used a sequence of five elementary trim 

trajectories to generate a 3D global trajectory in space. A family of trim trajectories in level flight is used in all these 

references to construct paths. In the papers cited above, the atmosphere was considered to be an isotropic and 

homogeneous medium, i.e. when there is no wind and the air density is constant with altitude. However, wind 

cannot be ignored. McGee and Hedrick
3
 describe a method for finding the minimum time path from an initial 

position and orientation to a final position and orientation in the 2D plane for an airplane with a bounded turning 

rate in the presence of a known constant wind with a magnitude less than the airplane velocity. The problem 

statement is equivalent to finding the minimum time path from an initial configuration to a final one, over a moving 

virtual target, where the velocity of the virtual target is equal and opposite to the velocity of the wind. Nelson et al
4
  

have introduced a method for a mini aerial vehicle path following based on the concept of vector field in the 

presence of constant wind disturbances. Rysdyk
5
 presents a path formulation for manoeuvring of a fixed wing 

aircraft in wind. Wind refers to an un-accelerated horizontally moving air mass. The inertial path of a fixed wing 

aircraft circling in wind can be formulated as a trochoid curve. In these papers, only 2D horizontal motion was 

considered. Seube et al
6
 formulated the take-off problem in a 2D vertical plane in the presence of wind shear as a 
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differential game against nature. The first player is the relative angle of attack of the aircraft (considered as the 
control variable) and the second player is the disturbance caused by a wind shear.  

This paper consists of 6 sections. Section 2 formulates the time optimal problem. Efforts are put in this 
paragraph on a variable velocity wind. Section 3 presents the analysis of the Lagrange multipliers while Section 4 
proposes analysis of a set of solutions. Section 5 gives some information about singular control. Finally, some 
conclusions and perspectives are the subject of Section 6.  

II. Aircraft Translational Dynamics

The translational equations of an aerospace vehicle through the atmosphere are directly derived from Newton’s law. 
If the vehicle flies in the atmosphere with speeds less than Mach 5 (below hypersonic velocity), the Earth can be 
presumed an inertial reference frame. The aircraft equations of motion are expressed in a velocity coordinate frame 

attached to the aircraft, considering the velocity of the wind 
( )

T

x y zW W W W=
(components of the wind velocity

in the inertial frame). The kinematic equations of the aircraft are given by: 

cos cos sin cos sin
x y z

x V W y V W z V Wχ γ χ γ γ= + = + = + (1) 

Where x (downrange), y (cross range) and z (altitude) are the vehicle’s position, V the velocity magnitude, χ  the

heading angle.  The aircraft flight path angle is the angle γ measured from the horizontal plane to the aircraft’s
velocity vector in inertial coordinates. The powered dynamic model used for flight over a flat Earth is the following 

( )

( )

( )

.. .

..

2 . . .

, cos sin sinsin cos coscos sin cos

2

, sin cossinsin sin

2 cos cos cos

, cos
sin cos cos cos sin sin

2

L ref yx z

L ref yx

D ref

x y z

C M A V WW Wg T

m V mV V V V

C M A V WWT

m mV V V

C M A V T
V g W W W

m m

α ρ σ γ χγ χ γγ α σ
γ

α ρ σ χχα σ
χ

γ γ γ

α ρ α
γ γ χ γ χ γ

= − + + − −

= + + −

= − − + − − −

(2) 

Where σ  is the bank angle, 
ρ

 is the free stream mass density, m is the aircraft mass, ref
A

is a characteristic area 

for the body, 
,L DC C

are respectively the lift and drag coefficient functions that depend upon the Mach number M

and the aerodynamic angle of attackα  is measured from the aircraft x-y plane to the relative wind velocity vector.

The dynamic pressure is 
20.5q Vρ=

where the air density ρ at altitude h is approximated using an exponential

model 0
he βρ ρ −=

where 0ρ
is the air density at sea level and 

β
is the atmospheric density scale. Generally the lift

coefficient is a linear function of the angle of attack and the drag coefficient is a quadratic function of the lift 
coefficient. These equations have an important place in aerospace vehicle study because they can be assembled from 
trimmed aerodynamic data and simple autopilot designs. Nevertheless, they give a realistic picture of the 
translational and rotational dynamics unless large angles and cross coupling effects dominate the simulations. 
Trajectory studies, navigation and guidance evaluations can be successfully executed with simulations of these 
equations. The limitations on thrust and velocity will be used in the path planning via a transformation on limitations 

on , ,Vγ χ . The following physical bounds must be taken into account in the following analysis:

1max 2max 3max min maxu u V u V V Vγ χ≤ ≤ ≤ ≤ ≤ (3) 

The shape of a space curve can be completely captured by its curvature and torsion. Using the Frenet-Serret 
formulation , curvature χ can be deduced (‘represents the derivation versus s):  

( ) ( )2 2 2

3

' "
cos

'

C C
s s

C
κ γ χ γ

×
= = + (4) 

as well as torsion τ

( )
( ) 2 2 2 3 2

2 2 2 2 2 2 2

' " . "' cos 2 sin cos cos cos sin sin cos sin

cos cos' "

C C C
s

C C

χγ γ χγ γ γχ γ γχ χ γ χ γ χ γ γ
τ

γ χ γ γ χ γ

× + − − +
= = +

+ +×
(5) 
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If  a non vanishing curvature and a torsion are given as smooth functions of s, theoretically both equations can be 
integrated to find the numerical values of the corresponding space curve (up to a rigid motion). 

III. Controllability

Controllability is an important notion for systems. Jurdjevic8 introduced the theory of Lie groups and their 
associated Lie algebras into the context of nonlinear control to express notions such as controllability, observability 
and realization theory. Some of the early works on nonlinear controllability was based on linearization of nonlinear 
systems. It was observed that if the linearization of a nonlinear system at an equilibrium point is controllable, the 
system itself is locally controllable. Later, a differential geometric approach to the problem was adopted in which a 
control system was viewed as a family of vector fields. It was observed that a lot of the interesting control theoretic 
information was contained in the Lie brackets of these vector fields.  
Driftless nonholonomic control systems have been extensively studied in recent years [9, 10]. Chow's theorem leads 
to the characterization of controllability for systems without drift. It provides a Lie algebra rank test, for 
controllability of nonlinear systems without drift, similar in spirit to that of Kalman rank condition for linear 
systems. In the setting of controlled mechanical systems, the Lagrangian dynamics, being second order, necessarily 
include drift. In this setting, Chow's theorem cannot be used to conclude controllability. Studying controllability of 
general systems with drift is usually a hard problem. The discussion of nonholonomic system with drift in the 
literature has been concentrated on the so-called dynamic extension of drift-free systems with the addition of 
integrators. Sufficient conditions for the controllability of a conservative dynamical nonlinear affine control system 
on a compact Riemannian manifold are presented, if the drift vector field is assumed to be weakly positively Poisson 
stable. Let's begin with a brief review of some concepts in controllability of nonlinear systems applied to the affine 
nonlinear control systems of the form: 

1

( )
m

i i

i

X f X g u
=

= + (6) 

Several important results have been derived based on the structure of the Lie algebra generated by the control vector 

fields. Assume 
nX M R∈ ⊂  where M  is a smooth manifold. Let ( )x t  denote the solution of (6) for 0t ≥ , a

particular input function u  and initial condition ( ) 00x x= . 

Generally, we can say that the nonlinear system (6) is called controllable if for two points 1 2&x x in M  there 

exists a finite time T  and an admissible control function [ ]: 0,u T U→  such that ( ) 2x T x= . 

Let ψ be a neighborhood of the point X M∈ and ( )0 ,R x t
ψ

 indicate the set of reachable points at the time t

by trajectories remaining inside ψ and satisfying the equations (6). So we can define the reachable set from 0x  at 

time T as: ( ) ( )0 0
0

, ,M M

t T

R x T R x t
≤ ≤

= . 

The accessibility algebra Α  of the system (6) is the smallest Lie algebra of vector fields on M  that contains the 

vector fields f  and 1 2, , ..., mg g g . 

We define the accessibility distribution ΑΔ  of (6) to be the distribution generated by the vector fields in Α ; i.e. 

( )xΑ  is the span of vector fields v in Α  at x . So, we can determine ΑΔ as: 

 span{ | }A v v AΔ = ∈  (7) 

In other words, 
A

Δ is the involutive closure of 1 span{ , ,..., }
m

f g gΔ = . 

The computation of 
A

Δ may be organized as an iterative procedure:  span{ | , 1}
A i

v v iΔ = ∈ Δ ∀ ≥ ,With: 

1 1

1 1 1

 span{ , ,..., }

 span{[ , ] | , },  2

m

i i i

f g g

g v g v i− −

Δ = Δ =

Δ = Δ + ∈ Δ ∈ Δ ≥
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This procedure stops after K steps, where K  is the smallest integer such that 1K K A+Δ = Δ > Δ . This number is 

called the non-holonomy degree of the system and is related to the ‘level’ of Lie brackets that must be included 

in
A

Δ .

Let us now define the different accessibility notions: 

• We say that the system (6) is accessible from 0x M∈  if for every 0T > , ( )0 ,MR x T  contains a 

nonempty open set.

• We can say that the system (6) is locally accessible from x M∈ if for every 0T > , ( )0 ,R x Tψ

contains a nonempty open set.
To prove the local accessibility property we can use the following theorem: 

Consider the system (6) and assume that the vector fields are C
∞

. If 0dim ( )x nΑΔ = (i.e. the accessibility 

algebra spans the tangent space to M at 0x ), then for any 0T > , the set ( )0 ,R x Tψ
 has a nonempty interior; 

(i.e., the system has the accessibility property from 0x  for all neighborhoods ψ of 0x and all ) 0T > . 

Notes:  

(1) We call the previous condition ( 0dim ( )x nΑΔ = ) the Lie Algebra Rank Condition (LARC). 

(2) If the system (6) is driftless (i.e. ( ) 0f X = ), the accessibility property characterizes the

controllability. 
(3) As we motioned above, the accessibility property implies the controllability of the linear systems 

with the Kalman's rank condition. Assuming that we have the following system: 

1

m

i i

i

X AX b u AX BU
=

= + = +

Where: 
n

X ∈ , and 
n n

A ∈ ×  and 
n m

B ∈ ×  are constant matrices, ib being the 

columns of B . 

The Lie bracket of the drift vector field AX with ib is readily checked to be the constant vector 

field iAb− . Bracketing the latter field with AX and so on tells us that the accessibility algebra is 

spanned by
1, , , ..., ; 1, ...,n

i i iA b Ab A b i m− = . Thus the accessibility rank condition at the 

origin is equivalent to Kalman's rank condition: 
1, , ..., nrank B AB A B−

.

In the preceding discussion, we note that the term { }span AX is not present in the controllability

rank condition. This motivates a slightly stronger definition of accessibility in the nonlinear 

setting, where ig play a more prominent role in the rank condition. 

• The system (6) is said to be strongly accessible from 0x M∈  if the set ( )0 ,M
R x T  contains a nonempty 

open set for any 0T > sufficiently small.

• The system (6) is said to be locally strongly accessible from 0x M∈ if for any neighborhood ψ of 0x  the 

set ( )0 ,R x Tψ
 contains a nonempty open set for any 0T > sufficiently small. 

Let A to be the accessibility algebra of (6). We define the strong accessibility algebra 0A to be the smallest sub-

algebra containing 1 2, , ..., mg g g  and satisfies [ ]0 0,f v A∈  for all 0 0v A∈ . 

We define the strong accessibility distribution 
0A

Δ of (6) to be the involutive distribution generated by the vector 

fields in 0A . 

If 
0 0dim ( )x nΑΔ = , then the system (6) is locally strongly accessible from 0x . 

Let us now try to apply the previous notions to our system. 
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We can write the system (1)-(2) as an affine nonlinear control system: 

( )
3

1 1 2 2 3 3
1

( ) i i

i

X f X g u g u g u f X g u
=

= + + + = + (8) 

With: 

1 2 3

cos cos 0 0 0

sin cos 0 0 0

sin 0 0 0
, , , ,

0 1 0 0

0 0 1 0

0 0 0 1

,

x

y

z

x V W

y V W

z V W
X f gu g g

V

V

χ γ

χ γ

χ

γ
γ

χ
γ

+

+

+
= = = = ==

We are going now to find AΔ of this system: 

1 1 2 3 span{ , , , }f g g gΔ =  (9) 

At the second level, the following relationship can be written: 

[ ] [ ] [ ] [ ] [ ] [ ]{ }2 1 1 2 3 1 2 1 3 2 3span , , , , , , , , , , ,f g f g f g g g g g g gΔ = Δ + (10) 

Straightforward calculations allow us to write: [ ] [ ] [ ]1 2 1 3 3 6 12 0, , ,g g g g g g ×= = =

[ ] [ ] [ ]1 2 3

cos sin sin cos

sin sin cos cos

cos cos

sin cos

0 sin
,

co
,

0 0 0

0 0

s
, , ,

0

0 0 0

V V

V V

V
f g f g f g

χ γ

χ

χ γ χ γ

χ γ χ γ γ

γγ

−

−

−
= =

−

−
=

By continuing the calculations we obtain: 

[ ] [ ] [ ]

[ ]

1 2 3

3 4 1 5 2 6 3

7 2 2

, , , ,

span , , , , ,

, ,

A

f g g g

g f g g f g g f g

g g f g

Δ = Δ = = = =

=

 (11) 

We must check if ( )dim 6A nΔ = =

[ ] [ ]12 21 3 6 ???, ?rank ,f g f gf g g g⇔ =

cos sin sin cos

sin sin c

cos cos 0 0 0

sin cos 0 0 0

sin 0 0 0 0
det 0

0 1 0 0 0 0

os cos

0 0 1 0 0 0

0 0 0 1 0

co

0

s

x

y

z

V V

V V

V

V w

V w

V w

χ γ χ γ

χ γ χ γγ

γ

χ γ

χ

γ

+

−+

+
≠

−
⇔

3 2 2 2 2 2cos sin cos sin cos cos cos 0z y xV W V W V W Vγ γ γ χ γ χ γ− −⇔ − − ≠

So we must study the previous relation and verify that the determinate is not equal to zero. With this condition, 
system (8) verifies the Lie Algebra rank condition and is locally accessible. Therefore the non-holonomy degree of 

the system is: 3K = . 
Let us now verifies the strong accessibility property of our system (8). 
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Firstly, we have to find the strong accessibility distribution
0A

Δ : 

[ ] [ ] [ ]

[ ]
0

1 2 3

4 1 5 2 6 3

7 2 2

, , ,

span , , , , ,

, ,

A

g g g

g f g g f g g f g

g g f g

Δ = = = =

=

(12) 

The following condition must be checked : ( )
0

dim 6A nΔ = =

[ ] [ ] [ ]1 2 31 2 3rank , , , 6 ????g gg f f g gg f =⇔

cos sin sin cos cos cos

sin sin cos cos sin

0 0 0

0 0 0

0 0

cos

cos0 0
det 0

1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0

in

0

s

V V

V V

V

χ γ χ γ χ γ

χ γ χ γ χ γ

γ γ

−

−

−

−

−
⇔ ≠

2 cos 0V γ−⇔ ≠

So, either: 
2 0V ≠  and it’s true because min maxV V V< <  ; where min max,V V

+∈ .

Or: cos 0
2

π
γ γ− ≠ ≠ . 

With this condition, system (8) verifies the Lie Algebra rank condition and is locally strongly accessible. 

Poisson stability and controllability:

As we noted above, it is well known that for a driftless affine nonlinear control system (i.e. 0f = ) the accessibility 

implies the controllability. For the general case (i.e. 0f ≠ ), the situation is more complicated and the accessibility 
property is not sufficient to guarantee the controllability. In fact, the affine nonlinear control system (6) is 

controllable if the drift f is a weakly Poisson stable (WPPS) vector field, and if the accessibility Lie Algebra Rank 
Condition LARC is satisfied. 

Let X be a smooth vector field on a smooth connected M and. Let ( ).Xφ denote its flow:

{ } ( ): ; ,X X

tM M t p pφ φ× → →

Assume that X is complete or ( )X

t pφ  is defined for all 0t ≥ . A point p M∈ is called positively Poisson 

stable for X if for all 0T >  and for any neighborhood 
pψ of p , there exists a time t T> , such that 

( )X

t ppφ ψ∈ . 

The vector field X is called positively Poisson stable (PPS) if the set of Poisson stable points for X is dense in 

M . 

A point p M∈ is called a non-wandering point of X if for all 0T > , and for any neighborhood pψ of p , 

there exists a time t T> such that:  

( )X

t p pφ ψ ψ∩ ≠ ∅ , 

Where ( ) ( ){ }:X X

t p t pq qφ ψ φ ψ= ∈ . A positively Poisson stable point is necessarily a non-wandering point. 

Let XΓ denote the non-wandering set, which is defined to be the set of all the non-wandering points of X . 
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One should observe here that though positive Poisson stability of a vector field is a sufficient condition that the non-

wandering set ( XΓ ) is the entire manifold M , there could exist weaker condition under which the non-wandering 

set ( XΓ ) is M . This give rise to the definition: a vector field X is called weakly positively Poisson stable 

(WPPS) if its non-wandering set is M . So, if the drift f is positively Poisson stable (or weakly positively Poisson 
stable) vector field, and as the accessibility Lie algebra rank condition (LARC) is satisfied, the system (6) is 
controllable.  

IV. Optimal Path Planning

In this section, an algorithm for open-loop path planning is derived for the system presented in the previous section. 
The idea is to use the structure and to apply simple bang-bang controls in the planning [11-13]. The amount of 
control available is a concern in the planning for this system due to the drift term. The class of bang-bang controls is 
often a sufficiently rich class of controls for analysis of nonlinear systems. This simple class of controls makes it 
possible to integrate the equations forward in a simple manner.  

1. Time Optimal Problem formulation

The subject of this paragraph is to formulate the trajectory generation problem in minimum time as this system has 
bounds on the magnitudes of the inputs. The velocity is assumed to be linearly variable. As the set of allowable 
inputs is convex, the time optimal paths result from saturating the inputs at all times (or zero for singular control). 
For a linear time- invariant controllable system with bounded control inputs, the time-optimal control solution to a 
typical two point boundary value problem is a bang-bang function with a finite number of switches.  
Time optimal trajectory generation can be formulated as follows  

0

min
T

dt (13) 

Subject to System  

1

2

3

cos cos

sin cos

sin

x

y

z

x V W u

y V W u

z V W V u

χ γ γ

χ γ χ

γ

= + =

= + =

= + =

(14) 

Initial conditions 

( ) ( )0 0 0 0 0 0(0) , (0) , (0) , 0 , 0 and (0)x x y y z z V Vχ χ γ γ= = = = = = (15) 

Final condition 

( ) ( )( ) , ( ) , ( ) , , , ( )
f f f f f f

x T x y T y z T z T T V T Vχ χ γ γ= = = = = = (16) 

Limitations on the control input and state 

1 1max 2 2max 3 3max min maxu u u u u u V V V≤ ≤ ≤ ≤ ≤ (17) 

This formulation is a generalization of Zermelo’s navigation problem, where the problem consists of finding the 
quickest nautical path for a ship at sea in the presence of currents. 
For points that are reachable, the resolution is based on the Pontryagin Minimum Principle which constitutes a 
generalization of Lagrange problem of the calculus of variations. It is a local reasoning based on the comparison of 
trajectories corresponding to infinitesimally close control laws. It provides necessary conditions for paths to be 
optimal. Of course, the kinematic model used below implies a perfect response to the turn commands. A major 
reason for using the kinematic model is the fact that only necessary conditions for optimality exist for the second 
order model (given by Pontryagin minimum principle). 
The Hamiltonian is classically defined as follows

( ) ( ) ( )1 2 3 4 1 5 2 6 31 cos cos sin cos sinx y zH V W V W V W u u uλ χ γ λ χ γ λ γ λ λ λ= + + + + + + + + + (18) 

where λ represents the Lagrange multiplier. The optimal control input must satisfy the following set of necessary 
conditions: 

( ) ( ), & 0 , specified
T

H H
X X X T

X
λ

λ

∂ ∂
= = −

∂ ∂

7
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With the transversality condition ( ) 0H T =

A first interesting result is the determination of a sufficient family of trajectories, i.e. a family of trajectories 
containing an optimal solution for linking any two configurations.  

The adjoint equations are the first part of the necessary conditions: 
H

X
λ

∂
= −

∂
 where λ is the Lagrange multiplier 

vector, or more explicitly 

( ) ( ) ( ) ( )

( ) ( )

( ) ( ) ( ) ( )

1 2 3

1 2
4 3

5 1 2 1 2

1 2
6 3

0 0 0

sin sin cos cos cos
2 2

sin cos cos cos

cos cos sin sin sin
2 2

y x

V V
V

V V y W x W

λ λ λ

λ λ
λ χ γ χ γ λ γ χ γ χ γ

λ λ χ γ λ χ γ λ λ

λ λ
λ χ γ χ γ λ γ χ γ χ γ

= = =

= + − − − − + − −

= − = − − −

= − + + − − − + + −

     (19) 

Defining the Hamiltonian and multiplier dynamics in this way, the minimum principle of Pontryagin states that the 
control variable must be chosen to minimize the Hamiltonian at every instant. 

( ) ( )*, , , ,H X u H X uλ λ≤     (20) 

On the optimal trajectory ( )* *,X u , the optimal control *
u  must satisfy:

* * *
4 1 5 2 6 3 4 1 5 2 6 3u u u u u uλ λ λ λ λ λ+ + ≤ + +   (21) 

Leading to the following solution 

( ) ( ) ( )* * *
1 4 1max 1 1max 2 5 2max 2 2max 3 6 3max 3 3maxsign sign signu u u u u u u u uλ δ λ δ λ δ= − = = − = = − =  (22)

With: { }1,0, 1 ; 1,2,3i iδ ∈ + − =

In this paper, we will follow the approach of Sussmann, stating that minimum lenght paths are LRL and RLR (L for 
Left and R for Right).  These solutions can be written in the following form: 

1 1max 2 2max

3 3max

1 1 1max 2 2 2max 3 6

3 3max

1 1max 2 2max

* , * , * ; With a  determined number of switching times (from )

u u
u

u u u u u
u

u u

δ δ
δ

δ δ λ
δ

δ δ

∈ − ∈ − ∈
−

  (23) 

All sub paths are allowed to have zero length. The following section presents the analysis of the Lagrange 
multipliers as the number of switches of the optimal controls depend on them. 

2. Lagrange Multipliers Analysis

In the previous section we have seen that the minimum condition implies that 

( )*
3 imax( ) sign ( ) ; 1,2,3i iu t t u iλ += − = . In other words, the commands 

*( ) ; 1,2,3
i

u t i =  depend on the 

Lagrange Multipliers 3( ) ; 1, 2,3i t iλ + = , which determine the number of switching. So we called these 

multipliers the switching functions. The following figure shows the relation between the switching function and the 
commands. 
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We note that when 3( )i tλ +  passes through zero, a switching time of the control 
*( )iu t is indicated. If  3( )i tλ +  is 

zero for some finite time interval, then the minimal condition provides no information about how to select 
*( )iu t , 

and we call the control in this section singular control. 

Let us now study the case when we don’t have a singular control (i.e. 0 ; 1, 2,3i iδ ≠ = ). By the integration of the 

adjoint equations (19) we obtain the following results: 

1 2 3, ,const const constλ λ λ= = =

( )
( )

( ) ( ) ( )

( )
( )

( ) ( ) ( )

0 3 3max
2 2max 1 1max2

2 2max 1 1max 2 2max 1 1max1
4

0 3 3max
2 2max 1 1max2

2 2max 1 1max 2 2max 1 1max

0

2

cos
cos sin

( )
2 cos

cos sin

sin

2

V u
t u u

u u u u
t

V u
t u u

u u u u

V

χ γ δ
δ δ χ γ χ γ

δ δ δ δλ
λ

χ γ δ
δ δ χ γ χ γ

δ δ δ δ

χ

λ

+
− + − + + + + +

+ +
= −

−
+ − − − − + −

− −

+

−

( )
( )

( ) ( ) ( )

( )
( )

( ) ( ) ( )

( )

3 3max
2 2max 1 1max2

2 2max 1 1max 2 2max 1 1max

0 3 3max
2 2max 1 1max2

2 2max 1 1max 2 2max 1 1max

0 3 3max
3 2

1 1max 1max

sin cos

sin
sin cos

sin

u
t u u

u u u u

V u
t u u

u u u u

V u

u u

γ δ
δ δ χ γ χ γ

δ δ δ δ

χ γ δ
δ δ χ γ χ γ

δ δ δ δ

γ δ
λ

δ

+ + + + + −
+ +

−
−

− − − − + −
− −

− + ( ) ( )1 1max 40sin cost uδ γ γ λ+ +

  (a.24) 

5 1 2 1 2 50( )
y x

t y x W t W tλ λ λ λ λ λ= − − + +     (b.24) 

( ) ( ) ( ) ( ) 31 2
6 60

2 2max 1 1max 2 2max 1 1max 2 2max 1 1max 2 2max 1 1max 1 1max

sin sin cos cos
( ) cos

2 2
t

u u u u u u u u u

χ γ χ γ χ γ χ γ λλ λ
λ γ λ

δ δ δ δ δ δ δ δ δ

− + − +
= − + + + + +

− + − +
 (c.24) 

Because the values of 1 2 3 50, , ,λ λ λ λ  are constant, so the equation 5 ( ) 0tλ =  defines the line on which some 

switching and straight line travel must occur. 

502 2

1 1 1

y xy x W t W t
λλ λ

λ λ λ
= + − −  (25) 

The remaining problem is to find the optimal values of 1 2 3 40 50 60, , , ,  and λ λ λ λ λ λ such that the two-point 

boundary value problem is solved (i.e. finding the values that insure that the correspond switching times allow to 
steer the system from the given initial point to desired final point). The solution of this problem will obtain by 
numerical methods. 

9
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3. One switching time case resolution

Let us take the following set of controls: 

( ) ( )

( )

'
1 1max 1* * 2 2max 1

1 2 '
1 1max 1 2 2max 1

''
* 3 3max 1
3 ''

3 3max 1

0 0

0

u t t u t t
u t u t

u t t T u t t T

u t t
u t

u t t T

δ δ

δ δ

δ

δ

≤ ≤ ≤ ≤
= =

− ≤ ≤ − ≤ ≤

≤ ≤
=

− ≤ ≤

(26) 

By integration: 

( ) ( ) ( )
' ' ' ' ''

* * *1 1max 0 1 2 2max 0 1 3 3max 0 1

' ''
1 1max 1 1 2 2max 1 1 3 3max 1 1

0 0 0
, ,

u t t t u t t t u t V t t
t t V t

u t t t T u t t t T u t V t t T

δ γ δ χ δ
γ χ

δ γ δ χ δ

+ ≤ ≤ + ≤ ≤ + ≤ ≤
= = =

− + ≤ ≤ − + ≤ ≤ − + ≤ ≤
 (27) 

The integration constants ' ' '
0 1 0 1 0 1, , , , ,V Vγ γ χ χ will be determined using the initial and final conditions as well as the 

continuity condition. 

1 1

' ' ' ' "
0 0 0 0 1 1 1max 1 1 2 2max 0 0 1 3 3max 0, , 2 , 2 , ,u t u t V V V u t Vγ γ χ χ γ δ χ δ δ= = = = = = +

The final conditions give 

1 1max 1 2 2max 1 3 3max 1, ,f f fu T u T V u T Vγ δ γ χ δ χ δ= − + = − + = − + (28) 

With this relation, one obtains the first equation relying the transition times with the final time. 

' "0 0 0
1 1 1

1 1max 2 2max 3 3max

1 1 1
, ,

2 2 2
f f fV V

t T t T t T
u u u

γ γ χ χ

δ δ δ

− − −
= + = + = + (29) 

Let’s present the different respective positions of 1t  versus 
'

1t  and 
"
1t  giving way to 6 different intervals. 

' "
1 1 1

" '
1 1 1

' "
1 1 1

' "
1 1 1

" '
1 1 1

" '
1 1 1

P1: 0

P2: 0

P3: 0

P4: 0

P5: 0

P6: 0

t t t T

t t t T

t t t T

t t t T

t t t T

t t t T

≤ ≤ ≤ ≤

≤ ≤ ≤ ≤

≤ ≤ ≤ ≤

≤ ≤ ≤ ≤

≤ ≤ ≤ ≤

≤ ≤ ≤ ≤
Calculations are similar for the six intervals. In the following detailed analysis, we are interested by the interval P1. 

I. The vertical motion: This motion is obtained by the integration of sin zz V Wγ= + . 

The first interval: For 10 t t≤ ≤ , we obtain: 

( )
( )0 1 1max 0 '

0 3 3max 11

1 1max

cos
z

V u t
z t W t z u z

u

δ γ
δ

δ

+
= − + + (30) 

With: 
( ) ( )1 1max 0 1 1max 0

11 2
1 1max 1max

cos sint u t u t
z

u u

δ γ δ γ

δ

− + +
= +  and 

' 0 0 3 3max
0 0 02

1 1max 1max

cos
sin

V u
z z

u u

γ δ
γ

δ
= + −

10
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The second interval: For 
"

1 1t t t≤ ≤ , we can write

( )
( )0 1 1max 1

1 3 3max 21

1 1max

cos
z

V u t
z t W t z u z

u

δ γ
δ

δ

− +
= + + + (31) 

With: 

( ) ( )
( )1 1max 1 1 1max 1 ' 0 1 3 3max

21 1 0 1 1max 1 02
1 1max 1max 1 1max 1 1max

cos sin 2 2
and cos

t u t u t V t u
z z z u t

u u u u

δ γ δ γ δ
δ γ

δ δ δ

− + − +
= + = − + +

The third interval: For 
"
1t t T≤ ≤ , we have 

( )
( )1 1 1max 1

2 3 3max 31

1 1max

cos
z

V u t
z t W t z u z

u

δ γ
δ

δ

− +
= + + − (32) 

With: 31 21z z=   &  ( )"3 3max
2 1 1 1max 1 12

1max

2
sin

u
z z u t

u

δ
δ γ= + − +

Thus the final vertical condition gives 

( )1
2 3 3max 31

1 1max

cos ( )f z f

V
z W T z u z T

u
γ δ

δ
= + + − (33) 

Where:  
( ) ( )

31 2
1 1max 1max

cos sin
( ) f fT

z T
u u

γ γ

δ
= +

II. The horizontal motion :

This motion is obtained by integrating cos cos & sin cos
x y

x V W y V Wχ γ χ γ= + = +  for each 

interval:

The first interval: For 10 t t≤ ≤ , we have: 

( )
( )( ) ( )( )

( )
( )( )

2 2max 1 1max 0 0 2 2max 1 1max 0 0' 3 3max 0
0 11 12

2 2max 1 1max 2 2max 1 1max

2 2max 1 1max 0 0 2 2max' 3 3max 0
0 11 12

2 2max 1 1max

sin sin

2 2

cos cos

2 2

x

y

u u t u u tu V
x x W t x x

u u u u

u u t uu V
y y W t y y

u u

δ δ χ γ δ δ χ γδ

δ δ δ δ

δ δ χ γ δ δδ

δ δ

− + − + + +
= + + + + +

− +

− + − +
= + + + − +

−

( )( )1 1max 0 0

2 2max 1 1max

u t

u u

χ γ

δ δ

+ +

+

(34) 

With
( )( ) ( )( )

( )

( )( ) ( )( )
( )

2 2max 1 1max 0 0 2 2max 1 1max 0 0 2 2max 1 1max 0 0 2 2max 1 1max 0 0

11 122 2
2 2max 1 1max 2 2max 1 1max2 2max 1 1max 2 2max 1 1max

sin cos sin cos
,

t u u t u u t t u u t u u t
x x

u u u uu u u u

δ δ χ γ δ δ χ γ δ δ χ γ δ δ χ γ

δ δ δ δδ δ δ δ

− + − − + − + + + + + +
= + = +

− +− +

( )( ) ( )( )
( )

( )( ) ( )( )
( )

2 2max 1 1max 0 0 2 2max 1 1max 0 0 2 2max 1 1max 0 0 2 2max 1 1max 0 0

11 122 2

2 2max 1 1max 2 2max 1 1max2 2max 1 1max 2 2max 1 1max

cos sin cos sin
,

t u u t u u t t u u t u u t
y y

u u u uu u u u

δ δ χ γ δ δ χ γ δ δ χ γ δ δ χ γ

δ δ δ δδ δ δ δ

− + − − + − + + + + + +
= − + = − +

− +− +

Using the initial condition gives the integration constants: 

( ) ( ) ( )
( )

( )
( )

0 0 0 0 0 0 0 0' 0 3 3max
0 0 2 2

2 2max 1 1max 2 2max 1 1max 2 2max 1 1max 2 2max 1 1max

sin sin cos cos

2 2

V u
x x

u u u u u u u u

χ γ χ γ χ γ χ γδ

δ δ δ δ δ δ δ δ

− + − −
= − + − +

− + − +

( ) ( ) ( )
( )

( )
( )

0 0 0 0 0 0 0 0' 0 3 3max
0 0 2 2

2 2max 1 1max 2 2max 1 1max 2 2max 1 1max 2 2max 1 1max

cos cos sin sin

2 2

V u
y y

u u u u u u u u

χ γ χ γ χ γ χ γδ

δ δ δ δ δ δ δ δ

− + − −
= + + − +

− + − +
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The second interval: For 
'

1 1t t t≤ ≤ , we have:

( )
( )( ) ( )( )

( )
( )( )

2 2max 1 1max 0 1 2 2max 1 1max 0 13 3max 0
1 21 22

2 2max 1 1max 2 2max 1 1max

2 2max 1 1max 0 1 2 2max 13 3max 0
1 21 22

2 2max 1 1max

sin sin

2 2

cos cos

2 2

x

y

u u t u u tu V
x x W t x x

u u u u

u u t u uu V
y y W t y y

u u

δ δ χ γ δ δ χ γδ

δ δ δ δ

δ δ χ γ δ δδ

δ δ

+ + − − + +
= + + + + +

+ −

+ + − −
= + + + − +

+

( )( )1max 0 1

2 2max 1 1max

t

u u

χ γ

δ δ

+ +

−

(35) 

With: 
( )( ) ( )( )

( )

( )( ) ( )( )
( )

2 2max 1 1max 0 1 2 2max 1 1max 0 1 2 2max 1 1max 0 1 2 2max 1 1max 0 1

21 222 2

2 2max 1 1max 2 2max 1 1max2 2max 1 1max 2 2max 1 1max

sin cos sin cos
,

t u u t u u t t u u t u u t
x x

u u u uu u u u

δ δ χ γ δ δ χ γ δ δ χ γ δ δ χ γ

δ δ δ δδ δ δ δ

+ + − + + − − + + − + +
= + = +

+ −+ −

( )( ) ( )( )
( )

( )( ) ( )( )
( )

2 2max 1 1max 0 1 2 2max 1 1max 0 1 2 2max 1 1max 0 1 2 2max 1 1max 0 1

21 222 2

2 2max 1 1max 2 2max 1 1max2 2max 1 1max 2 2max 1 1max

cos sin cos sin
,

t u u t u u t t u u t u u t
y y

u u u uu u u u

δ δ χ γ δ δ χ γ δ δ χ γ δ δ χ γ

δ δ δ δδ δ δ δ

+ + − + + − − + + − + +
= − + = − +

+ −+ −

While the continuity condition gives the integration constants: 

( )( ) ( )( )

( )( ) ( )( )

' '3 3max 0 1 1max
1 0 1 2 2max 1 1max 1 0 0 2 2max 1 1max 1 0 02 2

2max 1max

' '3 3max 0 1 1max
1 0 1 2 2max 1 1max 1 0 0 2 2max 1 1max 1 0 02 2

2max 1max

sin sin
2

cos cos
2

u V u
x x x u u t u u t

u u

u V u
y y y u u t u u t

u u

δ δ
δ δ χ γ δ δ χ γ

δ δ
δ δ χ γ δ δ χ γ

= + + − + − − + + +
−

= + − − + − − + + +
−

Where: 

( )( ) ( )( )( )
( )

( )( ) ( )( )( )' 1 1 1max 1 2 1max 2max
1 2 2max 1 1max 1 0 0 2 2max 1 1max 1 0 0 2 2max 1 1max 1 0 0 2 2max 1 1max 1 0 022 2 2 2

2max 1max 2max 1max

' 1 1 1max
1 2 2ma2 2

2max 1max

2 4
sin sin cos cos

2
cos

t u u u
x u u t u u t u u t u u t

u u u u

t u
y u

u u

δ δ δ
δ δ χ γ δ δ χ γ δ δ χ γ δ δ χ γ

δ
δ

= − + − − + + + + − + − − + + +
− −

= −
−

( )( ) ( )( )( )
( )

( )( ) ( )( )( )1 2 1max 2max
x 1 1max 1 0 0 2 2max 1 1max 1 0 0 2 2max 1 1max 1 0 0 2 2max 1 1max 1 0 022 2

2max 1max

4
cos sin sin

u u
u t u u t u u t u u t

u u

δ δ
δ χ γ δ δ χ γ δ δ χ γ δ δ χ γ− + − − + + + + − + − − + + +

−

The third interval: For 
' "

1 1t t t≤ ≤ , we have: 

( )
( )( ) ( )( )

( )
( )( )

2 2max 1 1max 1 1 2 2max 1 1max 1 13 3max 0
2 31 32

2 2max 1 1max 2 2max 1 1max

2 2max 1 1max 1 1 2 23 3max 0
2 31 32

2 2max 1 1max

sin sin

2 2

cos cos

2 2

x

y

u u t u u tu V
x x W t x x

u u u u

u u t uu V
y y W t y y

u u

δ δ χ γ δ δ χ γδ

δ δ δ δ

δ δ χ γ δδ

δ δ

− + + − − − + +
= + + + + +

− + − −

− + + − −
= + + + − +

− +

( )( )max 1 1max 1 1

2 2max 1 1max

u t

u u

δ χ γ

δ δ

− + +

− −
  

(36) 

Where: 

( )( ) ( )( )
( )

( )( ) ( )( )
( )

2 2max 1 1max 1 1 2 2max 1 1max 1 1

31 2

2 2max 1 1max 2 2max 1 1max

2 2max 1 1max 1 1 2 2max 1 1max 1 1

32 2

2 2max 1 1max 2 2max 1 1max

sin cos

sin cos

t u u t u u t
x

u u u u

t u u t u u t
x

u u u u

δ δ χ γ δ δ χ γ

δ δ δ δ

δ δ χ γ δ δ χ γ

δ δ δ δ

− + + − − + + −
= +

− + − +

− − + + − − + +
= +

− − − −

( )( ) ( )( )
( )

( )( ) ( )( )
( )

2 2max 1 1max 1 1 2 2max 1 1max 1 1

31 2
2 2max 1 1max 2 2max 1 1max

2 2max 1 1max 1 1 2 2max 1 1max 1 1

32 2

2 2max 1 1max 2 2max 1 1max

cos sin

cos sin

t u u t u u t
y

u u u u

t u u t u u t
y

u u u u

δ δ χ γ δ δ χ γ

δ δ δ δ

δ δ χ γ δ δ χ γ

δ δ δ δ

− + + − − + + −
= − +

− + − +

− − + + − − + +
= − +

− − − −

With the continuity condition: 

( )( ) ( )( )( )

( )( ) ( )( )( )

' ' '3 3max 0 2 2max
2 1 2 2 2max 1 1max 1 0 1 2 2max 1 1max 1 0 12 2

1max 2max

' ' '3 3max 0 2 2max
2 1 2 2 2max 1 1max 1 0 1 2 2max 1 1max 1 0 12 2

1max 2max

sin sin
2

cos cos
2

u V u
x x x u u t u u t

u u

u V u
y y y u u t u u t

u u

δ δ
δ δ χ γ δ δ χ γ

δ δ
δ δ χ γ δ δ χ γ

= + − + + − + − + +
−

= + + + + − + − + +
−

Where: 

( )( ) ( )( )( )

( )
( )( ) ( )( )( )

'
' ' '1 2 2max
2 2 2max 1 1max 1 0 1 2 2max 1 1max 1 0 12 2

1max 2max

' '1 2 1max 2max
2 2max 1 1max 1 0 1 2 2max 1 1max 1 0 122 2

2max 1max

2
sin sin

4
cos cos

t u
x u u t u u t

u u

u u
u u t u u t

u u

δ
δ δ χ γ δ δ χ γ

δ δ
δ δ χ γ δ δ χ γ

−
= + + − + − + + +

−

+ − + + − + − + +
−
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( )( ) ( )( )( )

( )
( )( ) ( )( )( )

'
' ' '1 2 2max
2 2 2max 1 1max 1 0 1 2 2max 1 1max 1 0 12 2

1max 2max

' '1 2 1max 2max
2 2max 1 1max 1 0 1 2 2max 1 1max 1 0 12

2 2
2max 1max

2
cos cos

4
sin sin

t u
y u u t u u t

u u

u u
u u t u u t

u u

δ
δ δ χ γ δ δ χ γ

δ δ
δ δ χ γ δ δ χ γ

= + + − + − + + +
−

+ − + + − + − + +
−

The fourth interval: For 
"
1t t T≤ ≤ , we have: 

( )
( )( ) ( )( )

( )
( )( )

2 2max 1 1max 1 1 2 2max 1 1max 1 13 3max 1
3 41 42

2 2max 1 1max 2 2max 1 1max

2 2max 1 1max 1 1 2 23 3max 1
3 41 42

2 2max 1 1max

sin sin

2 2

cos cos

2 2

x

y

u u t u u tu V
x x W t x x

u u u u

u u t uu V
y y W t y y

u u

δ δ χ γ δ δ χ γδ

δ δ δ δ

δ δ χ γ δδ

δ δ

− + + − − − + +
= + − + + +

− + − −

− + + − −
= + − + − +

− +

( )( )max 1 1max 1 1

2 2max 1 1max

u t

u u

δ χ γ

δ δ

− + +

− −
 

(37) 

Where:  41 31 42 32 41 31 42 32& & &x x x x y y y y= = = =

( )( )
( )

( )( )
( )

( )( )
( )

( )( )

" "
2 2max 1 1max 1 1 1 2 2max 1 1max 1 1 1

3 2 3 3max 2 2

2 2max 1 1max 2 2max 1 1max

" "
2 2max 1 1max 1 1 1 2 2max 1 1max 1 1 1

3 2 3 3max 2

2 2max 1 1max

cos cos

sin sin

u u t u u t
x x u

u u u u

u u t u u t
y y u

u u

δ δ χ γ δ δ χ γ
δ

δ δ δ δ

δ δ χ γ δ δ χ γ
δ

δ δ

− + + − − − + +
= + +

− + − −

− + + − − − + +
= + +

− + −( )2

2 2max 1 1maxu uδ δ−

With the final condition, transcendental equations are obtained: 

( ) ( ) ( )
( )

( )
( )

( ) ( )

3 3max
3 2 2

2 2max 1 1max 2 2max 1 1max 2 2max 1 1max 2 2max 1 1max

3

2 2max 1 1max 2 2max 1 1max

sin sin cos cos

2 2

cos cos

2

f f f f f f f ff
f x

f f f ff
f y

uV
x x W T

u u u u u u u u

V
y y W T

u u u u

χ γ χ γ χ γ χ γδ

δ δ δ δ δ δ δ δ

χ γ χ γ

δ δ δ δ

− + − +
= + + + − +

− + − − − + − −

− +
= + − +

− + − −

( )
( )

( )
( )

3 3max
2 2

2 2max 1 1max 2 2max 1 1max

sin sin

2
f f f fu

u u u u

χ γ χ γδ

δ δ δ δ

− +
− +

− + − −   

(38) 

The transversality condition ( ) 0H T =

( )( ) ( )( )
( )

1 2 2max 2 2 2max

3 1 1max 4 2 2max 50 3 3max 6

1 cos cos sin cos

sin

f f f x f y f f f y f x

f f z f f

V W u y W T V W u x W T

V W u u u

λ χ γ δ λ χ γ δ

λ γ δ λ δ λ δ λ

− = + + − + + − − +

+ + + + ±

(39) 

where 

( ) ( ) ( ) ( )

( ) ( )

31 2
4 40

2 2max 1 1max 2 2max 1 1max 1 1max 2 2max 1 1max 2 2max 1 1max

1
6

2 2max 1 1max 2 2max 1 1max

cos cos sin sin
sin

2 2

sin sin

2

f f f f f f f fff f
f f

f f f f

f

VV V

u u u u u u u u u

u u u u

χ γ χ γ χ γ χ γλλ λ
λ γ λ

δ δ δ δ δ δ δ δ δ

χ γ χ γλ
λ

δ δ δ δ

− + − +
= − − + − +

− + − +

− +
= − +

− +

( ) ( )3 2
60

1 1max 2 2max 1 1max 2 2max 1 1max

cos cos
cos

2
f f f f

f
u u u u u

χ γ χ γλ λ
γ λ

δ δ δ δ δ

− +
+ + + +

− +

To improve the accuracy of the direct optimization solutions and to enlarge the convergence domain of the indirect 
methods, a hybrid approach is proposed to solve the optimal control problem. This cascaded computational scheme 
has become widely applied. The key idea is to extract the co-states and other control structure information from a 
nonlinear programming approach as a first step. The indirect shooting method is then used to refine the solutions. 
The three major steps to solve for the optimal maneuver solutions and to validate the results based on the first order 
optimality conditions. 

1. The kinematic and dynamic differentiation equations are discretized using the trapezoidal method.
Commercially available software is used to get the preliminary and approximate control structures, 
switching times and initial co-states.  

2. Using the results from step 1 as the initial guess, this software is used as a shooting method to solve the two
point boundary value problem. The constraints  include the final time conditions and the invariance of the 
Hamiltonian. 

3. The results from step 2, together with the originally known initial time state conditions, are used to solve for
the dynamic system response by integrating the kinematic and dynamic equations forward in time. The 
Hamiltonian history and the final state errors are the validation criteria.   

This approach can only guarantee that the found solutions are local extrema. 
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V. Conclusion 

This paper presents an analysis of the time optimal trajectories of an aircraft considering a constant velocity wind. 
Geometric characterization of the candidate paths satisfying the necessary conditions for time optimality is 
presented. As long as the wind velocity is small versus the aircraft velocity, solutions of set S1 can be used.  
One can apply this technique to discrete gusts assuming one value before the steep gradient and another one after it. 
If one assumes that it is a constant velocity wind, there will be no consequence onto the dynamic study. However, at 
the joining configuration, infinite accelerations would be encountered. An obvious generalization of this work is to 
include dynamics. It will help into energy savings as the wind variations are used as inputs in the trajectory 
generation for the vehicle motion. 
Another motivation for determining these elementary pieces is for use as motion primitives for determining these 
elementary pieces is for use as motion primitives in modern planning and control algorithms that consider obstacles. 
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