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Piecewise Affine State Feedback Controller for Lane Departure

Avoidance

André Benine-Neto1, Saı̈d Mammar2

Abstract— This paper presents the design and simulation
tests of a lane keeping assistance system for passenger vehicles
based on a piecewise affine state feedback controller. The design
of the proposed lane keeping system takes into account the
entire domain of lateral tire forces through piecewise affine
approximations of the tire forces nonlinear behavior. The
computation of the control law is casted as Bilinear Matrix
Inequalities optimization procedure which is solved using the
V-K-method to find a piecewise quadratic Lyapunov function
and the state feedback gain. Simulations show the improved
performance of the controller on degraded road adhesion
conditions.

I. INTRODUCTION

Lane departure represents a significant fraction of road

accidents and in many cases it is due to the driver fatigue or

inattentiveness, therefore research on vehicle lateral control

has been gained importance over the last 40 years, either

for full or partial automation of driving tasks, in order to in-

crease safety by reducing accidents and drivers workload. An

overview of the recent research activity is provided in [18].

It can be noted that earlier work was devoted to autonomous

vehicles in highway scenarios in which the experienced

lateral accelerations are generally low [7], which has also

been considered in more recent works for the development

of assistance systems which replace the driver during the

lane departure avoidance manoeuvres [12]. Nevertheless, in

order to provide more safety to the drivers, these Lane

Keeping Assistance Systems (LKAS) must be able to operate

in the complete domain of tire forces, including the nonlinear

behavior [9], as many accidents occur due to the vehicle loss

of control when the tire forces are saturated.

Vehicle lateral control in saturated tire force conditions

has been proposed for autonomous lane keeping system in

[6] and in [11] using a parallel distributed control structure

developed on a Takagi-Sugeno model.

Piecewise Affine (PWA) systems [19] provide another

possibility to model the nonlinearities. It has been employed

in [4] for the design of traction controller and in [3] for a yaw

rate tracking system both using a model predictive control

strategy. PWA approximation of the tire forces has also been

used in [17] and [2] to develop an active steering system to

track a yaw rate reference using a PI controller.

In this paper a similar tire force approximation is used for

the design of a state-feedback PWA controller for a LKAS,

which is able to operate in the entire tire force domain.
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Following the results obtained in [16], the control synthesis

is casted as a Bilinear Matrix Inequality (BMI) optimiza-

tion problem which is solved using the V-K method. This

interactive procedure allows the BMI to be transformed into

two Linear Matrix Inequalities (LMI) optimizations problems

which can be solved more efficiently to find simultaneously

the state feedback gain and a Piecewise Quadratic Lyapunov

(PWQL) function that ensure stability of the closed loop

system. The vehicle model for control synthesis is described

in Section II, followed by the controller design shown in

Section III. The simulation results obtained on a nonlinear

model are presented in Section IV providing a comparison

of the PWA controller with a controller designed only for

the linear behavior of the tire forces. Section V wraps up

the work and provides some perspective for the future work.

II. VEHICLE MODEL

In order to design the control law for the LKAS, a

simple nonlinear vehicle model is used, in which the lateral

translational and yaw motions are considered and the roll and

pitch motions are neglected. The wheels of the front and rear

axles are lumped into one located at the axle center leading

to a bicycle model. The equations describing this model are

given by:
{

mv(β̇ + r) = fs f + fsr

Jṙ = l f fs f − lr fsr ,
(1)

where the involved variables consist of the vehicle yaw rate,

denoted r and the vehicle sideslip angle, β . Concerning the

fixed parameters for the model, v represents the longitudinal

vehicle speed, m is the vehicle mass, l f (lr) is the distance

from the front (rear) axle to the center of gravity (CG), J is

the vehicle inertia with respect to the vertical axle through the

CG. All numerical values of these parameters are presented

in Table I. The lateral forces fsx, with x = f ,r, for the front

and rear tires can be modeled according to the Pacejka tire

model [14]:

fsx (αx) = Dx sin{Cxatan [(1−Ex)Bxαx +Exatan(Bxαx)]} ,
(2)

where αx stands for the front (rear) tire sideslip angle.

Considering that the angles remain small, the sideslip angles

for front and rear tires are given by:

α f = δ f −β −
l f r

v
, αr =−β +

lrr

v
, (3)

where δ f is the steering angle.

The Pacjeka tire model is depicted by the solid line in

Fig. 1.
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Fig. 1. Front tire forces described by the Pacejka magic formula and
corresponding PWA approximations and partitions.

The simple nonlinear model (1) shows, as well known in

literature (see for example [13]), a limited stability region

which also depends on the driver steering wheel angle, two

saddle points and a stable one (bifurcation analysis). The

causes of the instability are due to the nonlinear behavior of

the tire-road forces which are taken into account in the PWA

vehicle model described in the next section.

A. Piecewise affine approximation of lateral tire forces

Considering that the front and rear tire forces described

by (2) are approximated by the following PWA functions:

{

fs f

(

α f

)

= e f i +d f iα f

fsr (αr) = eri +driαr

(4)

where d f i, dri, e f i and eri depend on the front and rear tire

forces and the index (i) corresponding to the partitioning of

the tire force domain, based on the tire sideslip angles, as

illustrated by the dotted lines on Fig. 1 for the front wheel.

Replacing the PWA approximation of lateral tire force (4)

in the vehicle model (1) leads to the PWA system:

ẋd = Ad
i xd +Bd

i u+ad
i , (5)

with the corresponding dynamics:

Ad
i =

[

−
d f i+dri

mv
−1−

d f il f −drilr

mv2

drilr−d f il f

J
−

d f il
2
f +dril

2
r

Jv

]

, (6)

Bd
i =

[

d f i

mv
d f il f

J

]

, ad
i =

[

e f i+eri

mv
e f il f −erilr

J

]

. (7)

where the control input is the front wheel steering angle

u = δ f and the state variables are the vehicle sideslip angle,

β and the vehicle yaw rate, r, xd = [β ,r]T .

Even though this approximation can be refined, it is shown

in the simulation section that improved performance can be

obtained by simply approximating the tire forces with the

proposed PWA functions.

TABLE I

VALUES OF THE VEHICLE PARAMETERS.

Parameter Value

c f , front cornering stiffness 40000 N/rad

cr , rear cornering stiffness 35000 N/rad

l f , distance form CG to front axle 1.22 m

lr , distance form CG to rear axle 1.44 m

ls, look-ahead distance 0.95 m

m, total mass 1600 kg

J, vehicle yaw moment of inertia 2454 kgm2

v, longitudinal velocity 17 m/s

B. Additional dynamics for lane keeping

For lane keeping purposes, the model (5) has to be

expanded with the dynamics of the relative yaw angle and

the lateral displacement with respect to the lane centerline.

These measurements are provided by a video sensor. Let

ψL = ψ − ψd be the yaw angle error which is the angle

between the vehicle orientation and the tangent to the road.

The road reference curvature ρre f is defined by (ψ̇d = vρre f ),
and the following equality can be derived:

ψ̇L = r− vρre f . (8)

Denoting by ls the look-ahead distance, the equation giving

the evolution of the measurement of the lateral offset yL from

the centerline at sensor location is obtained by

ẏL = v(β +ψL)− lsr. (9)

Equations (8) and (9) are included in system (5) and the

PWA system describing the vehicle dynamics and positioning

is described by:

ẋp = A
p
i xp +B

p
i u+B

p
ρ ρre f +a

p
i (10)

where xp = [β ,r,ψL,yL]
T and

A
p
i =





Ad
i 0 0

0 1 0 0

v ls v 0



 ,

B
p
i =

[

(Bd
i )

T 0 0
]T

,

B
p
ρ =

[

0 0 −v 0
]T

,

a
p
i =

[

(ad
i )

T 0 0
]T

.

(11)

An illustration of the state variables is provided in Fig. 2

III. CONTROL STRATEGY

The algorithm presented in [16] is applied for the design

of the proposed LKAS. It provides an efficient procedure

for control synthesis for PWA systems using a PWA state

feedback gain, by means of a BMI optimization procedure,

based on the search of a PWQL function.
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Fig. 2. Single track vehicle model.

A. Assumptions for LKAS and PWA system description

As most vehicles have understeering behavior, it is as-

sumed that the front tire forces tend to saturate firstly,

therefore only the front tire forces are approximated by PWA

functions according to (4), and a single linear approximation

is assumed for the rear tire, as follows:



















fs f

(

α f

)

= e f 1 +d f 1α f , for α f <−ᾱ f ,

fs f

(

α f

)

= c f α f , for − ᾱ f < α f < ᾱ f ,

fs f

(

α f

)

= e f 3 +d f 3α f , for α f > ᾱ f ,
{

fsr (αr) = crαr ∀αr,
(12)

where c f = B fC f D f , cr = BrCrDr and ᾱ f corresponds to the

partition shown in Fig. 1.

According to (3), the partitions defined by the front wheel

sideslip angle, α f =±ᾱ f , depend on the state variables and

control input. As mentioned in [16] the switching between

the regions should depend only on the state x, so models in

which there is a feed-through from u to a nonlinearity should

be avoided. This can be done by the inclusion of a first order

actuator which is also useful to enforce continuity of the

control input at the boundaries. Therefore, the steering angle

is included as an additional state to the system as follows:

δ̇ f =−τδ f +uc, (13)

where uc becomes the control input of the augmented plant

and τ = 10.

Disturbances and exogenous inputs, such as the road

curvature, are not taken into account in the control synthesis,

therefore the model describing the vehicle dynamics, posi-

tioning (10) and first order actuator (13) can be written as:

ẋ = Aix+Biu+ai, (14)

with x = [β ,r,ψL,yL,δ f ]
T and

Ai =

[

Ad
i B

p
i

0 0 0 0 −τ

]

,

Bi =
[

0 0 0 0 τ
]T

,

ai =
[

(ad
i )

T 0
]T

.

(15)

Each of the regions Ri, i = 1,2,3 can be described as the

intersection of the half spaces

Ri = {x|HT
i x−gi < 0} (16)

Since these regions are slab, it is preferred to express

them as degenerated ellipsoids, as suggested in [15] and [16],

because they describe exactly the slab regions and it often

requires fewer parameters than the polytopic description (16).

The degenerated ellipsoids can be described by:

||Eix+ fi||2 ≤ 1 ∀x ∈ Ri, (17)

and following the description in [15], if Ri = {x|d< cT
i x< d̄}

then the degenerated ellipsoid is described by:

Ei = 2cT
i /(d̄ −d) and fi =−(d̄ +d)/(d̄ −d) (18)

For the PWA system (14), the ellipsoids describing the

slab regions are:

ET
1 = [−1,−

l f

v
,0,0,1] 2

−ᾱ f −d
, f1 =−

−ᾱ f +d
−ᾱ f −d

,

ET
2 = [−1,−

l f

v
,0,0,1] 1

ᾱ f
, f2 =−

ᾱ f −ᾱ f

ᾱ f +ᾱ f
= 0,

ET
3 = [−1,−

l f

v
,0,0,1] 2

d̄−ᾱ f
, f3 =−

d̄+ᾱ f

d̄−ᾱ f
,

(19)

where d and d̄ can be arbitrarily set, such that d <−ᾱ f and

d̄ > ᾱ f .

The ellipsoidal cell description is used to relax the con-

straints when searching the PWQL function. In order to

ensure the continuity of the PWQL function across the

boundaries, a parametric boundary description is needed [8].

Each facet boundary between the neighboring regions Ri

and R j is contained in the hyperplanes described by:

{x|cT
i jx−di j = 0}. (20)

and the boundary parametric description can be obtained by:

R̄i ∩ R̄ j ⊆ {x / li j +Fi js / s ∈ Rn−1} (21)

where Fi j ∈ Rn×n−1 (full rank) is the matrix whose columns

span the null space of ci j, and li j ∈ Rn is given by li j =
ci j(c

T
i jci j)

−1di j

For the LKAS model (14) the parametric description of

the boundaries is given by:

F1,2 =













1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

1
l f

v
0 0













, F2,3 =













1 0 0 −
l f

v

0 0 0 1

0 1 0

0 0 1 0

1 0 0 0













,
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l1,2 =
[

ᾱ f

2+l2
f /v2 ,

ᾱ f l f /v

2+l2
f /v2 , 0, 0, −

ᾱ f

2+l2
f /v2

]

,

l2,3 =
[

−
ᾱ f

2+l2
f /v2 , −

ᾱ f l f /v

2+l2
f /v2 , 0, 0,

ᾱ f

2+l2
f /v2

]

.

(22)

B. PWA State-Feedback control synthesis

Due to the symmetry of the lateral tire force with respect

to the origin, only regions R1 and R2 are considered in the

control synthesis. The same gains obtained for region R1 can

be applied in region R3.

The goal is to stabilize (14) with a PWA state feedback

gain uc = Kix+mi, based on the search of a PWQL function

of the form:

Vi(x) = xT Pix+2qT
i x+ ri. (23)

Vi(x) can be a Lyapunov function with a decay rate αi,

for the region Ri if, for a fixed ε ≥ 0,

x ∈ Ri,

{

Vi(x)> ε ||x− xeq||2

d
dt

Vi(x)<−αiVi(x),
(24)

where xeq is the equilibrium point of the closed loop system.

Rendering the vehicle to the center of the lane is a

regulation problem for system (14), since in a straight line all

state variables should converge to the origin. Therefore the

desired equilibrium point of the closed loop system, xeq = 0,

is placed at the origin. The equilibrium point must also

be the extrema of the Lyapunov function candidate for the

corresponding region (see [16]). In consequence, q2 = 05×1

and r2 = 0 to ensure that V (0) = 0.

The closed-loop state-space equation is:

ẋ = (Ai +BiKi)x+(bi +Bimi) = Ãix+ b̃i. (25)

As the closed loop system has a single equilibrium point,

the equilibrium points of R1, denoted xeq1 and R3, xeq3, must

not be contained in its own region, enforcing a transition

through the boundaries with R2. This can be done using the

constraint:

(Ai +BiKi)xeq +(bi +Bimi) = 0. (26)

The stability of the (25) can be guaranteed by S-procedure

[5], using the ellipsoidal cell description (17) and conditions

(24), if there exists Pi = PT
i ≻ 0, and positive constants λ1

and γ1 that satisfy:














[

P1 − εIn +λ1ET
1 E1 q1 + εxeq +λ1ET

1 f1

∗ r1 − εxT
1 x1 +λ1( f T

1 f1 −1)

]

≻ 0

[

P2 − εIn

]

≻ 0

(27)


































(

ÃT
1 P1 +P1 + Ã1

−γ1ET
1 E1 +α1P1

) (

P1b̃1 + ÃT
1 q1

−γ1ET
1 f1 +α1q1

)

∗

(

2b̃T
1 q1 +α1r1

−γ1( f T
1 f1 −1)

)









≺ 0

[

ÃT
2 P2 +P2 + Ã2 +α2P2

]

≺ 0
(28)

Using the parametric description of the boundaries (22),

the continuity of the PWQL function candidate is ensured

by:










FT
12(P1 −P2)F12 = 0

FT
12(P1 −P2)l12 +FT

12q1 = 0

lT
12(P1 −P2)l12 +2qT

1 l12 + r1 = 0
(29)

Ensuring that there is no sliding mode between R1 and R2

can be enforced by the equations:

{

cT
12(Ã1 − Ã2)F12 = 0

cT
12(Ã1 − Ã2)l12 + b̃1 − b̃2 = 0

(30)

Defining a performance criterion as: J = min
i

αi. The goal

is to find the PWA state feedback controller that maximizes

the performance criterion J. This optimization problem can

be cast as a BMI as:

maximise: min
i

αi

subjected to: (26), (29), (27), (28), (30),

ε > 0, γ1 > 0, λ1 > 0, α1,2 > l0 > 0,

−l1 < Ki < l1, −l2 < mi < l2
(31)

where l0 is a scalar bound, l1 and l2 are vector bounds.

The BMI problem (31) can be solved using the V-K

method, in which LMIs are solved in an iterative fashion. For

that, the equilibrium point of the dynamics corresponding to

the affine region xeq1, is chosen a-priori, such that it is not

located in R1. For this specific lane keeping problem, the

algorithm becomes.

V-step: Given a fixed controller, and a fixed αi, solve:

Find: P1, q1, r1 and P2,

s. t. : (29), (27), (28),

ε > 0, γ1 > 0, λ1 > 0,

(32)

K-step: For P1, q1, r1 and P2 fixed at the previous step,

solve:

maximise: min
i

αi

s. t.: (26), (27), (28), (30),

ε > 0, γ1 > 0, λ1 > 0, α1,2 > l0 > 0,

−l1 < Ki < l1, −l2 < mi < l2,
(33)

For each iteration of the K-step, the decay rates α1

and α2 must be greater than the value computed at the

previous iteration. The loop must be repeated until there is

no significant improvement on the cost or the LMIs become

infeasible.

The gain for the first iteration on the V-step is computed

using the algorithm from [12]. The same gain is considered

for both regions, and m1 = m2 = 0.
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IV. SIMULATION RESULTS

The resulting gains from the V-K method are:

K1 = [−0.0914 −0.1514 −1.0289 −0.0824 −0.1919],
K2 = [−0.3184 −0.1639 −1.0289 −0.0824 −0.1879],

K3 = K1, m1 =−m3 = 0.0245, m2 = 0
(34)

In order to verify the performance of the PWA controller,

simulation were carried out on the Matlab/Simulink environ-

ment, comparing two vehicles, one equipped with the PWA

controller and another equipped with the controller computed

for the linear region only (controller K2). The dynamics of

the model used for simulation consist of nonlinear 4-wheels

vehicle according to [1], which is considered to capture the

essential vehicle lateral steering dynamics:

m(v̇y + rv) = fs f cosδ f + fsr

Jṙ = l f fs f cosδ f − lr fsr
(35)

where vy is the lateral velocity, and the lateral forces are

given by (2). The sideslip angles α f ,r are given by:

α f (le f t) = δ f −arctan
(

vβ+rl f

v− a
2 r

)

α f (right) = δ f −arctan
(

vβ+rl f

v+ a
2 r

)

αr(le f t) =−arctan
(

vβ−rlr
v− a

2 r

)

αr(right) =−arctan
(

vβ−rlr
v+ a

2 r

)

(36)

As an attempt to make the lane departure avoidance

assistance system unobtrusive during normal driving, the

activation strategy takes place only in case the driver is

inattentive and there is a risk of lane departure. Throughout

the simulations the driver is considered inattentive, and

analogously to [12] the risk of lane departure is estimated by

position of the front wheels with respect to a centered strip

on the lane with width 2d. The position of the left (yl) and

right (yr) front wheels can be described by:

yl = yL +(l f − ls)ψL +
a
2
,

yr = yL +(l f − ls)ψL −
a
2
,

(37)

where a represents the vehicle width. Enforcing that the front

wheels must remain inside the centred lane strip ±d, yields:

−
2d −a

2
≤ yL +(l f − ls)ψL ≤

2d −a

2
(38)

This set, corresponding to the region between two parallel

hyperplanes, can be written with respect to the state vector

as:

T
∆
= {x ∈ R5 : |Fx| ≤ 1} (39)

where F = (0,0,
2(l f −ls)

2d−a
, 2

2d−a
,0).

The road adhesion is considered degraded, in order to

show the performance of the controller in the occurrence

of tire forces saturation. The road adhesion coefficient is

considered µ = 0.5, which corresponds to wet pavement.

This condition is incorporated in the parameters of (2) by

changing B to (2−µ)B, C to ( 5
4
− µ

4
)C and D to µD, [10].

The simulation scenario consists of an inattentive driver

approaching a left-hand side curve. As the right front wheel

reaches the centered strip d the LKAS system is activated.

0 2 4 6 8 10 12
2

2.2

2.4

2.6

2.8

3

time [s]

R
e

g
io

n
s

0 2 4 6 8 10 12
−0.2

−0.1

0

0.1

0.2

0.3

time [s]

F
ro

n
t 

s
id

e
s
lip

 a
n

g
le

 α
f [

ra
d

]

PWA

Lin

Fig. 3. Active region for PWA control and response for vehicles with PWA
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Fig. 4. Steering angle and Control input for vehicles with PWA and linear
controllers

While attempting to steer the vehicle to the center of

the lane, the front wheel sideslip angle, depicted in Fig. 3

overshoots the limit considered for the linear behavior,

corresponding to the saturation of tire forces. The switches

between the gains corresponding to R2 and R3 are shown in

Fig. 3. The corresponding control input and steering angle

that can be seen in Fig. 4.

The vehicle sideslip angle and yaw rate for the two

vehicles are shown in subplots of Fig. 5. The relative yaw

angle and lateral offset at look-ahead distance, representing

the vehicle positioning on the road are depicted in Fig 6. It is

interesting to note that the dynamics of the vehicle equipped

with the PWA controller are less extreme due to the switching

of the controller. This control action to reestablish vehicle

stability leads to a slightly larger lateral offset during the

maneuver, but it is still within an acceptable range. Moreover

it avoids the saturation of the lateral tire forces.
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Fig. 6. Positioning for vehicles with PWA and linear controllers

V. CONCLUSION

In this paper the design and simulation of a PWA controller

for LKAS has been described. The nonlinear behavior of the

lateral tire forces are approximated by PWA functions. As

only understeering vehicles are considered in this work, the

regions describing the PWA vehicle model can be exactly

described as degenerated ellipsiods which are used to re-

lax the conditions for the existence of a PWQL function.

The simultaneous search of a PWQL function and a PWA

state feedback gain has been casted as a BMI optimization

problem. The solution has been computed using the V-

K method in which the BMIs are transformed into two

LMI optimization procedures that are solved iteratively. The

resulting PWA controller has been tested in degenerated ad-

herence conditions showing its enhanced performance under

the effects of tire force saturation and the activation strategy

of the assistance system.

Currently commercialized vehicles are not equipped with

sensors that are able to measure the vehicle sideslip angles.

Therefore the design of a output feedback controller should

be considered in the future work. Taking into account param-

eter variations as for example vehicle longitudinal speed, and

implementation on prototype vehicle should also be included

in the future work.
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