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Abstract— This paper presents the design and the simula-
tion test of a Takagi-Sugeno (TS) fuzzy output feedback for
yaw motion control. The control synthesis is conducted on a
nonlinear model in which tire-road interactions are modeled
using Pacejka’s magic formula. Using sector approximation, a
TS fuzzy model is obtained. It is able to handle explicitly the
nonlinear Pacejka lateral tire forces including the decreasing or
saturated region. The controller acts through the steering of the
front wheels and the differential braking torque generation. The
computation of the controller takes into account the constraints
that the trajectories of the controlled vehicle remain inside an
invariant set. This is achieved using quadratic boundedness
theory and Lyapunov stability. Some design parameters can be
adjusted to handle the trade-off between safety constraints and
comfort specifications. The solution to the associated problem is
obtained using Linear and Bilinear Matrix Inequalities (LMI-
BMI) methods. Simulation tests show the controlled car is able
to well achieve standard maneuvers such as the ISO3888-2
transient maneuver and the sine with dwell maneuver.

Index Terms— Vehicle handling, Fuzzy control, Output feed-
back, LMI, BMI.

I. INTRODUCTION

Ground vehicles experience instabilities that are difficult

for the driver to control. In fact, bifurcation analysis have

shown that the stability region, given for example in the

sideslip angle - yaw rate phase plane is limited [1]. In

addition its size is function of the driver input on the

steering speed, the road adhesion and the longitudinal speed.

Notice that instabilities are mainly due to lateral tire-road

forces saturation. It is thus important de help the driver in

maintaining control of the vehicle is extreme dynamics and

even prevent that the vehicle enters them.

In this context, electronic stability control systems (ESC)

is the subject of intense research while solutions are already

available and become more and more popular on commercial

vehicles in Europe. They have largely contributed during the

last decade to accident and death reduction [12]. Today’s

systems act on the vehicle lateral dynamics mainly through

independent wheel braking. Recent studies have demon-

strated that differential braking may have a better effect on

yaw dynamics than independent active wheel braking [13],

[14]. Optimal strategies for braking forces allocation have

been explored in [15]. In parallel, vehicle handling has been
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also investigated through active steering [5], [7]. Even if the

mechanical linkage between them is still a limiting factor,

solutions have been already implemented in series production

[17]. In such systems, the additional steering angle is limited

and it is expected that real gain from active steering will

come with steer-by-wire systems which will offer additional

freedom-factors for the controller intervention [16].

Using both steering angle rate and differential braking,

this paper proposes a dynamic fuzzy output feedback. The

Takagi-Sugeno [8] fuzzy formalism allows modeling of the

nonlinear behavior of the lateral forces described by the

pacejka formula [6]. The nonlinearity includes the decreasing

region. The dynamic output feedback formulation considered

in this paper presents three main advantages: the use of

only the yaw rate and the steering angle as controller input,

better flexibility to formulate the stabilization conditions and

the ability to handle input or state constraints and bounded

disturbances. This controller uses the property of quadratic

boundedness and invariant set [4]. This allows the constraints

that the trajectories of the controlled vehicle remain inside

an invariant set. In fact, during control intervention, it is

important to ensure a good safety level by bounding state

variables. The chosen strategy fulfills this requirement and

consists of building an invariant set for the system state. It

guarantees that each trajectory that starts in the invariant set

will not exceed it, hence the trajectories will be bounded

inside it [9]. Some design parameters can be adjusted to

handle the trade-off between safety constraints and comfort

specifications. The solution to the associated problem ob-

tained using Linear and Bilinear Matrix Inequalities (LMI-

BMI) methods.

The paper is organized as follows: the next Section gives a

description of the developed vehicle lateral dynamics Takagi-

Sugeno model of the vehicle. The fuzzy output feedback syn-

thesis, including the requirements concerning the quadratic

boundedness, the state constraints and control limitation

are then presented in Section 3. In Section 4, simulation

results for the ISO 3888-2 and the sine with dwell transient

maneuvers which excite the nonlinear tire dynamics are

provided. The conclusions wrap up the paper.

II. VEHICLE LATERAL DYNAMICS T-S MODEL

As lateral control is concerned, a simple nonlinear model

of a vehicle is obtained by neglecting the roll and pitch

motions. This model includes the lateral translational motion

and the yaw motion (Fig. 1). The two wheels of each axle

are lumped into one located at its center. This leads to the

vehicle bicycle model. The lateral forces between each tire
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Fig. 1. Vehicle model.

and the road surface are added at each axle leading to two

resulting forces f f

(
α f

)
= fy1+ fy2 and fr (αr) = fy3+ fy4 at

the front and rear wheels of the bicycle model respectively.

These forces which will be detailed below are function of

the front and rear tires sideslip angle, denoted α f and αr

respectively.

The lateral translation and rotational yaw motion equations

written in the vehicle fixed frame take the following form

[
mv

(
β̇ + r

)

Jṙ

]
=

[
1 1 0

l f −lr 1

]⎡
⎣

f f

(
α f

)

fr (αr)
Tz

⎤
⎦ (1)

where β is the vehicle side slip angle, ψ̇ = r is the yaw

rate and Tz is the yaw moment input applied by differential

wheel braking. m is the vehicle mass while J is the vehicle

moment of inertia. The vehicle center of gravity is located at

a distance l f from the front axle and a distance lr from the

rear axle. The vehicle parameters values are listed in Table

I in the Appendix.

Assuming that the angles remain small, the front and the

rear sideslip angles are given by:

α f = δ f −
(

β +
l f

v
r
)

αr =−β + lr
v

r
(2)

A. Lateral tire forces model

Several types of models of the forces of tire-pavement

interaction have been proposed in the literature [6]. They are

usually derived from experimental data, as for the Pacejka

model, and have as parameters the adhesion, the speed v and

the vertical load fni. The shape of the lateral force is often

similar from one model to another. A first linear domain for

small sideslip angle allows to define a slope factor called the

tire cornering stiffness coefficient. When the sideslip angle

increases, the tire enters a nonlinear operating zone where

the lateral force saturates. The maximum value defines the

limit of the vehicle maneuverability, resulting in a loss of

controllability that can cause an understeering phenomenon

or an unusual oversteering which may surprise the driver.

Here, the Pacejka magic formula [10], [11] is used to

represent the efforts exerted on each tire. This model is
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Fig. 2. Tire lateral force given by the pacejka model and sector based
approximation.

based on the mathematical representation of the tire dynamic

behavior using analytical functions having a particular struc-

ture. Lateral forces of front and rear tires are function of the

side slip angle αi at the tire-road contact location. The effect

of the camber angle is neglected. Here, the index i stands

for f (front) or r (rear) :

fi(αi) =
di sin

(
ci ⋅ tan−1(bi(1− ei)αi + ei ⋅ tan−1(biαi))

) (3)

Notice that the adhesion coefficient and the normal force

acting on each tire are embedded inside the parameters bi, ci,

di and ei. See [7] for further details. The definition and the

value of the above parameters are described in the appendix

at the end of the paper.

The goal now is to achieve a Takagi-Sugeno fuzzy model

which covers the entire operating domain (linear and non-

linear) of the forces [2].

B. Four rules Takagi-Sugeno vehicle fuzzy model

The nonlinear vehicle model is transformed into a four

rules Takagi-Sugeno (T-S) fuzzy model according to the

values of the front and rear cornering stiffnesses:

∙ if
∣∣α f

∣∣ is m1 and ∣αr∣ is n1 then

{
f f = c f1 α f

fr = cr1
αr

∙ if
∣∣α f

∣∣ is m2 and ∣αr∣ is n1 then

{
f f = c f2 α f

fr = cr1
αr

∙ if
∣∣α f

∣∣ is m1 and ∣αr∣ is n2 then

{
f f = c f1 α f

fr = cr2
αr

∙ if
∣∣α f

∣∣ is m2 and ∣αr∣ is n2 then

{
f f = c f2 α f

fr = cr2
αr

The membership functions mi and ni (i = 1,2) are deter-

mined by the approximation method of nonlinear function

by linear sectors. Coefficients c fi and cri
(i = 1,2) represent

the tire cornering stiffnesses associated to each sector. In

fact they represent also the slope of the limits of the sectors

which include the tire forces (Fig. 2). For example, given two

coefficients c f1 and c f2 , chosen according to the expected

road adhesion and driving conditions, one can determine
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the membership functions m1

(
α f

)
and m2

(
α f

)
. The evo-

lution of the two functions m1 and m2 as functions of the

sideslip angle are shown in Figure 3. They are obtained

with numerical values: c f1 = 1.2c f and c f2 = 0.6c f . It is

important to outline that this sector representation is an exact

approximation of the nonlinear system.
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Fig. 3. Membership functions m1 and m2 associated to the front tire contact
forces.

The membership functions n1 and n2 for the rear tire forces

are obtained by the same procedure. Finally, one can write:
{

f f =
[
(h1 +h3)c f1 +(h2 +h4)c f2

]
α f

fr = [(h1 +h2)cr1
+(h3 +h4)cr2

]αr
(4)

with h1 = m1 × n1, h2 = m2 × n1, h3 = m1 × n2 and h4 =
m2 ×n2.

In order to have the front and the rear sideslip angle

as state vector components, let us define the state x̄ =
[α f ,αr,δ f ]

T and the control input u = [δ̇ f ,Tz]
T , the fuzzy

system takes the form:

˙̄x =
4

∑
i=1

hi

(
α f ,αr

)
Āix̄+ B̄u (5)

where

Āi =

⎡
⎣

a11i a12i a13

a21i a22i a23

0 0 0

⎤
⎦ , B̄ =

⎡
⎣

1 − l f

Jv

0 lr
Jv

1 0

⎤
⎦ (6)

where ⎧
⎨
⎩

a11i =− v
l f +lr

− 1
v

(
1
m
+

lr l f

J

)
c′f i,

a12i =
v

l f +lr
− 1

v

(
1
m
− l f lr

J

)
c′ri
,

a21i =− v
l f +lr

− 1
v

(
1
m
− l2

r
J

)
c′f i,

a22i =
v

l f +lr
− 1

v

(
1
m
+ l2

r
J

)
c′ri
,

a13 =
v

l f +lr
,

a23 =
v

l f +lr
.

where c′f i = c f 1 for i = 1,3 and c′f i = c f 2 for i = 2,4.

Similarly, c′ri = cr1 for i = 1,2 and c′ri = cr2 for i = 3,4.

C. Reference yaw rate tracking

Ideally, the vehicle should respond to driver’s steering

angle δd as a speed depended yaw rate reference steady state

value with almost constant settling time. Let T0 be the desired

transfer function between δd and r. In order to ensure at

nominal speed, the same steady state value for the controlled

and the conventional car, the reference model is chosen as a

first order transfer function with the same steady state gain

as the conventional car. It is of the form rd = Kd(v)
τs+1

δd . The

speed dependent steady state gain is Kd(v), derived from the

nominal linear bicycle model, and τ = 0.2 sec.

In order to ensure that the yaw rate reference value is

achieved in steady state, the integral z of the yaw rate

tracking error is added as state a variable:

ż = r− rd =
δ f +αr −α f

l f + lr
v− rd (7)

This variable is thus added to the previous third order

model while the desired yaw rate is considered as a distur-

bance. The fuzzy model is finally discretized at a sample

time of T = 0.005sec. The final fuzzy model is of the form:

x(t +1) = ∑4
i=1 hi

(
α f ,αr

)
Aix(t)+Bu(t)+Ew(t)

y(t) =Cx(t)+Dw(t)
(8)

where x = [α f ,αr,δ f ,z]
T and y(t) = [r,z]T . The disturbance

w(t) = rd(t) ∈ εQ =
{

w ∈ R/wT Qw ≤ 1
}

is bounded. Ma-

trices Ai and B can be easily derived from equations (6)

and (7). This discrete time fuzzy system is characterized

by common B, E and C matrices. This property simplifies

drastically the stability and performance conditions as only

simple summations are involved.

III. DYNAMIC OUTPUT FEEDBACK FUZZY CONTROLLER

In the following, a dynamic output feedback fuzzy con-

troller is sought. It has the form:

xc(t +1) = ∑4
i=1 hi

(
α f ,αr

)
Ai

cxc(t)+Bcy(t)
u(t) =Ccxc(t)+Dcy(t)

(9)

where xc ∈ R4 is the controller state; {Ai
c,Bc,Cc,Dc} are

matrices to be designed.

This controller uses the parallel distributed compensation

(PDC) concept of the fuzzy system control. In this concept,

each control rule is distributively designed for the corre-

sponding rule of a T-S fuzzy model. Linear control theory can

then be used to design controllers for each of the consequent

part of the fuzzy system while ensuring the same properties

for the fuzzy system.

As pointed out in [4], Dc is an important parameter for

stabilization, and the controller structure is able to handle

constraints on the input and the state. By combining (8) and

(9), the augmented closed-loop fuzzy model is given by

x̃(t +1) =
4

∑
i=1

hi

(
α f ,αr

)
Φix̃(t)+Γw(t). (10)
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where x̃ =

[
x

xc

]
, Φi =

[
Ai +BDcC BCc

BcC Ai
c

]
and

Γ =

[
BDcD+E

BcD

]
.

Let Φz = ∑4
i=1 hi

(
α f ,αr

)
Φi, the closed loop system takes

the form: x̃(t +1) = Φzx̃(t)+Γw(t).

A. Invariant set and output feedback PDC control

Assume that there exists a quadratic function V (x̃) = x̃T Px̃,

where P is a symmetric, positive definite matrix that satisfies,

for all x̃, w satisfying (10), wT Qw ≤ 1, V (x̃) ≥ 1, the

condition [3]:

V (x̃+1)≤V (x̃) (11)

Consider the reachable set Λ defined by:

Λ ≜ {x̃(T )∣ x̃, w satisfying (10),
x̃(0) = 0, wT Qw ≤ 1, T ≥ 0} (12)

The set εP defined by:

εP = {x̃(t) ∈ R
8∣x̃(t)T Px̃(t)≤ 1}, (13)

is an invariant set for the system (10) with w∈R, wT Qw≤ 1.

This means that every trajectory that starts inside εP remains

inside it for t → ∞.

The existence of such a function V (x̃) means that the set

εP is an outer approximation of the reachable set Λ.

εP is also and outer approximation of the reachable set

Λ∗ ≜ {x̃(T )∣ x̃, w satisfying equation (10),
x̃(0) ∈ εP, wT Qw ≤ 1, T ≥ 0} (14)

In this section the control law and the invariant set εP are

synthesized. This is achieved using BMI (Bilinear Matrix

Inequalities) optimization method such that the system with-

out the disturbance is asymptotically stable and at the same

time, the reachable set for an initial state values inside the

invariant set is contained in this invariant set.

B. Invariant set - quadratic boundedness

According to the previous considerations, the closed loop

linear system x̃(t + 1) = Φzx̃(t)+Γw(t) is strictly quadrati-

cally bounded with a common Lyapunov matrix P > 0 for

all allowable w(t) ∈ εQ, for t > 0, if x̃(t)T Px̃(t)> 1 implies

(Φzx̃(t)+Γw(t))T
P(Φzx̃(t)+Γw(t)) < x̃T Px̃, for any w ∈

εQ.

The corresponding condition is obtained using the

S−procedure and invoking the Schur complement, using that

the satisfaction of w ∈ εQ and x̃T Px̃ ≥ 1 implies wT Qw ≤
x̃T Px̃.

Defining P =

[
P1 PT

2

P2 P3

]
and P−1 =

[
M1 MT

2

M2 M3

]
. As-

suming that P2 and M2 are full rank matrices and setting:
⎧
⎨
⎩

D̂c = Dc

Ĉc = DcCM1 +CcM2

B̂c = P1BDc +PT
2 Bc

Âi
c = P1AiM1 +P1BDcCM1 +PT

2 BcCM1

+P1BCcM2 +PT
2 Ai

cM2

(15)

the existence of the controller is ensured if there exist

matrices P1, P2, M1, M2 and a positive scalar α such that

the following condition holds

4

∑
i=1

hi

(
α f ,αr

)
ϒi ≥ 0 (16)

where

ϒi =

⎡
⎢⎢⎢⎢⎣

(1−α)P1 ∗ ∗ ∗ ∗
(1−α)I (1−α)M1 ∗ ∗ ∗

0 0 αQ ∗ ∗
Ai +BD̂cC AiM1 +BĈc BD̂cD+E M1 ∗
P1Ai + B̂cC Âi

c B̂cD+P1E I P1

⎤
⎥⎥⎥⎥⎦

(17)

Notice that the matrices M1, M2, P1 and P2 verify:

MT
2 P2 = I −M1P1 (18)

In addition, it is possible to handle constraints on the control

signal and the state:

−ū ≤ u(t)≤ ū, −Ψ̄ ≤ Ψx(t +1)≤ Ψ̄, ∀t ≥ 0 (19)

where ū = [ū1, ū2]
T with ū1 > 0, ū2 > 0 and Ψ̄ :=

[Ψ̄1, . . . ,Ψ̄q]
T with Ψ̄ j > 0, j = 1, . . . ,q, Ψ ∈ Rq×4 and

q is the number of imposed constraints. Notice that the

bounds are provided separately on each state variables or

a combination of state variables.

The control input limitation is verified if for a pre-specified

scalar η ∈ (0,1], the additional inequality

⎡
⎢⎢⎣

ηP1 ∗ ∗ ∗
ηI ηM1 ∗ ∗
0 0 Q ∗√

2D̂cC
√

2Ĉc

√
2D̂cD Z

⎤
⎥⎥⎦≥ 0 (20)

holds with Z ∈ R2×2 is such that Z11 ≤ ū2
1 and Z22 ≤ ū2

1.

A similar procedure can be applied for the constraints on

the state variables. One can achieve from the convex property

conditions (21):

∑4
i=1 hi

(
α f ,αr

)
ϒ̃i ≥ 0, t ≥ 0,

Ξkk ≤ Ψ̄2
k , k ∈ {1, . . . ,q} (21)

where Ξ is a symmetric matrix and

ϒ̃i =

⎡
⎢⎢⎣

ηP1 ∗ ∗ ∗
ηI ηM1 ∗ ∗
0 0 Q ∗

ϒ̃i41 ϒ̃i42
ϒ̃i43

Ξ

⎤
⎥⎥⎦ (22)

and

ϒ̃i41
=
√

2Ψ
(
Ai +BD̂cC

)

ϒ̃i42
=
√

2Ψ
(
AiM1 +BĈc

)

ϒ̃i43
=
√

2Ψ
(
BD̂cE +D

)
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C. Controller synthesis

Under the proposed modeling approach, the desired yaw

rate could be seen as an input disturbance under which

the closed-loop system should remain stable with bounded

values for the state vector components. More generally, the

state variables should not exceed the bounds of a “safety

zone”, namely
∣∣α f

∣∣≤ αM
f , ∣αr∣ ≤ αM

r and
∣∣δ f

∣∣≤ δ M
f . Thus,

the state vector x has to be confined to a hypercube L(ZM)
defined by the above bounds. Finally, the control input, the

steering angle rate and the yaw moment, have to be bounded∣∣∣δ̇ f

∣∣∣≤ δ̇ M
f and ∣Tz∣ ≤ T M

z .

According to the equation (19), control limitation is given

by ū = [δ̇ M
f ,T M

z ], while state limitation is given by Ψ̄ =

[αM
f ,α

M
r ,δ M

f ]T and Ψ =
[

I3 0
]
.

The PDC output feedback controller was synthesized with

the following numerical values:

α = 0.02, η = 0.02, δ̇ M
f = 100deg/s,

T M
z = 10KN αM

f = αM
r = 13deg δ M

f = 6deg,

These design parameters could be adjusted to handle the

trade-off between safety constraints and comfort specifica-

tions.

The achieved Q is 5, which ensures that the constraints

are verified for a disturbance of a magnitude less than

0.447rad/s at the considered longitudinal speed of 20m/s.

In fact, the maximum value is constrained by [18]:

rdmax
= 0.85

g

v

.

IV. SIMULATION TESTS

In order to proof the assistance ability to maintain the

dynamic vehicle stability in extreme conditions, several type

of maneuvers have been defined to test the ESC systems.

Among them, double lane-change manoeuvre defined in ISO

3888-2 standard and the sine with dwell transient maneuver.

The controller is tested below for the two maneuvers.

A. Testing for the ISO 3888-2 maneuver

The ISO3888-2 double lane-change maneuver setup is

depicted in Figure 4-a. The maneuver is carried out with and

without the controller at the same speed of 80km/h. During

the maneuver, the throttle is released.

The driver initiates the maneuver by applying the steering

angle shown in dashed line in Figure 4-b. Figures 4-a

highlights that the controlled vehicle is able to perform the

maneuver (solid line) while the uncontrolled vehicle fails

(dashed line). Figure 4-d shows that the controller shares

the effort on the steering angle rate an the yaw moment,

respectively. In this situation the driver applied steering angle

is too high (dashed line in Figure 4-b) while the the steering

angle of the controlled vehicle is limited to the admissible

safety value of few degrees, as shown by the solid line in

Figure 4-b for the angle value. The steering angle rate is

depicted in the top plot of Figure 4-d and is limited. The the

yaw moment handles the main effort as shown in the bottom
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Fig. 4. ISO3888-2 maneuver: Yaw rate, steering angle, steering angle rate
and trajectory for the uncontrolled and the controlled vehicles.

Fig. 5. ISO3888-2 maneuver: Coefficients hi reflecting the contribution of
each sub-controller for the controlled vehicles.

plot of Figure 4-d. Figure 4-c shows that the controlled car

yaw rate is closer to the reference one than the yaw rate of the

uncontrolled vehicle (dashed line). The contribution of each

sub-controller to according to the actual vehicle dynamics

are shown in Figure 5. Finally, Figures 6-a and 6-b provide

the developed sideslip angles at the front and rear tires. The

corresponding front and rear forces are shown in Figures 6-

c and 6-d. It is clear that the saturation zones are reached

by the uncontrolled vehicle during the maneuver while the

controller avoids that these zones are reached.

B. Sine with dwell maneuver

The sine with dwell is a transient maneuver considered by

NHTSA (National Highway Traffic Safety Administration)

for electronic stability control evaluation. Such type of

maneuver is suited for the excitation of the vehicle oversteer

response. The maneuver is conducted at the same speed of

80km/h. It corresponds to a 0.7Hz frequency sine wave form

with dwell steering angle of 500ms. During the maneuver, the

throttle is released. Figure 7 shows both the control sharing
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Fig. 6. ISO3888-2 maneuver: Front and rear tire sideslip angle and
corresponding lateral forces for the uncontrolled (dashed) and the controlled
vehicles (solid), with vertical offset for the uncontrolled one for better
display.
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Fig. 7. Sine with dwell maneuver: Steering rate and differential braking
control inputs, vehicle absolute yaw angle. Dashed line for the uncontrolled
vehicle and solid line for the controlled one.

between the steering and the differential braking. It also

shows that the realized relative yaw angle is higher which

means that the vehicle is more able to change direction.

V. CONCLUSION

In this paper the design and the test of an integrated

steering and differential braking control for yaw moment

generation has been described. Controlled vehicle trajectories

are confined inside an invariant set. The nonlinear behavior

of the vehicle dynamics are modeled using a fuzzy Takagi-

Sugeno approach. An output feedback fuzzy controller con-

stituted by four sub-controllers handles constraints on the

state variables and the control inputs. Simulation tests have

shown that the controlled vehicle is able to achieve the ISO

3888-2 and the sine with dwell transient maneuvers where

the uncontrolled vehicle fails.

APPENDIX

TABLE I

VEHICLE PARAMETERS.

m Vehicle total mass 1600 kg.
c f Front cornering stiffness 40000 N/rad.
cr Rear cornering stiffness 35000 N/rad.

J Vehicle yaw moment of inertia 2454 kg⋅m2.
l f Distance form CG to front axle 1.22m.
lr Distance from CG to rear axle 1.44m.
v Longitudinal velocity.

TABLE II

TIRE MODEL PARAMETERS.

Tire bi ci di ei

Front (i = f ) 8.3278 1.1009 4536.0 -1.661
Rear (i = r) 11.6590 1.1009 3671.6 -1.542
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