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Quotient of Deligne-Lusztig varieties

Olivier Dudas∗†

December 21, 2011

Abstract

We study the quotient of parabolic Deligne-Lusztig varieties by a finite

unipotent group UF where U is the unipotent radical of a rational parabolic

subgroup P = LU. We show that in some particular cases the cohomology

of this quotient can be expressed in terms of "smaller" parabolic Deligne-

Lusztig varieties associated to the Levi subgroup L.

Introduction

The very first approach to the representation theory of finite reductive groups

is the construction of representations via Harish-Chandra (or parabolic) induc-

tion. If G is a connected reductive group over F = Fp with an Fq-structure asso-

ciated to a Frobenius endomorphism F : G−→ G, and P is an F-stable parabolic

subgroup with an F-stable Levi complement L, one can define, over any ring Λ,

the following functors

and

RG
L

: ΛLF -mod−→ΛGF -mod

∗RG
L

: ΛGF -mod−→ΛLF -mod

called Harish-Chandra induction and restriction functors. One of the main fea-

ture of these functors is that they satisfy the so-called Mackey formula: if Q is

another F-stable parabolic subgroup with F-stable Levi complement M then

∗RG
M
◦RG

L
≃

∑
RL

L∩xM ◦
∗R

xM
L∩xM ◦ad x

where x runs over a explicit finite set associated to L and M. In addition to

being a powerful tool for studying an induced representation, this formula is

also essential for proving that the Harish-Chandra functors depend on L only

and not on the choice of P.

It turns out that not all the representations of GF can be obtained by Harish-

Chandra induction (already for G=SL2(F), many representations are cuspidal).
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To resolve this problem Deligne and Lusztig defined in [6] a generalised induc-

tion in the case where P is no longer F-stable but L still is. They constructed

morphisms between the Grothendieck groups

and

RG
L

: K0(ΛLF -mod)−→ K0(ΛGF -mod)

∗RG
L

: K0(ΛGF -mod)−→ K0(ΛLF -mod)

still satisfying the Mackey formula. These morphisms come from a virtual char-

acter given by the ℓ-adic cohomology of a quasi-projective variety X̃L,P, the

parabolic Deligne-Lusztig variety associated to (L,P). Here, Λ is a finite ex-

tension of Qℓ, Zℓ or Fℓ.

When Λ is a finite extension of Qℓ the category ΛGF -mod is semisimple, and

its Grothendieck group encodes most of the information. However, in the modu-

lar framework, that is when Λ=Zℓ or Fℓ, the Deligne-Lusztig induction and re-

striction morphisms give only partial information on the category of modules. To

obtain homological properties, one needs to consider the complex RΓc(X,Λ) rep-

resenting the cohomology of the variety in the derived category Db(ΛGF -mod).

Using this point of view, Bonnafé and Rouquier defined in [1] triangulated func-

tors

and

R
G
L⊂P

: Db(ΛLF -mod)−→ Db(ΛGF -mod)

∗
R

G
L⊂P

: Db(ΛGF -mod)−→ Db(ΛLF -mod).

Unlike the previous functors, these are not expected to satisfy a naive Mackey

formula as they highly depend on the choice of P. However, there is a good evi-

dence that the composition ∗
R

G
M⊂Q

◦RG
L⊂P

should be somehow related to functors

associated to smaller Levi subgroups. The purpose of this paper is to investi-

gate the case where Q is F-stable. If U denotes its unipotent radical, then the

composition ∗
R

G
M⊂Q

◦RG
L⊂P

is induced by the cohomology of the quotient variety

UF\X̃L,P.

In the original paper of Deligne and Lusztig [6], the Levi subgroup L is a

torus and X̃L,P corresponds to some element w of the Weyl group W of G. The

motivating example is when (L,P) represents a Coxeter torus, that is when w is

a Coxeter element of W . In that case, the variety XL,P = X̃L,P/LF is contained in

the maximal Schubert cell and its quotient by UF has been computed by Lusztig

in [13]. In the case where Λ=Qℓ it is given by the following quasi-isomorphism

of MF -modules:

RΓc(U
F\XL,P,Qℓ) ≃ RΓc(XL∩M,P∩M,Qℓ)⊗RΓc((F

×)d,Qℓ)

where d is the semisimple Fq-index of M in G. Surprisingly, this isomorphism

does not come from a MF -equivariant isomorphism of varieties, and we will see

that it is more natural to study the quotient of X̃L,P instead of XL,P.

In general, the variety XL,P is not contained in only one Schubert cell. The

strategy towards the determination of the cohomology of UF\X̃L,P will consist in

the following steps:
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• decompose the variety X̃L,P into pieces X̃x coming from the decomposition

of G/P into Q-orbits (see Section 2);

• in some well-identified cases, express the cohomology of UF\Xx in terms of

parabolic Deligne-Lusztig varieties associated to Levi subgroups of M (see

Section 3).

The second step is undoubtedly the most difficult. We are able to provide a sat-

isfactory solution to this problem in presumably very specific situations, namely

when the pair (L∩ xM,P∩ xM) is close to (L,P) (see Theorem 3.11 for more de-

tails). However, it turns out that our main result is general enough to cover most

of the Deligne-Lusztig varieties associated to unipotent Φd-blocks with cyclic

defect group. This should give many new results on the geometric version of

Broué’s abelian defect conjecture. To illustrate this phenomenon, we compute in

Section 3.3 the principal part of the cohomology of the parabolic variety associ-

ated to the principal Φ2n−2-block for a group of type Bn as well as its Alvis-Curtis

dual. In subsequence papers this baby example will be supplemented by the fol-

lowing more involved results:

• for exceptional groups, the determination of the cohomology of varieties

associated to principal Φd-blocks when d is the largest regular number

besides the Coxeter number. This should be enriched with predictions for

the corresponding Brauer trees;

• for groups of type An, the determination of the cohomology of varieties

associated to any unipotent block from the knowledge of the cohomology of

the variety X(w2
0).

1 Parabolic Deligne-Lusztig varieties

Let G be a connected reductive algebraic group, together with an isogeny F,

some power of which is a Frobenius endomorphism. In other words, there exists

a positive integer δ such that Fδ defines a split Fqδ-structure on G for a certain

power qδ of the characteristic p (note that q might not be an integer). For all

F-stable algebraic subgroup H of G, we will denote by H the finite group of fixed

points HF .

We fix a Borel subgroup B containing a maximal torus T of G such that

both B and T are F-stable. They define a root sytem Φ with basis ∆, and a set

of positive (resp. negative) roots Φ
+ (resp. Φ

−). Note that the corresponding

Weyl group W is endowed with an action of F, compatible with the isomorphism

W ≃ NG(T)/T. The set of simple reflections will be denoted by S. We shall also

consider representatives {ẇ |w ∈W} of W in NG(T) compatible with the action of

F (this is possible by [9, Proposition 8.21]).

To any subset I ⊂ S one can associate a standard parabolic subgroup PI con-

taining B and a standard Levi subgroup LI containing T. If UI denotes the

unipotent radical of PI , the parabolic subgroup can be written as PI = LIUI .
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Let U (resp. U−) be the unipotent radical of B (resp. the opposite Borel sub-

group B−). Each root α defines a one-parameter subgroup Uα, and we will

denote by uα : F −→ Uα an isomorphism of algebraic group. In order to sim-

plify the calculations, we shall choose these isomorphisms so that uα(λ) ṡα =

u−α(λ−1)α∨(λ)uα(−λ−1). Note that the groups Uα might not be F-stable in gen-

eral even though the groups U and U− are.

Finally, we denote by B+
W (resp BW ) the Artin-Tits monoid (resp. Artin-Tits

group) of W , and by S = {sα |α ∈ ∆} its generating set. The reduced elements of

B+
W form a set W which is in bijection with W via the canonical projection BW։

W . We shall also consider the semi-direct product BW ⋊ 〈F〉 where F ·b= Fb ·F.

Let I be a subset of S and denote by B+
I

the submonoid of B+
W generated by

I. Following [9], we will denote by I
b

−→FI any pair (I,b) with b ∈ B+
W satisfying

the following properties:

• any left divisor of b in B+
I

is trivial;

• bFI= I, that is every s ∈ I satisfies b−1sb ∈ FI.

Digne and Michel have constructed in [9] a parabolic Deligne-Lusztig variety
X(I,bF) associated to any such pair. Note that when b = w ∈ W and if w de-

notes its image by the canonical projection BW։W , the previous conditions are

equivalent to w being I-reduced and wF I = I. In that case, the variety X(I,wF)

can be written

X(I,wF)=
{
g ∈G

∣∣ g−1 F g ∈PI w FPI
}/

PI .

As in the case of tori, we can construct a Galois covering of X(I,wF). It is well-

defined up to a choice of a representative n of w in NG(T):

X̃(I, nF)=
{
g ∈G

∣∣ g−1 F g ∈UI n FUI
}/

UI .

The natural projection G/UI −→G/PI makes X̃(I, nF) a LnF
I -torsor over X(I,wF).

By using an F-stable Tits homomorphism t : BW −→ NG(T) extending w ∈W 7−→

ẇ, Digne and Michel have generalised in [9] this construction to any element

I
b

−→FI. The corresponding variety will be denoted by X̃(I,bF). It is a Lt(b)F
I -

torsor over X(I,bF). When b=w ∈W we shall simply denote t(w) by ẇ.

Remark 1.1. When I is empty, we obtain the usual Deligne-Lusztig varieties

X(bF) and X̃(bF) associated to any element b of the Braid monoid (as defined in

[3] or [1]).

2 Decomposing the quotient of X(I,wF)

Let (I,w) be a pair consisting of an element w of W and a subset I of S such

that w is I-reduced and wF I = I. Let J be another subset of S. If J is F-stable,

then so is the corresponding standard parabolic subgroup PJ and its unipotent

radical UJ . In this section we are interested in describing the quotient of the

parabolic Deligne-Lusztig variety
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X(I,wF) =
{
g ∈G | g−1 F g ∈PIw FPI

}/
PI

by the finite unipotent group UJ . Our main goal is to express this quotient (or at

least its cohomology) in terms of "smaller parabolic varieties" associated to the

Levi subgroup LJ .

Throughout this paper, Λ will be any extension of the ring Zℓ of ℓ-adic inte-

gers. We shall always assume that ℓ is different from p, so that by cohomology

over Λ we mean the extension of the étale cohomology of quasi-projective vari-

eties with coefficients in Zℓ. The properties of RΓc(−,Λ) that we will use are

either classical or can be found in [14].

2.1 A general method

Recall that the partial flag variety G/PI admits a decomposition into PJ -

orbits G/PI =
∐

PJ xPI where x runs over any set of representatives of WJ\W /WI.

The restriction of this decomposition to X(I,wF) can be written as

X(I,wF) =
∐

x∈[WJ\W/WI ]

{
pxPI ∈PJ xPI /PI

∣∣ p−1 F p ∈ x(PI w FPI)
F x−1

}
. (2.1)

We will denote by Xx = X(I,wF)∩PJ xPI a piece of this decomposition. It is a

locally closed PJ-subvariety of X(I,wF). Now, each of these pieces can be lifted

up to PJ . More precisely, if we define the variety

Zx =
{
p ∈PJ

∣∣ p−1 F p ∈ x(PIw FPI)
F x−1

}

then the canonical projection G−→G/PI induces a fibration Zx −→Xx with fiber

isomorphic to PJ∩
xPI . Now if we assume that x is J-reduced-I, the intersection

PJ ∩ xPI can be decomposed as PJ ∩ xPI = (LJ ∩ xPI) · (UJ ∩ xU). Furthermore,

LJ ∩ xPI is a standard parabolic subgroup of LJ (it contains LJ ∩B) and hence

it can be written LJ ∩PKx with Kx = J∩ x
ΦI . The cohomology of Xx is thus given

by

RΓc(Xx,Λ)≃RΓc(Zx/LJ ∩PKx ,Λ)[2dimUJ ∩
xU]. (2.2)

The advantage of this description is that the quotient of the variety Zx by UJ is

easier to compute. If we decompose p ∈ PJ as p = ul ∈ UJLJ then the quotient

variety can be written (see for example [11, Proposition 1.3])

UJ\Zx =
{
( p̄, l)∈

[
(xPIw FPI

F x−1)∩PJ
]
×LJ

∣∣πJ ( p̄)= l−1 F l
}

where πJ : PJ −→LJ is the canonical projection.

Our aim is to relate this variety to "smaller" parabolic Deligne-Lusztig vari-

eties. For that purpose, we need to identify the double cosets in which l−1F l lies,

which amounts to decomposing the intersection (xPIw FPI
F x−1)∩PJ as well as

its image under πJ . Let v ∈WJ be a Kx-reduced-F Kx element. We can decompose

the double coset PKx v FPKx as follows:

PKx v FPKx = (LJ ∩PKx )UJv (LJ ∩ FPKx ).
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Since LJ∩PKx =LJ∩
xPI is a subgroup of xPI , the intersection (xPIw FPI

F x−1)∩

(PKx v FPKx ) is non-empty if and only if (xPIw FPI
F x−1v−1)∩UJ is. In this case,

the projection πJ : PJ −→LJ induces a fibration (xPI w FPI
F x−1)∩(PKx v FPKx )−→

(LJ ∩PKx )v (LJ ∩
FPKx ) with fiber isomorphic to (xPIw FPI

F x−1v−1)∩UJ . If we

define Zv
x to be the variety

Zv
x =

{
( p̄, l)∈

[
(xPI w FPI

F x−1)∩ (PKx v FPKx )
]
×LJ

∣∣πJ( p̄)= l−1 F l
}

then we obtain a decomposition of UJ\Zx into locally closed subvarieties together

with LJ-equivariant maps

Zv
x −→

{
l ∈LJ | l

−1 F l ∈LJ ∩PKx v F (LJ ∩PKx )
}

(2.3)

with fibers isomorphic to (xPIw FPI
F x−1v−1)∩UJ .

Remark 2.4. In the case where vF Kx = Kx, the quotient by LJ ∩PKx of the va-

riety on the right-hand side of 2.3 can be identified with the parabolic Deligne-

Lusztig variety associated to Kx
v

−→F Kx. We shall, by convenient abuse of nota-

tion, denote it by XLJ (Kx,vF) even when vF does not normalise Kx.

Finally, we set Zv
x = Zv

x/LJ∩PKx . The right action of UJ∩
xU on Zx induces an

action by F-conjugation on Zv
x and let Xv

x = Zv
x/UJ ∩ xUI be the quotient (equiva-

lently, it is the image of Zv
x by the morphism UJ\Zx։UJ\Xx). At this point we

have obtained

• A decomposition of UJ\X(I,wF) into some locally closed LJ-varieties Xv
x.

• A quasi-isomorphism RΓc(X
v
x,Λ) ≃ RΓc(Z

v
x,Λ)[2dimUJ ∩ xU] (obtained as

in 2.2).

• A L I-equivariant morphism Zv
x −→ XLJ (Kx,vF) with fiber isomorphic to

(xPI w FPI
F x−1v−1)∩UJ .

Therefore, if we want to express the cohomology of UJ\X(I,wF) in terms of the

different varieties XLJ (Kx,vF) that can appear we need to refine the description

of the latter morphism. This will be done in Section 2.3 after discussing the case

of parabolic varieties associated to elements of the Braid monoid.

Remark 2.5. When vF Kx = Kx, we can actually be more precise: l−1 F l can be

written uniquely as l1v̇ F l2 with l1 ∈ (LJ ∩UKx )∩ vF (LJ ∩U−
Kx

) and l2 ∈LJ ∩PKx .

Then for z ∈ (xPIw FPI
F x−1v−1)∩UJ we have (l1zv̇F l2, l) ∈ Zv

x and all the ele-

ments are obtained that way. In other words, we have the following isomorphism

of varieties

Zv
x ≃

[
(xPI w FPI

F x−1v−1)∩UJ
]
×

{
l ∈LJ | l−1 F l ∈LJ ∩PKx v F (LJ ∩PKx )

}
.

Through this isomorphism the group LJ (resp. LJ ∩PKx ) acts on l ∈ LJ by left

(resp. right) multiplication. However, it is more difficult to describe the action

of LJ ∩PKx on (xPIw FPI
F x−1v−1)∩UJ . In particular, Zv

x is in general not iso-

morphic to
[
(xPIw FPI

F x−1v−1)∩UJ
]
×XLJ (Kx,vF). We shall nevertheless give

many examples where the cohomology of these two varieties coincide.
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2.2 Elements of the Braid monoid

By [9, Section 6] any element I
b

−→FI can be decomposed as I= I1
w1
−→ I2

w2
−→···

wr
−→Ir+1 = FI where wi ∈ W. Using this property one can easily generalize the

previous constructions to X(I,bF): to each tuple x = (x1, . . . , xr) with xi a J-

reduced-I i element of W one can associate varieties Xx and Zx such that

Zx =

{
(p1, . . . , pr) ∈ (PJ )r

∣∣∣∣∣
p−1

i pi+1 ∈ xiPI i wi PI i+1
x−1

i+1

p−1
r

F p1 ∈ xrPIr wr
FPI1

F x−1
1

}

and RΓc(Xx,Λ) ≃ RΓc
(
Zx

/∏
LJ ∩PKxi

,Λ
)[

2
∑

dimUJ ∩ xiU
]

with Kxi = J∩ xiΦI i .

By looking at the intersections of xiPI i wiPI i+1
x−1

i+1
with double cosets of the

form PKxi
viPKxi+1

one can decompose UJ\Zx into locally closed subvarieties Zv
x

together with LJ-equivariant maps

Zv
x −→

{
(l1, . . . , lr) ∈ (LJ)r

∣∣∣∣∣
l−1

i l i+1 ∈
(
LJ ∩PKxi

)
vi

(
LJ ∩PKxi+1

)

l−1
r

F l1 ∈
(
LJ ∩PKxr

)
vr

F
(
LJ ∩PKx1

)
}

(2.6)

with fibers isomorphic to

UJ ∩
(
xrPIr wr

FPI1
F x−1

1 v−1
r

)
×

r−1∏

i=1

UJ ∩
(
xiPI i wiPI i+1

x−1
i+1v−1

i

)
.

In the case where vi Kxi+1
= Kxi and vrF Kx1

= Kxr , the quotient by
∏

LJ ∩PKxi
of the variety on the right-hand side of 2.6 can be identified with the parabolic

Deligne-Lusztig variety XLJ (Kx1
,v1 · · ·vrF).

2.3 A further decomposition

We now study the intersection (xPIw FPI
F x−1v−1)∩UJ in order to obtain

information on the morphism Zv
x −→ XLJ (Kx,vF) defined at the end of Section

2.1. This will be achieved using the Curtis-Deodhar decomposition.

Let x,w,w′ be elements of W , and fix a reduced expression w = s1 · · · sr of w.

Recall that a subexpression of w (with respect to the decomposition w = s1 · · · sr)

is an element of Γ = {1, s1}× ·· · × {1, sr}. Such a subexpression γ = (γ1, . . . ,γr) is

said to be x-distinguished if γi = si whenever xγ1 · · ·γi−1si > xγ1 · · ·γi−1. The

main result in [7] and [5] gives a decomposition of the double Schubert cell

BwB∩ (B)x w′B ⊂ G/B in terms of certain x-distinguished subexpressions of w,

as well as an explicit parametrisation of each piece (see [12, Section 2.2] for more

details).

Theorem 2.7 (Deodhar, Curtis). Let w,w′, x be elements of the Weyl group and
w = s1 · · · sr be a reduced expression of w. There exists a decomposition of BwB∩

(B)x w′B into locally closed subvarieties
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BwB∩ (B)x w′B =
∐

γ∈Γw′

Ωγw′B

where γ runs over the set Γw′ of subexpression of w whose product is w′. Further-
more, the decomposition has the following properties:

(i) Each cell Ωγw′B is stable by multiplication by U∩Ux;

(ii) Ωγ ⊂Ux and the restriction of the map Bx −→ (B)xw′B/B to Ωγ is injective;

(iii) Ωγ is non-empty if and only if γ is x-distinguished;

(iv) If Ωγ is non-empty, then it is isomorphic to Anγ × (Gm)mγ where

nγ = #{i = 1, . . . , r |xγ1 · · ·γi−1si > xγ1 · · ·γi−1}

and mγ = #{i = 1, . . ., r |γi = 1}.

Remark 2.8. For convenience, we will always denote by Gm the spectrum of the

ring F[t, t−1] although we will not necessarily use its group structure.

In order to use this result, we first write the fiber of 2.3 as

(xPI w FPI
F x−1v−1)∩UJ = (xBWIwBF x−1v−1)∩UJ .

Let y ∈ WI , and let γ be a x-distinguished subexpression of yw whose product

is w′ = x−1v F v. Then the map (z, z′) ∈ Ωγ ×Ux ∩w′

U 7−→ zz′w′ ∈ BwB∩ (U)xw′

is well-defined and it is injective by Theorem 2.7.(ii). By taking the union over

such subexpressions, we obtain the following decomposition

U∩ xBywB(v F x)−1 =
⊔

γ∈Γx−1vF x

(x
Ωγ

)
·
(
U∩

v F xU
)
.

Note that we do not need to fix a reduced expression of y: indeed, since x is

reduced-I, the subexpression γ will start with any reduced expression of y.

Furthermore, by Theorem 2.7.(i), each coset Ωγx−1v F xB is stable by left-

multiplication by U∩Ux, and therefore all the varieties occurring in the previous

decomposition are stable by the left action of xU∩U. Since x is J-reduced, they

are in particular stable by the action of LJ ∩U. Taking the image by the projec-

tion ̟J : U−→UJ associated to the decomposition U= (U∩LJ)UJ we obtain

UJ ∩ xBywB(v F x)−1
=

⊔

γ∈Γx−1vF x

̟J
(x
Ωγ · (U∩

v F xU)
)
=

⊔

γ∈Γx−1vF x

Υγ. (2.9)

In many interesting examples, the intersection (xPIw FPI
F x−1v−1)∩UJ will al-

ways consist of at most one cell Υγ, which will be isomorphic to (Gm)r ×As for

some integers r, s. Note that in this case, the cell is automatically stable by the

action of (LJ ∩PKx )∩ vF (LJ ∩PKx ) by conjugation. If in addition one can find

an equivariant embedding Υγ ⊂Ar+s, then the cohomology of UJ\Xx can be ob-

tained by shifts of the cohomology of XLJ (Kx,vF). We shall not make this claim

more precise as we will encounter only the cases where r = 0 or 1.
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Remark 2.10. The decomposition 2.9 gives a combinatorial test for the emp-

tyness of a piece Xx: it is non-empty if and only if there exist y ∈ WI and an

x-distinguished subexpression γ of yw such that the product of the elements of

γ lies in x−1WJ
F x.

2.4 Examples

In this section we give examples for which the previous method is effective.

Some of them will nevertherless suggest that one should rather work with the

variety X̃(I, ẇF) instead of X(I,wF).

2.4.1. Fibers are affine spaces. Let J be an F-stable subset of S. Assume that

there exists a J-reduced-I element x such that xw F x−1 ∈ WJ and let v be the

corresponding WKx -reduced element. Then we have UJ\Zx = Zv
x and the map

Zv
x։XLJ (Kx,vF)

has affine fibers. In particular, the cohomology of the varieties UJ\Xx and

XLJ (Kx,vF) differ only by a shift.

Let v′ ∈WJ . We start by showing that the intersection xPI w FPI
F x−1 ∩UJ v′

is empty if v′ and v are not in the same WKx-coset of WJ . Since wF normalises

I, the element xw F x−1F normalises WKx and so does vF. Thus we can write

xPIw FPI
F x−1 ∩UJv′ = xBw FWIB

F x−1 ∩UJv′ = (xB)v F x FWIB
F x−1 ∩UJ v′.

By multiplying by F xB, we observe that if this set is non-empty, then one of the

following double Bruhat cells

(xB)v F x FWIB∩Bv′ F xB

is also non-empty. By Theorem 2.7, this means that there exists an x−1-distin-

guished subexpression γ of v′ F x such that the product of the elements of γ lies in

the coset v F x FWI . Since x−1 is reduced-J, this subexpression has to start with

a reduced decomposition of v′. The product of its elements is therefore of the

form v′ F x′ with x′ ≤ x for the Bruhat order. But then v′ F x′ ∈ v F x FWI so that x′

is in the double coset WJ xWI . This forces x = x′ since x is the minimal element

of this coset. Now, since WKx =WJ ∩ (WI)
x, the condition v′ F x ∈ v F x FWI implies

v′ ∈ v FWKx which, with vF-normalising WKx is equivalent to v′ ∈WKx v.

Now, if we assume that v′ is Kx-reduced, we must have v′ = v. In this

case, the intersection xPI w FPI
F x−1 ∩UJv is just xBx−1v F xBF x−1 ∩UJv. The

Curtis-Deodhar cell Ωγ associated to the unique x-distinguished subexpression

of x−1v F x giving x−1v F x is contained in U∩Ux. Since the product x
Ωγ ·(U∩v F xU)

is stable by left multiplication by U∩ xU, we deduce that

xBx−1v F xBF x−1v−1 ∩U= (U∩ xU) · (U∩ v F xU).

Finally, we can write U∩ v F xU = (U∩LJ ∩ v F xU) · (UJ ∩ v F xU) and use the fact

that U∩LJ ⊂U∩ xU to obtain

xPIw FPI
F x−1v−1 ∩UJ = (UJ ∩ xU) · (UJ ∩ v F xU).
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This proves that the fibers of UJ\Zx / (LJ ∩PKx )։XLJ (Kx,vF) are affine spaces

of same dimension.

Remark 2.11. Note that the previous statement remains true if we replace F x
by x′ with ℓ(x′)= ℓ(x). More precisely, if Iw = I ′ and xwx′−1 = v ∈WJ is such that

(Kx)v = Kx′ then xPIwPI′ x′−1v′−1 ∩UJ is empty unless v′ and v are in the same

WKx-coset and in that case

xPI wPI′ x′−1v−1 ∩UJ = (UJ ∩ xU) · (UJ ∩ vx′U).

The condition ℓ(x) = ℓ(x′) is essential, as several WKx-cosets of WJ might be in-

volved otherwise.

2.4.2. Coxeter elements for split groups. Let {t1, . . . , tn} be the set of simple

reflections associated to the basis ∆ of the root system. Let w = t1 · · · tn be a

Coxeter element. We claim that all the pieces of X(w) but one are empty: by

Remark 2.10 applied to J = ∅, the quotient U\Xx is non-empty if and only if

there exists an x-distinguished subexpression of w whose product is trivial. But

the only subexpression of w whose product is trivial is (1,1, . . .,1), and it is x-

distinguished for x= w0 only.

Now let J be a subset of S and let x = wJw0 be the element of minimal length

in WJw0. Let v ∈WJ be such that there exists an x-distinguished subexpression

of w whose product is vx ∈ (WJ)w0 . Denote by J̃ = {t j1
, . . . , t jm} the conjugate of

J by w0. Then γi = t i forces t i ∈ J̃; furthermore, since γ is x-distinguished then

γi = 1 forces t i ∉ J̃. We deduce that such a subexpression is unique and that

v = x(t j1
· · · t jm) is a Coxeter element of WJ .

For this subexpression, the cell Ωγ is the ordered product of the groups Ui =

uγ1···γi(−αi)(?) where ? = F is γi 6= 1 and ? = F× otherwise. Note that when i < jb

and t i ∉ J̃, the groups Ui and U jb commute. Indeed, a positive combination of

γ1 · · ·γi(−αi) = t j1
· · · t ja(−αi) and γ1 · · ·γ jb(−α jb) = t j1

· · · t jb−1
(αb) is never a root

since a positive combination of −αi ∈ S r J̃ and t ja+1
· · · t jb−1

(αb) ∈ Φ
+

J̃
never is.

Furthermore, U∩vxU=LJ ∩U∩vU and it is not difficult to show that this group

commutes with the groups xUi whenever t i ∉ J̃. As a consequence

Υγ = ̟J
(

x
Ω ·U∩ vxU

)
=

∏

ti∈SrJ̃

u i(F
×).

We deduce that the morphism UJ\Zx = UJ\X(w) −→ XLJ (v) has fibers isomor-

phic to (Gm)|S|−|J|. In [13], Lusztig actually constructs an isomorphism between

UJ\X(w) and XLJ (v)× (Gm)|S|−|J|, but which is not compatible with the action of

LJ . However, he proves that the cohomology groups of these two varieties are

isomorphic as LJ-modules [13, Corollary 2.10].

2.4.3. n-th roots of π for groups of type An. Assume that (G,F) is a split

group of type An. We denote by t1, . . . , tn the simple reflections of W with the

convention that there exists an isomorphism W ≃Sn+1 sending the reflection t i

to the transposition (i, i+1). Let J = {t1, . . . , tn−1} and w = t1t2 · · · tn−1tntn−1 be

a n-regular element. The J-reduced elements are of the form xi = tntn−1 . . . t i
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for i = 1, . . . , n+1. If i 6= 1, n, then xi < xi t1 < xi t1t2 < ·· · < xiw and therefore the

only xi-distinguished subexpression of w is (t1, t2, . . . , tn, tn−1). Since xi w ∉ WJ ,

we deduce from Remark 2.10 that the pieces Xxi are empty.

If i = n, then there are two xn-distinguished subexpressions of w, namely

(t1, t2, . . . , tn, tn−1) and (t1, t2, . . . , tn,1). But only one will give an element of WJ ,

since xn(t1 · · · tn) ∉WJ whereas xnw = t1t2 · · · tn−1. By the example 2.4.1, the coho-

mology of U\Xxn is then, up to shift, isomorphic to the cohomology of the Coxeter

variety XLJ (t1 · · · tn−1).

If i = 1 then x1 = wJw0. In that case there are many distinguished subex-

pressions of w. However, only one has a product in (WJ)x = W{t2,...,tn}. Indeed,

that condition forces γ1 to be 1 and therefore γ = (1, t2, . . . , tn, tn−1) is the only

x1-distinguished subexpression of w whose product lies in (WJ)x. For that subex-

pression, the Curtis-Deodhar cell x(Ωγ) is the product of uα1+···+αn(Gm) with some

affine subspace of LJ ∩U. Since α1+·· ·+αn is the longest root, the group LJ ∩U

acts trivially on Uα1+···+αn and we obtain Υγ = uα1+···+αn(Gm)≃Gm.

As in the Coxeter case, the varieties UJ\Xx1
and XLJ (t1t2 · · · tn−2tn−1tn−2)×

Gm can be shown to have the same cohomology (see [8, Proposition 8.17]) but are

non-isomorphic as LJ-varieties. However, there is a good evidence that such an

isomorphism should hold for some Galois coverings of X and Gm. We shall make

this statement precise in the next section (see Section 3.3 for an application to

this example).

3 Lifting the decomposition to X̃(I, ẇF)

Recall that one can associate to I
b

−→FI a variety X̃(I,bF) together with a

Galois covering πb : X̃(I,bF) −→ X(I,bF) with Galois group L
t(b)F
I . Using this

map one can pullback the previous constructions. More precisely, one can define

the varieties X̃x = π−1
b

(Xx) in order to obtain a partition of X̃(I,bF) into locally

closed PJ ×Lt(b)F
I -subvarieties. Furthermore, we can lift the definition of Zx by

considering the following cartesian diagram:

Z̃x Zx

X̃x Xx

/Lt(b)F
I

/Lt(b)F
I

(3.1)

For example, when b = w ∈ W, we can identify PI /UI with LI to construct Z̃x

explicitly by

Z̃x =
{
(p, m) ∈PJ × xLI

∣∣ (pm)−1 F (pm) ∈ ẋ
(
UIẇ FUI

)
F ẋ−1

}
.

where the action of LJ ∩
xPI is given by (p, m) · l = (pl, l−1m) with the convention

that LJ∩
xUI acts trivially on m. With this description, the map Z̃x −→ X̃x is then

given by (p, m) 7−→ pmẋUI . Unlike the case of Xx, it is unclear whether there



3 LIFTING THE DECOMPOSITION TO X̃(I,ẆF) 12

always exists a precise relation between quotients of X̃x and smaller parabolic

Deligne-Lusztig varieties. We shall therefore restrict ourselves to the following

particular cases:

Case 1. If v = xwF x−1 lies in the parabolic subgroup WJ then, as in the example

2.4.1, the cohomology of UJ\X̃x is related to the cohomology of X̃LJ (Kx, v̇F).

In this situation Lv̇F
Kx

≃ (LI ∩Lx
J)ẇF is a split Levi subgroup of LẇF

I so that

one can modify X̃LJ (Kx, v̇F) in order to obtain an action of LẇF
I by Harish-

Chandra restriction.

Case 2. If w = sw′ and v = xw′F x−1 lies in WJ , one can relate the varieties

UJ\X̃x and X̃LJ (Kx, v̇F) (under some extra conditions on s and x). The

presence of s is reflected by a Galois covering of Gm which explains the

geometry of the fiber in the examples 2.4.2 and 2.4.3. This covering car-

ries actions of LwF
I and Lw′F

I giving rise to a natural isomorphism LwF
I /N ≃

Lẇ′F
I /N ′ as in [1] in the case of tori.

It turns out that this two rather specific cases are sufficient to study a large

number of interesting Deligne-Lusztig varieties, namely the ones that are asso-

ciated in [3] and [9] to principal Φd-blocks when 2d is strictly bigger than the

Coxeter number. We shall give some examples in the Appendix for exceptional

groups. The case of classical groups will be treated in a subsequent paper.

3.1 Case 1 - Fibers are affine spaces

We start under the assumptions of the example 2.4.1. We assume that x and

w satisfy xw F x−1 ∈WJ . For simplicity, we shall also assume that this element is

WKx-reduced, as it will always be the case in the examples.

Proposition 3.2. Assume that v = xw F x−1 is a WKx -reduced element of WJ . Let
e = dim(Ux

J ∩wU∩U−). Then there exists a group isomorphism LẇF
I ≃ (xLI)

v̇F

such that we have the following isomorphism in Db(ΛLJ × (LẇF
I ⋊ 〈F〉)-mod):

RΓc
(
UJ\X̃x,Λ

)
[2e](−e) ≃ RΓc

(
X̃LJ (Kx, v̇F),Λ

) L
⊗
ΛPJ∩(xLI )v̇F ΛLẇF

I .

Proof. Since v = xw F x−1, one can use Lang’s Theorem to find an element n ∈

NG(T) such that v̇ = nẇ F n−1. Then the conjugation by n induces an isomor-

phism LẇF
I ≃ (xLI)

v̇F . Moreover, the map (p, m) ∈ Z̃x 7−→ (p, mẋn−1) induces an

isomorphism

Z̃x ≃
{
(p, m) ∈PJ × xLI

∣∣ (pm)−1 F (pm) ∈ n
(
UIẇ FUI

)
F n−1

}

so that we can work with n instead of ẋ. We shall relate the cohomology of this

variety to the cohomology of X̃LJ (K , v̇F). For that purpose, we shall construct a

morphism Ψ : Z̃x −→ X̃LJ (K , v̇F)×PJ∩(xLI )v̇F LẇF
I which will factor through Z̃x −→

UJ\Z̃x/LJ ∩ xPI and then study its fibers.
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Let (p, m) ∈ Z̃x. Since p−1 F p lies in xPI w FPI
F x−1 one can proceed as in the

example 2.4.1 to show that it also lies in the double coset PKx v FPKx . If we write

p = ul ∈UJLJ , we deduce that l−1 F l ∈ (LJ ∩ xPI )v F(LJ ∩ xPI). Therefore, there

exists l′ ∈ LK = LJ ∩ xLI , unique up to multiplication on the right by Lv̇F
K such

that (ll′)−1 F (ll′) ∈ (LJ ∩ xUI) v̇F (LJ ∩ xUI ). As a consequence, any element of

Z̃x/LJ ∩ xPI can be written [p; m] where p = ul is such that l yields an element

of X̃LI (Kx, v̇F). For such a representative, we have

p−1 F p = l−1
(u−1 F u) (l−1 F l) ∈ (LJ ∩ xUI) ·UJ v̇ F (LJ ∩ xUI).

We can actually be more precise on the contribution of UJ in this decomposition.

Indeed, we have seen in the example 2.4.1 that xPIw FPI
F x−1v−1 ∩UJ = (UJ ∩

xU) · (UJ ∩ v F xU) and hence

p−1 F p ∈ (LJ ∩ xUI) · (UJ ∩ xU) · (UJ ∩ v F xU) v̇F (LJ ∩ xUI).

Now, the condition (p, m) ∈ Z̃x can be written p−1 F p ∈ m v̇F m−1(xUI) v̇F (xUI) and

we deduce that

m v̇F m−1 ∈ xUI · (UJ ∩ xU) · (UJ ∩ v F xU) · v F xFUI .

We want to show that m v̇F m−1 ∈ PJ . For that purpose, we can decompose the

intersection UJ∩
v F xU into

(
UJ∩

v F xF (LI∩U)
)
·(UJ∩

v F xFUI) and we observe that

UJ ∩ v F xF (LI ∩U) ⊂ xU. Indeed, x−1vF(x) = w and by assumption wF stablizes

LI ∩U. We deduce that

m v̇F m−1 ∈ xUI · (UJ ∩ xU) · v F xFUI .

Note that xUI · (UJ ∩ xU) is contained in xPI . In particular, the contribution

of v F xFUI in the decomposition of m v̇F m−1 should also lie in xPI . Since wF
normalises LI , the intersection v F xFUI ∩

xPI is contained in xUI . Finally, since

LI normalises UI we deduce that m v̇F m−1 ∈ UJ ∩ xLI .

Therefore there exists u′ ∈ UJ ∩ xLI , unique up to multiplication by UJ ∩

(xLI)
v̇F on the right, such that u′−1m ∈ (xLI)

v̇F . To summarize, we have shown

that to any pair (p, m) ∈ Z̃x one can associate a pair (p′, m′) such that

• (p, m) and (p′, m′) are in the same PJ ∩ xLI-orbit, that is there exists q ∈

PJ ∩ xLI such that p′ = pq and m′ = q−1 p;

• the image of p′ by the composition PJ −→ PJ /UJ ≃ LJ −→ LJ /(LJ ∩ xUI )

lies in X̃LJ (K , v̇F);

• m′ ∈ xLI is invariant by v̇F.

Moreover, if (p′′, m′′) is any other pair satisfying the same conditions, then there

exists q′ ∈ PJ ∩ (xLI)
v̇F such that (p′′, m′′) = (p′q′, q′−1m′) which means that

(p′, m′) is well defined in PJ ×PJ∩(xLI )v̇F (xLJ)v̇F . Let us define now the morphism

Ψ by

Ψ : (p, m) ∈ Z̃x 7−→
[
πJ(p′) (LJ ∩ xUI ) ; m′

]
∈ X̃(K , v̇F)×PJ∩(xLI )v̇F (xLJ)v̇F

where the action of PJ ∩ (xLI)
v̇F on X̃LJ (Kx, v̇F) is just the inflation of the action

of Lv̇F
Kx

= LJ ∩ (xLI)
v̇F . It is clearly surjective and equivariant for the actions of
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PJ on the left and (xLI)
v̇F on the right. Furthermore, if (p1, m1) and (p2, m2) are

in the same orbit under LJ∩
xPI , then (p′

1, m′
1) and (p′

2, m′
2) are in the same orbit

under PJ ∩ xPI . Let q ∈PJ ∩ xPI be such that (p′
2, m′

2) = (p′
1q, q−1m′

1) and write

q = ul ∈ (PJ ∩ xUI ) · (PJ ∩ xLI). Then l = m′
1m′

2
−1

∈ (xLI)
v̇F so that Ψ(p1, m1) =

Ψ(p2, m2). In other words, Ψ induces a morphism

Z̃x /LJ ∩ xPI −→ X̃LJ (K , v̇F)×PJ∩(xLI )v̇F (xLJ)v̇F

which, in turn, yields a surjective equivariant morphism

UJ\Z̃x /LJ ∩ xPI −→ X̃LJ (K , v̇F)×PJ∩(xLI )v̇F (xLJ)v̇F .

To conclude, it remains to study the fibers of this morphism. Since (xLJ)v̇F

acts freely on both varieties, we can rather look at the fibers of the map induced

on the quotient varieties. Using the diagram 3.1, we can check that the latter

coincides with the map Zv
x = UJ\Zx /LJ ∩ xPI −→ XLJ (Kx,vF) which has affine

fibers of dimension r+dimUJ ∩ xU (see Example 2.4.1).

3.2 Case 2 - Minimal degenerations

In this section we address the problem of computing the cohomology of the

piece X̃x of X̃(I, ẇF) when xw F x−1 is close to be an element of WJ . Namely, we

shall consider the following situation: w = sw′ > w′ where s ∈ S and v = xw F x−1 ∈

WJ . Under some assumption on s and w′ we will prove that the cohomology of

UJ\Xx and Gm ×XLJ (Kx,vF) coincide. As we have seen in the examples, these

two varieties are non-isomorphic in general. However, at the level of the vari-

eties X̃ we shall construct a Galois covering G̃m −→Gm and a quasi-vector bundle

UJ\X̃x  X̃(Kx, v̇F)×PJ∩(xLI )v̇F G̃m

such that G̃m/LẇF
I ≃Gm. As a byproduct, we will relate the cohomology of UJ\X̃x

and Gm ×X(Kx, v̇F) with coefficients in any unipotent local system.

Throughout this section, we will assume that [G,G] is simply connected. This

is not a strong assumption since it has no effect on the unipotent part of the

cohomology of a Deligne-Lusztig variety (see for example [1, Section 5.3]).

3.2.1. Galois coverings of tori. Let I
b

−→FI, decomposed as I = I1
w1
−→I2

w2
−→···

wr
−→Ir+1 =

FI. Let us consider an element c ∈ B+ obtained by minimal degenera-

tions of the w′
is: we assume that c= z1 · · ·zr where zi = γiwi with γi ∈ S∪{1} and

ℓ(γiwi) ≤ ℓ(w). We will also assume that each γi commutes with I i so that cF

normalises I. Following [1, Section 4], we set αb,c,i = α if γi = sα or αb,c,i = 0 if

γi = 1 and we define the following algebraic variety

SI,b,c =

{
(l1, . . . , lr)∈LI1

×·· ·×LIr

∣∣∣∣∣
l−1

i

(
ẇi l i+1

)
∈ Imα∨

b,c,i if 1≤ i ≤ r−1

l−1
r

(
ẇrF l1

)
∈ Imα∨

b,c,r

}
·

Note that the assumption on γi ensures that the torus Imα∨
b,c,i is central in LI i ,

and therefore SI,b,c is an algebraic group.
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Recall that L
t(c)F
I can be identified with L′cF ′

where L = LI1
× ·· · ×LIr and

cF ′ : (l1, · · · , lr) 7−→
(

ż1 l2, . . . , żr−1 lr,
żrF l1

)
. The condition l−1

i

(
ẇi l i+1

)
∈ Imα∨

b,c,i is

equivalent to l−1
i

(
żi l i+1

)
∈ Imα∨

b,c,i so that we can replace wi by zi in the defini-

tion of SI,b,c. In particular, the variety SI,b,c defines two Galois coverings of the

torus
∏

Imα∨
b,c,i, namely πb : l 7−→ l−1 bF ′

l and πc : l 7−→
(
cF ′

l
)
l−1, with respective

Galois groups Lt(b)F
I and Lt(c)F

I . We will denote by d = ℓ(b)−ℓ(c) the dimension of

this torus. Note that the induced action of Lt(b)F
I and Lt(c)F

I on SI,b,c is explicitely

given by

(m, m′) · (l1, . . . , lr)=
(
ml1m′−1, (mẇ1) l2 (m′−1)ż1 , . . . , (mẇ1···ẇr−1) lr (m′−1)ż1··· żr−1

)

for m ∈L
t(b)F
I and m′ ∈L

t(c)F
I .

Let S◦
I,b,c

be the identity component of SI,b,c. Since S∅,b,c =Tr∩SI,b,c is an d-

dimensional closed subvariety of SI,b,c (it is also a Galois covering of
∏

Imα∨
b,c,i)

it must contain the identity component S◦
I,b,c

. This forces the stabilizer N (resp.

N ′) of S◦
I,b,c

in L
t(b)F
I (resp. L

t(c)F
I ) to be contained in T. In particular, we can

readily extend the results in [1, Section 4.4.3] to obtain an explicit description

of N and N ′ in terms of sublattices of Y (T). For example one can check that WI

acts trivially on these lattices so that N are N ′ are normal subgroups of LI .

It turns out that the covering SI,b,c will naturally appear in the quotient of

the parabolic Deligne-Lusztig varieties that we will consider. The action of L
t(b)F
I

and Lt(c)F
I yields canonical isomorphisms Lt(b)F

I /N ≃ Lt(c)F
I /N ′ ≃ SI,b,c/S◦

I,b,c
. Let

us write SI,b,c = L
t(b)F
I ×N S◦

I,b,c
. The quotient of this variety by the action of N

(by left multiplication) is given by

N\SI,b,c ≃ L
t(b)F
I /N ×

(∏
Imα∨

b,c,i

)
≃ SI,b,c/S◦

I,b,c
×

(∏
Imα∨

b,c,i

)
.

On this quotient, Lt(b)F
I /N acts on the first factor only but the action of Lt(c)F

I

is more complicated: an element m ∈ Lt(c)F
I acts on

∏
Imα∨

b,c,i by mulitplication

by (m(γ1 m−1), (mz1)
γ2

(
(m−1)z1

)
, . . . , (mz1···zr−1)

γr
(
(m−1)z1···zr−1

))
. This action can be

extended to the connected group LI . Consequently, if the order of Lt(c)F
I is invert-

ible in Λ, then the cohomology of N\SI,b,c can be represented by a complex with

a trivial action of N ′ and we have

RΓc(N\SI,b,c,Λ) ≃ RΓc(N\SI,b,c/N ′,Λ) ≃ ΛSI,b,c/S◦
I,b,c

L
⊗ΛRΓc

(
(Gm)d,Λ

)
(3.3)

in Db(ΛL
t(b)F
I /N ×L

t(c)F
I /N ′-mod).

3.2.2. The model w = sw′. We start with the case r = 1, that is when b=w ∈W.

Let x be a J-reduced-I element of W and s ∈ S be such that w′ = sw < w and

v = xsw F x−1 ∈ WJ . Recall from the previous section that if s acts trivially on

ΦI, then there exists normal subgroups N of LẇF
I and N ′ of Lẇ′F

I together with

a canonical isomorphism LẇF
I /N ≃ Lẇ′F

I /N ′. Using these small finite groups one

can relate the cohomology of UJ\X̃x to the cohomology of X̃LJ (Kx, v̇F):
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Proposition 3.4. Let w be an I-reduced element of W such that wF I = I. Assume
that w can be decomposed into w = sw′ such that

(i) v = xw′ F x−1 ∈WJ and ℓ(v) = ℓ(w′)

(ii) s ∈ S acts trivially on ΦI

(iii) x(WI s)∩WJ = 1

Then there exists a group isomorphism LẇF
I /N ≃ Lẇ′F

I /N ′ such that, if the order

of Lẇ′F
I is invertible in Λ, we have

RΓc
(
UJ\X̃x /N,Λ

)
≃ RΓc

(
Gm × X̃LJ (Kx, v̇F),Λ

) L
⊗
Λ(PJ∩

xLI )v̇F ΛLẇ′F
I /N ′

in Db(ΛLJ × (LẇF
I /N⋊ 〈F〉)-mod).

Proof. Let v = xw′ F x−1 ∈WJ and let n be a representative of x in NG(T) such that

v̇ = nẇ′F x−1. As is the proof of Proposition 3.2, we shall work with n instead of

ẋ and identify the variety Z̃x with
{
(p, m) ∈PJ × xLI

∣∣ (pm)−1 F (pm) ∈ n
(
UIẇ FUI

)
F n−1

}
.

In order to compute the quotient by UJ , we need a precise condition on u ∈

UJ , l ∈ LJ and m for (ul, m) to belong to this variety. We start by proving the

following:

Lemma 3.5. Under the assumptions of Proposition 3.4, if (p, m) belongs to Z̃x

then mv̇F m−1 lies in PJ .

Proof of the Lemma. Since sw′ is I-reduced, s ∉ I and UI ṡ ⊂ Uαs ṡUI . Therefore

we can write

UI ṡẇ′ FUI ⊂ Uαs ṡUI ẇ′ FUI .

Note that this inclusion is actually an equality: indeed, w′−1(αs) ∈ Φ
+ since

sw′ > w′ and w′−1(αs) ∉
F
Φ

+
I otherwise −αs = sw′(w′−1(αs)) would be in Φ

+
I by

assumption on sw′.

The double coset UIẇ′ FUI can also be simplified: for a ∈W we denote N(a)=

{α ∈ Φ
+ |a−1(α) ∈ Φ

−}. If ℓ(ab) = ℓ(a)+ℓ(b) then N(ab) = N(a)∐ aN(b). Using

assumption (i) we can apply this to xw′ = v F x in order to obtain

xN(w′) = N(xw′)rN(x) =
(
N(v)∐vN(F x)

)
rN(x).

Since v ∈WJ and x is J-reduced, the sets N(v) and N(x) are disjoint. Moreover,

N(x) and N(F x) have the same number of elements and hence xN(w′) = N(v).

This proves that U∩w′

U− = (U∩ vU−)x ⊂Lx
J . Since w′F (like wF by assumption

(ii)) normalises I we deduce that

UIẇ′ FUI = (UI ∩Lx
J) ẇ′ F(

(UI ∩Lx
J) · (UI ∩ (U−

J )x) · (UI ∩Ux
J )

)
. (3.6)

Now let p ∈ PJ be an element of mnUI ṡẇ′ FUI
F (mn)−1. There exists ls ∈ Uαs ṡ

such that p ∈ mnls UI ẇ′ FUI
F (mn)−1. Since LI normalises UI , we have p ∈
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(mnls
v̇F m−1) nUI ẇ′ FUI

F n−1. Now, by 3.6, the class nUI ẇ′ FUI
F n−1 is con-

tained in P−
J ·PJ and therefore mnls

v̇F m−1 ∈ PJ ·P−
J . We claim that this forces

ls ∉ Tṡ. Otherwise x(LI sLI) =
x(LI s) would have a non-trivial intersection with

PJ ·P−
J , which is impossible by the Bruhat decomposition since x(WI s) and WJ

are disjoint.

Let Ts be the image of α∨
s . By a simple calculation in Gs = 〈Uαs ,U−αs〉, we

deduce that ls ∈U−αsTsUαs . Since s acts trivially on ΦI , the group the group LI

normalises Uαs and Ts = Imα∨
s . Moreover, xUαs ⊂ U−

J and therefore mv̇F m−1 ∈

PJ ·P−
J . If we decompose LI into (BI ,B

−
I )-orbits, we have, as x is reduced-I

x(LI)∩ (PJ ·P−
J )=

∐

v′∈WKx

xBIv′xB−
I = (xLI ∩PJ) · (xLI ∩U−

J).

We want to prove that the contribution of U−
J on mv̇F m−1 is trivial. Write

mv̇F m−1 = m′m′′ with m′ ∈ xLI ∩PJ and m′′ ∈ xLI ∩U−
J . Using 3.6 and the fact

that ls ∈ UαsTsU−αs , we see that there exists l′ ∈ (xUI ∩LJ) v̇F (xUI ∩LJ) such

that p ∈ x(U−αsTs) m′m′′Ux(αs) l′ F
(
(xUI ∩U−

J) ·(xUI ∩UJ)
)
. In this decomposition,

x(U−αsTs), m′, l′ and F (xUI∩UJ)
)

lie in PJ , whereas m′′, Ux(αs) and l′F (xUI∩UJ )

lie in U−
J . Since PJ ∩U−

J is trivial, we deduce that m′′ ∈ l′F
(
xUI ∩U−

J ) ·Ux(αs). Fi-

nally, since xUI∩LJ normalises xPI∩U−
J and both m′′ and Ux(αs) are contained in

this group, we can conclude if we can show that (xPI ∩U−
J)∩ vF (xUI ∩U−

J)⊂ xUI .

But xPI ∩
vF (xUI )= x(PI ∩

w′FUI )= x(UI ∩
w′FUI) since w′F normalises LI .

Lemma 3.7. Under the assumptions of Proposition 3.4, let m ∈ xLI and l ∈ (xUI∩

LJ) v̇F (xUI ∩LJ). For u ∈UJ , the element ul lies in mnUI ṡẇ FUI
F (mn)−1 if and

only if there exist λ ∈ F×, m1 ∈
xLI ∩UJ and u1 ∈

F (xUI ∩UJ ) such that

• m v̇F m−1 = m1 ·
nα∨

s (λ)

• u = mnu−αs(λ) ·m1 ·
l u1.

Proof of the Lemma. We have already seen in the course of the proof of the pre-

vious lemma (see 3.6) that ul can be written ul = (mnls) (m v̇F m−1) l′ u2 u1 with

ls ∈ uαs(F
×) ṡ, l′ ∈ (xUI ∩LJ) v̇ F (xUI ∩LJ), u2 ∈ F (xUI ∩U−

J ) and u1 ∈ F (xUI ∩

UJ). By a simple calculation in Gs = 〈Uαs ,U−αs〉 we can decompose ls into

ls = u−αs(λ)α∨
s (λ−1) uαs(−λ) where λ ∈ F× is uniquely determined (note that we

have chosen specific uα’s in Section 1). By the previous Lemma m v̇F m−1 = m1m2

with m1 ∈
xLI ∩UJ and m2 ∈

xLI ∩LJ . From the expression of ul we obtain

m−1
1 (mnu−αs(−λ)) u lu−1

1 = m−1
1 mn

(
α∨

s (λ−1)uαs(−λ)
)
m2l′l−1lu2.

Since LJ (resp. LI) normalises UJ (resp. Uαs and U−αs) and Ux(−αs) ⊂ UJ , the

left hand-side of this equality lies in UJ whereas the right-hand side lies in P−
J .

Therefore it must be trivial and we obtain

• u = mnu−αs(λ) m1
l u1;

• m−1
1

mn
(
α∨

s (λ−1)
)
m2l′l−1 = 1 and therefore l = l′ and m2 = m−1

1
mn

(
α∨

s (λ)
)
=

nα∨
s (λ);
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• m−1
1 mnα∨

s (λ−1)
(
uαs(−λ)

)
m2l u2 = 1 and hence u2 =

l−1m−1
1 mn

(
uαs(−λ)

)
.

Conversaly, one can readily check that if these relations are satisfied then ul ∈
mnUI ṡẇ FUI

F (mn)−1.

As a consequence of the lemmas, we can proceed as in the proof of Proposition

3.2 to show that any element of Z̃x is in the PJ ∩ xLI-orbit of a element (p, m) =

(ul, m) satisfying the following properties:

• l−1 F l ∈ (xUI ∩LJ) v̇F (xUI ∩LJ)

• m v̇F m−1 = nα∨
s (λ)

•
(
u−1 F u

)l
=

(
mnu−αs(λ)

)(
l−1 F lu1

)

for some λ ∈ F× and u1 ∈ F (xUI ∩UJ) both uniquely determined. Moreover, the

elements of this form in the class of (p, m) form a single (PJ ∩ xLI)
v̇F -orbit.

Recall from the previous section that to w and w′ one can associated an alge-

braic group SI,w,w′ above Gm defined by SI,w,w′ = {m ∈ LI |m−1 ẇF m ∈ Ts}. Using

the special representatives of Z̃x/PJ ∩ xLI mentioned above, we can define the

following map

Ψ : [p; m] ∈ Z̃x/PJ ∩ xLI 7−→
[
l (LJ ∩ xUI) ; m−1

]
∈ X̃(Kx, v̇F)×PJ∩(xLI )v̇F

nSI,w,w′

where the action of PJ ∩ (xLI)
v̇F on X̃LJ (Kx, v̇F) is just the inflation of the action

of Lv̇F
Kx

= LJ ∩ (xLI)
v̇F . It is clearly surjective and equivariant for the actions of

PJ and n(LẇF
I ). The quotient by UJ (which acts trivially on X̃LJ (Kx, v̇F)) gives

rise to a surjective LJ × n(LẇF
I )-equivariant morphism

UJ\Z̃x/PJ ∩
xLI −→ X̃(Kx, v̇F)×PJ∩(xLI )v̇F

nSI,w,w′ . (3.8)

Furthermore, any element [UJ ull′; m] in the fiber of [l (LJ ∩ xUI); m−1] is uni-

quely determined by an element l′ ∈ (xUI ∩LJ ) and u−1F u. Since the latter is

determined by u1 ∈ F (xUI ∩UJ), we deduce that the fibers are affine spaces of

dimension dim(xUI∩PJ). By comparing the dimensions, we obtain the following

isomorphism in Db(LJ-mod-n(LẇF
I )):

RΓc(UJ\X̃x,Λ) ≃ RΓc
(
X̃(Kx, v̇F),Λ

) L
⊗
ΛPJ∩(xLI )v̇F RΓc(

nSI,w,w′ ,Λ).

and we conclude using 3.3, which gives the cohomology of N\SI,w,w′ with the

action of LẇF
I /N and Lẇ′F

I /N ′.

Remark 3.9. In many cases we will use this Lemma under the assumption that

either I =∅ or x = w0wJ . This extra condition makes the previous proof much

simpler.

Remark 3.10. When [G,G] is not simply connected, the coroot α∨
s might not

be injective. In that case, the fibers of the morphism 3.8 are not necessarily

affine spaces. To obtain an analogous statement, we need to change slightly the

definition of SI,w,w′ and consider instead
{
(m,λ) ∈LI ×Gm |m−1 ẇF m=α∨

s (λ)
}
.
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3.2.3. The main result. More generally, one can combine Proposition 3.2 and

3.4 in order to obtain the following result for elements in the Braid monoid:

Theorem 3.11. Let I
b

−→FI decomposed as I = I1
w1
−→ I2

w2
−→···

wr
−→Ir+1 = FI and

c = z1 · · ·zr obtained by minimal degenrations of the wi ’s. More precisely, we
assume that zi = γiwi with zi ≤ wi and γi ∈ S∪{1}. Let x= (x1, . . . , xr) be a r-tuple
of J-reduced-I i elements of W of same length and set xr+1 =

F x1. We assume that

• if γi = 1 then vi = xiwix−1
i+1

is a Kxi -reduced element of WJ ;

• if γi ∈ S then the following properties are satisfied:

(i) v j = xi zix−1
i+1

∈WJ and ℓ(vi)= ℓ(zi)

(ii) γi acts trivially on ΦI j

(iii) xi (WI i s)∩WJ = 1.

Let us denote by

• e =
∑

dim(U
xi
J ∩ ziU∩U−);

• d = #{i = 1, . . . , r |γi ∈ S}= dimSI,b,c;

• v= v1 · · ·vr ∈B+
WJ

;

• N (resp. N ′) the stabiliser of S◦
I,b,c

in Lt(b)F
I (resp. Lt(c)F

I ).

If the order of Lt(c)F
I is invertible in Λ, then there exists a natural isomorphism

L
t(b)F
I /N ≃ L

t(c)F
I /N ′ such that the cohomology of the piece X̃x of the Deligne-

Lusztig variety X̃(I,bF) satisfies

RΓc
(
UJ\X̃x /N,Λ

)
[2e](−e) ≃ RΓc

(
(Gm)d × X̃LJ (Kx1

,vF)
) L
⊗
Λ(PJ∩

x1 LI )t(v)F ΛLt(c)F
I /N ′

in Db(ΛLJ × (Lt(b)F
I /N⋊ 〈F〉)-mod).

Sketch of proof. Recall that the piece X̃x can be lifted up to a variety Z̃x defined

as the set of 2r-tuples (p,m) = (p1, . . . , pr, m1, . . . , mr) ∈ (PJ)r × x1LI1
× ·· · × xrLIr

such that

(pimi)
−1 pi+1mi+1 ∈ ẋi

(
UI i ẇiUi+1

)
ẋ−1

i+1

and (prmr)−1 F (p1m1) ∈ ẋr
(
UIr ẇr

FUI1

)
F ẋ−1

1 .

As in the proofs of Proposition 3.2 and 3.4 (see also Remark 2.11), we can find

good representatives in the
∏

PJ∩
xiLI i-orbit of (p,m), giving rise to a morphism

Ψ : Z̃x −→ X̃LJ (Kx1
,vF)×(PJ∩

x1 LI )t(v)F SI,b,c

which will factor via the quotient of Z̃x by UJ and
∏

PJ ∩ xiLI i into a morphism

whose fibers are affine spaces. Note that one can find n1 ∈ NG(T) such that

n1t(c)F n−1
1 = t(v). The action of (x1LI)

t(v)F on SI,b,c is then given by the right

action of L
t(c)F
I =

(
(x1LI)

t(v)F
)n1 on SI,b,c. We conclude using 3.3.
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Remark 3.12. By definition, any unipotent character of G appears in the co-

homology of some Deligne-Lusztig variety. If H is a normal subgroup of G con-

tained in T, then H acts trivially on G/B and therefore any unipotent char-

acter of G is trivial on H. This applies in particular to the subgroups N and

N ′ of L
t(b)F
I and L

t(c)F
I so that they have the same unipotent characters. Now,

the group (PJ)x1 ∩LI is a parabolic subgroup of LI , stable by t(c)F, and it has

L
x1

J ∩LI = (LKx1
)x1 as a rational Levi complement. Therefore any unipotent char-

acter χ of L
t(c)F
I (or equivalently of L

t(b)F
I ) has a Harish-Chandra restriction

∗RI
Kx1

χ to L
t(v)F
Kx1

(after a suitable conjugation). With this notation, we obtain

RΓc
(
X̃x,Qℓ

)UJ
χ ≃ RΓc

(
(Gm)d × X̃LJ (Kx1

,vF),Qℓ

)
∗RI

Kx1
χ[−2r](r).

In particular, if χ is the trivial character then

RΓc
(
Xx,Qℓ

)UJ
≃ RΓc

(
(Gm)d ×XLJ (Kx1

,vF),Qℓ

)
[−2r](r)

as expected.

3.3 Examples

We conclude by showing how Proposition 3.4 can solve the problems encoun-

tered in Section 2.4. As a new application, we determine the contribution of the

principal series to the cohomology of a parabolic Deligne-Lusztig variety for a

group of type Bn. Many other cases will be studied in a subsequent paper.

3.3.1. n-th roots of π for groups of type An. Recall from 2.4.3 that for w =

t1t2 · · · tntn−1tn one could decompose the variety X(w) into two pieces Xxn and

Xx1
with xn = tn and x1 = tn · · · t1 . However, one could not direcly express the

cohomology of the latter. Since x(t1w)x−1 = t1 · · · tn−2tn−1tn−2 ∈ WJ one can now

apply Proposition 3.4 to obtain

RΓc
(
UJ\Xx1

,Qℓ

)
≃ RΓc

(
Gm ×XLJ (t1 · · · tn−2tn−1tn−2),Qℓ

)

in Db(QℓLJ ×〈F〉-mod).

3.3.2. A new example in type Bn. Let G be a group of type Bn. We denote by

t1, . . . , tn the simple reflections of W , with the convention that t2, . . . , tn generate

a parabolic subgroup of type An−1. We will restrict our attention to the principal

series of Irr G, which is parametrised by the representations of the Weyl group

W . Following [4], we will denote by [λ;µ] the unipotent character associated to

the bipartition (λ,µ) of n, with the convention that IdG = [n;−] and StG = [−;1n].

For n ≥ 2, we consider wn = tn · · · t2t1t2. It is an I-reduced element which

normalises I for I = {t1}. Then one can use the previous method to determine the

principal part of the cohomology of X(I,wn), with coefficients in the trivial local

system Qℓ or in the local system St associated to the Steinberg representation

of L
wnF
I :
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Proposition 3.13. For n ≥ 2, the contribution of the principal series to the coho-
mology of X(I,wn) with coefficients in Qℓ or St, together with the eigenvalues of
F, is given by

Hn+k
c

(
X(I,wn),Qℓ

)
pr =





qk [k−1;21n−k−1] if 1≤ k ≤ n−1

qn+1 [n;−] if k = n+2

0 otherwise

and Hn+k
c

(
X(I,wn),St

)
pr =





[−;1n] if k = 1

qk [(k−1,1);1n−k] if 2≤ k ≤ n

0 otherwise.

Proof. We proceed by induction. When n = 2, [9, Corollary 8.27] applied to

v = 1 forces H•
c(X(I,w2),Qℓ) and H•

c(X(I,w2),St) to be G × 〈F〉-submodules of

H•
c(X(w2),Qℓ). By [10, Theorem 4.3.4], the latter is multiplicity-free and hence

the theorem can be deduced from [9, Corollary 8.41].

Assume that n > 2 and let J = {t1, . . . , tn−1}. We want to compute the coho-

mology of UJ\X(I,wn). We first observe that any J-reduced-I element of W is

either xi = tn · · · t i or yi = tn · · · t2t1t2 · · · t i for i > 1. We claim that Xxi and Xy j are

empty if i 6= 2 and j 6= n. Indeed, if i > 2 then

W xi
J =W yi−1

J = 〈t1, t2, . . . , t i−2, t i−1t i t i−1, t i+1, . . . , tn〉.

If γ is an xi-distinguished subexpression of an element of WIw (that is, either

t1w or w) then the product of γ is never in W xi
J . Otherwise γ would contain

neither t i−1 nor t i which is impossible since γ is distinguished. The case of yi−1

is similar. We deduce that X(I,wn)=Xx2
∐Xyn . Let us examine each of these two

varieties:

• we have x2wnx−1
2 = tn−1 · · · t2t1 ∈ WJ and Kx2

= J ∩ x2(ΦI) = ∅. We can

therefore apply Proposition 3.2 and Remark 3.12 to obtain

RΓc(UJ\Xx2
,Qℓ) ≃ RΓc(XLJ (tn−1 · · · t2t1),Qℓ)[−1]

and RΓc(UJ\Xx2
,St) ≃ RΓc(XLJ (tn−1 · · · t2t1),Qℓ)[−1]

since the Harish-Chandra restriction of St
L

wnF
I

to TwnF is just the trivial

character.

• yn = w0wJ acts trivially on WJ and yn(tnwn)y−1
n = wn−1. We have also

K yn = J ∩ yn(ΦI) = I. The assumptions of Proposition 3.4 are clearly satis-

fied and we obtain

RΓc(UJ\Xyn ,Qℓ) ≃ RΓc(Gm ×XLJ (I,wn−1),Qℓ)

and RΓc(UJ\Xyn ,St) ≃ RΓc(Gm ×XLJ (I,wn−1),St).
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The cohomology of XLJ (tn−1 · · · t2t1) has been computed in [13]. By induction,

one can assume that the cohomology of XLJ (I,wn−1) is given by the Theorem

(since the unipotent part of the cohomology depends only on the isogeny class

of the group). We observe that a character in the principal series different from

Id or St cannot appear in both H•
c(XLJ (tn−1 · · · t2t1),Qℓ) and H•

c(XLJ (I,wn−1,Qℓ)

(resp. H•
c(XLJ (tn−1 · · · t2t1),Qℓ) and H•

c(XLJ (I,wn−1,St)). Using the long exact se-

quences given by the decomposition of UJ\X(I,wn) and [9, Corollary 8.28.(v)],

we can deduce explicitely each cohomology group of UJ\X(I,wn). To conclude,

we observe that each of these cohomology groups is the Harish-Chandra restric-

tion of the groups given in the theorem, corresponding to the characters of the

principal series in the Φ2n−2-blocks of IdG and StG . Finally, we know by [2] that

these characters actually appear in the cohomology of X(I,wn) since they already

appear in the alternating sum.

Remark 3.14. In order to deal with the series corresponding to the cuspidal

unipotent character of B2 we need extra information on the degree in which

B2,Id and B2,St can appear.
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