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Weakly directed self-avoiding walks

Axel Bachet and Mireille Bousquet-Mélou

1L aBRI, Université Bordeaux 1, 351 cours de la Libératior4@3 Talence, France
2CNRS, LaBRI, Université Bordeaux 1, 351 cours de la Libérat83405 Talence, France

Abstract. We define a new family of self-avoiding walks (SAW) on the sgulattice, calledveakly directed walks
These walks have a simple characterization in terms of tieelucible bridges that compose them. We determine
their generating function. This series has a complex sargylstructure and in particular, is not D-finite. The grbwt
constant is approximatel§.54 and is thus larger than that of all natural families of SAW raeuated so far (but
smaller than that of general SAW, which is about 2.64). We ptsve that the end-to-end distance of weakly directed
walks grows linearly. Finally, we study a diagonal variahthas model.

Résumeé Nous définissons une nouvelle famille de chemins auto##gif@CAE) sur le réseau carré, appetésmins
faiblement dirigés Ces chemins ont une caractérisation simple en termes a¢s ip@ductibles qui les composent.
Nous déterminons leur série génératrice. Cette série attuase de singularités complexe et n'est en particulier
pas D-finie. La constante de croissance est endrd, ce qui est supérieur & toutes les familles naturelles de SAW
étudiées jusgu'a présent, mais inférieur aux CAE générdart(la constante est envirahi64). Nous prouvons
également que la distance moyenne entre les extrémitésaimirtteroit linéairement. Enfin, nous étudions une
variante diagonale du modéle.

Keywords: Enumeration — Self-avoiding walks

1 Introduction

A lattice walk isself-avoidingf it never visits twice the same vertex (Fig. 1). Self-anogiwalks (SAW)
have attracted interest for decades, first in statisticgsiols, where they are considered as polymer mod-
els, and then in combinatorics and in probability theory][28owever, their properties remain poorly
understood in low dimension, despite the existence of rkeafde conjectures. See [20] for dimension 5
and above.

On two-dimensional lattices, it is strongly believed tha humber,, of n-step SAW and the average
end-to-end distancB,, of these walks satisfy

Ccn ~ap™n” and D, ~ kn” (1)

wherey = 11/32 andv = 3/4. Several independent, but so far not completely rigorouthats
predict these values, like numerical studies [12, 24], canispns with other models [6, 21], probabilistic
arguments involving SLE processes [19], enumeration of S#WWandom planar lattices [10]... The
growth constan{or connective constani is lattice-dependent, and believed to & + /2 for the
honeycomb lattice, and another bi-quadratic number (aqmately2.64) for the square lattice [16].
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Fig. 1: A self-avoiding walk on the square lattice, and a (quasijoan SAW of length 1,000,000, constructed by
Kennedy using a pivot algorithm [17].

Given the difficulty of the problem, the study rstrictedclasses of SAW is natural, and probably as
old as the interest in SAW itself. The rule of this game is teigie new classes of SAW that have both:

— a natural description (to be conceptually pleasant),

— some structure (so that the walks can be counted, and gyeirotic properties determined).

The two simplest classes of SAW on the square lattice prgtavisist ofdirectedandpartially directed
walks: a walk is directed if it involves at most two types oéss (for instance North and East), and
partially directed if it involves at most three types of stefPartially directed walks play a prominent role
in the definition of ouweakly directeavalks.) Among other solved classes, let us cite spiral SARY 3]
and prudent walks [3, 8, 7]. Each time such a new class is dpbree compares its properties to (1): have
we reached with this class a large growth constant? Is theéeedd distance of the walks sub-linear?

At the moment, the largest growth constant (alibdg) is obtained with prudent SAW. However, this
is beaten by certain classes whose description involvesalljsintegerk, like SAW confined to a strip
of heightk [1, 26], or SAW consisting oirreducible bridgesof length at mosk [15, 18]. The structure
of these walks is rather poor, which makes them little ativadrom a combinatorial viewpoint. In the
former case, they are described by a transfer matrix (tleeafizvhich increases exponentially with the
height of the strip); in the latter case, the structure imesienpler, since these walks are just arbitrary
sequencesf irreducible bridges of bounded length. In both casesyawpments on the growth constant
much rely on progresses in the computer power. Regarding@atsyic properties, almost all solved
classes of SAW exhibit a linear end-to-end distance, wighetkception of spiral walks. But there are very
few such walks [13], as their growth constant is 1.

With theweakly directed walksf this paper, we reach a growth constant of al2obit. These walks are
defined in the next section. Their generating function igiin Section 5, after some preliminary results
on partially directedridges(Sections 3 and 4). This series turns out to be much more doatgd that
the generating functions of directed and partially dirdatealks, which are rational: we prove that it has
a natural boundary in the complex plane, and in particulaoisD-finite (that is, it does not satisfy any
linear differential equation with polynomial coefficiehtslowever, we are able to derive from this series
certain asymptotic properties of weakly directed walkg their growth constant and average end-to-end
distance (which we find, unfortunately, to grow linearlylwibe length). Finally, we perform in Section 6
a similar study for a diagonal variant of weakly directedksal

Due to space constraints, most proofs are only sketchedeor @witted in this abstract. Details will
appear in the complete version of the paper.
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2 Weakly directed walks: definition

Let us denote bW, E, S andW the four square lattice steps. All walks in this paper areaabiding, so
that this precision will often be omitted. For any subSeif {N, E, S, W}, we say that a (self-avoiding)
walk is anS-walkif all its steps lie inS. We say that a SAW idirectedif it involves at most two types of
steps, angbartially directedif it involves at most three types of steps. The definition efakly directed
walks stems for the following simple observations:

(i) between two visits to any given horizontal lineN&-walk only take<sE steps,

(i) between two visits to any given horizontal lineN&EW-walk only takesE andW steps.
Conversely, a walk satisfies (i) if and only if it is eithel&-walk or, symmetrically, &E-walk. Similarly,
a walk satisfies (ii) if and only if it is either HEW-walk or, symmetrically, SEW-walk. Conditions (i)
and (i) thus respectively characterize (up to symmetig}walks andNEW-walks.

Definition 1 A walk isweakly directedf, between two visits to any given horizontal line, the wialk
partially directed (that is, avoids at least one of the stBp&, S, W).

Examples are shown in Fig. 2.

- L

Vo

Fig. 2: Two weakly directed walks. The second one is a bridge, forofédirreducible bridges. Observe that these
irreducible bridges are partially directed.

We will primarily focus on the enumeration of weakly diretteridges As we shall see, this does
not affect the growth constant. A self-avoiding walk stagtatv, and ending at,, is abridgeif all its
verticesv # v, satisfyh(vy) < h(v) < h(vy,), whereh(v), theheightof v, is its ordinate. Concatenating
two bridges always gives a bridge. Conversely, every briciyebe uniquely factored into a sequence
of irreducible bridges (bridges that cannot be written as the product ofrtat-empty bridges). This
factorization is obtained by cutting the walk above eachzuomtal line of height, + 1/2 (with n € Z)
that the walk intersects only once (Fig. 2, right). It is knothat the growth constant of bridges is the
same as for general self-avoiding walks [20]. Generallyakp®y, the fact that bridges can be freely
concatenated makes them useful objects in the study oéseifling walks [14, 15, 18, 19, 20].

The following result shows that the enumeration of weakhgctied bridges boils down to the enumer-
ation of (irreducible) partially directed bridges.
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Proposition 2 A bridge is weakly directed if and only if each of its irredoleibridges is partially directed
(that is, avoids at least one of the stéypsE, S, W).

We discuss in Section 6 a variant of weakly directed walkenahwe constrain the walk to be partially
directed between two visits to the saiagonalline (Fig. 3). The notion of bridges is adapted accord-
ingly, by defining theheightof a vertex as the sum of its coordinates. We will refer to thiedel as the
diagonal model, and to the original one as the horizontalehdithere is, however, no simple counterpart
of Proposition 2: a (diagonal) bridge whose irreduciblelges are partially directed is always weakly
directed, but the converse is not true, as can be seen in Fithuss bridges with partially directed irre-
ducible bridges form a proper subclass of weakly directédgies. We will enumerate this subclass, and
study its asymptotic properties.

Fig. 3: Two weakly directed walks in the diagonal model. The secamel is a bridge, factored into 6 irreducible
bridges. Observe that the third irreducible bridgaaspartially directed.

3 Partially directed bridges: a step-by-step approach

Let us equip the square lattié with its standard coordinate system. With each model (loot& or
diagonal) is associated a notion ledight the height of a vertex, denotedi(v), is its ordinate in the
horizontal model, while in the diagonal model, it is the suiiocoordinates. Recall that a walk, starting
atvy and ending at,,, is a bridge if all its vertices # v,, satisfyh(vy) < h(v) < h(v,). If the weaker
inequalityh(vg) < h(v) < h(v,) holds for allv, we say the walk is aseudo-bridgeNote that nonempty
bridges are obtained by adding a step of heigta a pseudo-bridge (& step in the horizontal model, a
N or E step in the diagonal model). It is thus equivalent to couitd®s or pseudo-bridges.

By Proposition 2, the enumeration of weakly directed br&lgeils down to the enumeration of (irre-
ducible) partially directed bridges. In this section and thllowing one, we address the enumeration of
these building blocks, first in a rather systematic way baseal step-by-step construction, then in a more
combinatorial way based dreaps of cycles
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Fig. 4: A NES-pseudo-bridge in the horizontal model. (b) A$W-pseudo-bridge in the diagonal model. (c) A
NES-pseudo-bridge in the diagonal model.

As partially directed walks are defined by the avoidance bidast) one step, there are four kinds
of these. Hence, in principle, we should count, for each mdeizontal and diagonal), four families
of partially directed bridges. However, in the horizontalael, there exists nBSW-bridge, and every
NEW-walk is a pseudo-bridge. The latter class of walks is vegyda count. Moreover, a symmetry
transformaNES-bridges intoNSW-bridges, so that there is really one class of bridges thaheesl to
count. In the diagonal model, we need to coE®\W-bridges (which are equivalent dSW-bridges by
a diagonal symmetry) andES-bridges (which are equivalent MEW-bridges). Finally, to avoid certain
ambiguities, we need to couBS-bridges, but this has already been done in [5].

From now on, the starting point of our walks is always at heigiThe height of a walk is then defined
to be the maximal height reached by its vertices.

3.1 NES-bridges in the horizontal model

Proposition 3 Letk > 0. In the horizontal model, the length generating functioN&S-pseudo-bridges
of heightk is

tk
- Gr(t)

whereGy (t) is the sequence of polynomials defined by

B*) ()

G.1=1, Go=1—t, andfork>0, Gr1=1—t+t*+13G —t*Gr_.

Equivalently,
vk ek ) 1—t—t%

Z DIOEE ZU Gr=T—m7" 2 3 2,27

kzoB()(t) = 1—(1—t+t2+83)v+t2v
or _

U-U
B® () = _ _
0 (1=t U —t)UF — (1 = t)U — t)U*’

where

T—t+2+83— /(1Y) (1 -2t —¢2)
2t
isaroot oftu® — (1 —t+ 12 +t3)u+t =0andU := 1/U is the other root of this polynomial.

U =
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Proof: Let 7 be the set oNES-walks that end with arE step, and in which each vertexsatisfies
0 < h(v) < k. Let7; be the subset of consisting of walks that end at heightLet T;(¢) = T; be the
length generating function of;, and define the bivariate generating function

T(t;u) =T(u) = ZTZ(t)ul

This series counts walks @f by their length and the height of their endpoint. Pseuddgdes walks of
heightk containing at least one step are obtained by adding a sequendd sefeps of appropriate length
to a walk of 7, and this gives

k
BW(t) =5 + > " Ti(t)th " = tF (1+ T(1/1)) @)
=0

(the termt* accounts for the walk formed @f consecutiveN steps.)
A step-by-step construction of the walks'bfyields the following lemma.

Lemma4 Leta = 1/u. The seried (t; u), denotedl"(u) for short, satisfies the following equation:

t2 t 1 —(t k+1 t k+1 t2_
oMt Ny = AT BT - T ),
1—tu 1—tu 1—tu 1—tu

The equation of Lemma 4 is easily solved using kkenel methodsee e.g. [2, 4, 23]). Thikeernelof
the equation is the coefficient @f(w), namely
ut? t

1—tu 1—tu

It vanishes whem = U andu = U := 1/U, whereU is defined in the lemma. Sin@&w) is a polynomial

in u, the serie§’(U) andT'(U) are well-defined. Replacingby U or U in the functional equation cancels
the left-hand side, and hence the right-hand side. One thtains two linear equations betwe€iit) and
T(1/t), which involve the serie§’. Solving them gives in particular the value ‘B6f1/t), and thus of
B (t) (thanks to (2)). This provides the second expressioB @t (t) given in the lemma. The other
results easily follow, using elementary arguments abaetli recurrence relations and rational generating
functions. -

3.2 ESW:-bridges in the diagonal model

Proposition 5 Letk > 0. In the diagonal model, the length generating functioe 8#V-pseudo-bridges
of heightk is

ﬁk
- Gi(t)’

whereG(t) is the sequence of polynomials defined by

B (1)

Go=1, Gi=1-t* andfork>1, G = (1+t)Gp —1t*(2—t*)Gr 1.
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The length generating function NES-pseudo-bridges of heightis
BV () = 2 - ) 57 ().
Finally, the length generating function BfS-pseudo-bridges of heightis

k th
BV (t) = RO

where the sequendg, () is defined by = 1, Fy = 1, and Fjy1 = Fy, — t2Fy_; for k > 0.

4 Partially directed bridges via heaps of cycles

In this section, we give alternative (and more combinatppieoofs of the results of Section 3. In partic-
ular, these proofs explain why the numerators of seriestaogipartially directed bridges of heightare
so simple ¢* ort*(2 — t?)*, depending on the model).

Letl’ = (V, E) be a directed graph. To each edge of this graph, we associaeght taken in some
commutative ring (typically, a ring of formal power serieg) cycleof I' is a path ending at its starting
point, taken up to a cyclic permutation. A pathsaf-avoidingf it does not visit the same vertex twice.
A self-avoiding cycle is called aelementary cycleTwo paths arelisjoint if their vertex sets are disjoint.
Theweightw() of a path (or cycle)r is the product of the weights of its edgescénfiguration of cycles
v ={m,...,7} is aset of pairwise disjoint elementary cycles. Bigned weighof v is

w(y) = (=) [Tw().
i=1
For two vertices andyj, denote byV; ; the generating function of paths going from fréno j:
Wi_’j = Z w(7r).

T~ ]

We assume that this sum is well-defined, which is always tise e&hen considering length generating
functions.

Proposition 6 The generating function of paths going fraro ; in the weighted digraplh' is

Ni;

Wi = el

whereG = w(v) is the signed generating function of configuration of cyciesl

N;j = Z w(n)w(y),

Y

wheren is a self-avoiding path going frorinto j and~ is a configuration of cycles disjoint from
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This result can be proved as follows: one first identif\gs; as the(z, j) coefficient of the matrixX1 —
A)~t, whereA is the adjacency matrix df. Thanks to standard linear algebra, this coefficient can be
expressed in terms of the determinan{df- A) and one of its cofactors. A simple expansion of these
as sums over permutations shows that the determin@htasd the cofactoN; ;. Proposition 6 can also

be proved without any reference to linear algebra, usingttbery ofpartially commutative monoiger
heaps of piecefl1, 25]. In this context, configurations of cycles are chtiévial heaps of cyclesThis
justifies the title of this section.

4.1 Bridges with large down steps

LetT', be the graph with verticef, . . ., k} and with the following weighted edges:
—ascendingedges of height, i — ¢ + 1, with weightA, for: =0,... .k —1;
—descendingdges of height, i — i — h, with weightD,,, fori = h, ..., kandh > 0.
Fork > 0, denote byC'®) the generating function of paths frairto & in the graph’;,. These paths may
be seen as pseudo-bridges of heightith general down steps.

Lemma 7 The generating function of pseudo-bridges of heigist

Ak

k) —
Hy’

where the generating function of the denominatijsis

~ 1-D(wA)
2 et = T ey ©

with D(v) the generating function of descending steps:

D(v) = Z Dy

h>0

Proof: With the notation of Proposition 6, the seri€§") readsN, ;/G. Since all ascending edges have
height 1, the only self-avoiding path frofnto & consists of ascending edges, and has weight As it
visits every vertex of the graph, the only configuration afleg disjoint from it is the empty configuration.
Therefore, the numeratay,  is simply A*. The elementary cycles consist of a descending step of heigh
say, h, followed byh ascending steps. The weight of this cycléigA”.

To underline the dependance of our graphkjrdenote byH; the denominatots of Proposition 6.
Consider a configuration of cycles Bf;: either the verteX is free, or it is occupied by a cycle; this gives
the following recurrence relation, valid fér> 0:

k
H, =H,_, — Z Dy AMHy .
h=0

with the initial condition/_; = 1. This is equivalent to (3). =
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4.2 Partially directed self-avoiding walks as arbitrary paths

It is not straightforward to apply Proposition 6 (or Lemmat@)the enumeration of partially directed
bridges, because of the self-avoidance condition. To wik@nt this difficulty, we will first prove that
partially directed self-avoiding walks are arbitrary patn a graph with generalized steps. We only deal
with the horizontal model, but the diagonal model can be eskld in a similar way.

Let us say that &NES-walk is properif it neither begins nor ends with & step. All NES-pseudo-
bridges are proper, whether in the horizontal or diagonalehoThe following lemma explains how to
see propeNES-walks as sequences of generalized steps.

Lemma 8 Every properNES-walk has a unique factorization intd steps and nonempty propE&S-
walks with no consecutiVe steps.

This result, combined with Lemma 7, gives an alternativepod Proposition 3.

5 Weakly directed walks: the horizontal model

We now return to the weakly directed walks defined in SectioW@ determine their generating function,
study their asymptotic number and average end-to-endndistaand finally prove that the generating
function we have obtained has infinitely many singularjtaasd hence, cannot be D-finite.

5.1 Generating function

By combining Propositions 2 and 3, it is now easy to count Wedkectedbridges

Proposition 9 In the horizontal model, the generating function of wealktgated bridges is:

1

= 2tB
L4+t — 1+tB

W(t)

whereB := Zkzo B%)(t) is the generating function MES-pseudo-bridges, given by Propositian

The generating function ajeneralweakly directed walks is a bit more involved, but the numtudrs
weakly directed walks and bridges of lengtlonly differ asymptotically by a multiplicative constant.

5.2 Asymptotic results

Proposition 10 The generating functiofl” of weakly directed bridges, given in Propositiénis mero-
morphic in the disk> = {z : |z| < v/2 — 1}. It has a unique dominant pole in this digky~ 0.3929. This
pole is simple. Consequently, the numbgrof weakly directed bridges of lengthsatisfiesw,, ~ ku™,
with p = 1/p ~ 2.5447.

Let N,, denote the number of irreducible bridges in a random weakbcted bridge of lengthh. The
mean and variance aV,, satisfy:

E(Nn> ~mn, V(Nn) N52na

wherem ~ 0.318 ands? ~ 0.7, and the random variablé@‘% converges in law to a standard normal

distribution. In particular, the average end-to-end diste, being bounded from below ByN,, ), grows
linearly withn.
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We have designed an algorithm for the random generation aklyelirected bridges, usingBoltzmann
samplerf9]. A sample output of this algorithm is shown in Figure 5nfioming the linear form of weakly
directed bridges.

Fig. 5: A random weakly directed bridge of length 1009, rotated®}.

5.3 Nature of the series

Proposition 11 The generating functio®3 of NES-pseudo-bridges, given in Propositid®) converges
around0 and has a meromorphic continuation@\ £, where€ consists of the two real intervals /2 —
1,—1]and[v/2 — 1, 1], and of the curve

1—1’2—21’3} @

Eoz{x—i—iy:xzo,gf: 122

This curve, shown in Fid3, is a natural boundary oB. That is, every point of is a singularity ofB.
The above statements hold as well for the generating fumgticof weakly directed bridges. In partic-
ular, neitherB nor W is D-finite.

Fig. 6: The curveg, and the zeroes of the polynomi@k,.

6 The diagonal model

We have defined weakly directed walks in Section 2 by reqgitirat the portion of the walk joining
two visits to the same diagonal is partially directed. Heve,study a proper subclass of these walks,
consisting of bridges formed of partially directed irreihle bridges.
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Proposition 12 The generating function of bridges formed of partially died irreducible bridges is

1
2tB1 4B, 2tBy
1+tB; 1+2tBy 1+tB

Wa (t) =

142t

where the serie®; =, ., Bfk) (t) are given in Propositiorb.
The growth constant is found to be a bit smaller than in thézbatal model (abou®.5378). The
end-to-end distance is again linear.
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