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Abstract. We define a new family of self-avoiding walks (SAW) on the square lattice, calledweakly directed walks.
These walks have a simple characterization in terms of the irreducible bridges that compose them. We determine
their generating function. This series has a complex singularity structure and in particular, is not D-finite. The growth
constant is approximately2.54 and is thus larger than that of all natural families of SAW enumerated so far (but
smaller than that of general SAW, which is about 2.64). We also prove that the end-to-end distance of weakly directed
walks grows linearly. Finally, we study a diagonal variant of this model.

Résumé.Nous définissons une nouvelle famille de chemins auto-évitants (CAE) sur le réseau carré, appeléschemins
faiblement dirigés. Ces chemins ont une caractérisation simple en termes des ponts irréductibles qui les composent.
Nous déterminons leur série génératrice. Cette série a une structure de singularités complexe et n’est en particulier
pas D-finie. La constante de croissance est environ2,54, ce qui est supérieur à toutes les familles naturelles de SAW
étudiées jusqu’à présent, mais inférieur aux CAE généraux (dont la constante est environ2,64). Nous prouvons
également que la distance moyenne entre les extrémités du chemin croît linéairement. Enfin, nous étudions une
variante diagonale du modèle.

Keywords: Enumeration – Self-avoiding walks

1 Introduction
A lattice walk isself-avoidingif it never visits twice the same vertex (Fig. 1). Self-avoiding walks (SAW)
have attracted interest for decades, first in statistical physics, where they are considered as polymer mod-
els, and then in combinatorics and in probability theory [20]. However, their properties remain poorly
understood in low dimension, despite the existence of remarkable conjectures. See [20] for dimension 5
and above.

On two-dimensional lattices, it is strongly believed that the numbercn of n-step SAW and the average
end-to-end distanceDn of these walks satisfy

cn ∼ αµnnγ and Dn ∼ κnν (1)

whereγ = 11/32 and ν = 3/4. Several independent, but so far not completely rigorous methods
predict these values, like numerical studies [12, 24], comparisons with other models [6, 21], probabilistic
arguments involving SLE processes [19], enumeration of SAWon random planar lattices [10]... The
growth constant(or connective constant) µ is lattice-dependent, and believed to be

√
2 +

√
2 for the

honeycomb lattice, and another bi-quadratic number (approximately2.64) for the square lattice [16].
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Fig. 1: A self-avoiding walk on the square lattice, and a (quasi-)random SAW of length 1,000,000, constructed by
Kennedy using a pivot algorithm [17].

Given the difficulty of the problem, the study ofrestrictedclasses of SAW is natural, and probably as
old as the interest in SAW itself. The rule of this game is to design new classes of SAW that have both:

– a natural description (to be conceptually pleasant),
– some structure (so that the walks can be counted, and their asymptotic properties determined).

The two simplest classes of SAW on the square lattice probably consist ofdirectedandpartially directed
walks: a walk is directed if it involves at most two types of steps (for instance North and East), and
partially directed if it involves at most three types of steps. (Partially directed walks play a prominent role
in the definition of ourweakly directedwalks.) Among other solved classes, let us cite spiral SAW [22, 13]
and prudent walks [3, 8, 7]. Each time such a new class is solved, one compares its properties to (1): have
we reached with this class a large growth constant? Is the end-to-end distance of the walks sub-linear?

At the moment, the largest growth constant (about2.48) is obtained with prudent SAW. However, this
is beaten by certain classes whose description involves a (small) integerk, like SAW confined to a strip
of heightk [1, 26], or SAW consisting ofirreducible bridgesof length at mostk [15, 18]. The structure
of these walks is rather poor, which makes them little attractive from a combinatorial viewpoint. In the
former case, they are described by a transfer matrix (the size of which increases exponentially with the
height of the strip); in the latter case, the structure is even simpler, since these walks are just arbitrary
sequencesof irreducible bridges of bounded length. In both cases, improvements on the growth constant
much rely on progresses in the computer power. Regarding asymptotic properties, almost all solved
classes of SAW exhibit a linear end-to-end distance, with the exception of spiral walks. But there are very
few such walks [13], as their growth constant is 1.

With theweakly directed walksof this paper, we reach a growth constant of about2.54. These walks are
defined in the next section. Their generating function is given in Section 5, after some preliminary results
on partially directedbridges(Sections 3 and 4). This series turns out to be much more complicated that
the generating functions of directed and partially directed walks, which are rational: we prove that it has
a natural boundary in the complex plane, and in particular isnot D-finite (that is, it does not satisfy any
linear differential equation with polynomial coefficients). However, we are able to derive from this series
certain asymptotic properties of weakly directed walks, like their growth constant and average end-to-end
distance (which we find, unfortunately, to grow linearly with the length). Finally, we perform in Section 6
a similar study for a diagonal variant of weakly directed walks.

Due to space constraints, most proofs are only sketched or even omitted in this abstract. Details will
appear in the complete version of the paper.
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2 Weakly directed walks: definition
Let us denote byN, E, S andW the four square lattice steps. All walks in this paper are self-avoiding, so
that this precision will often be omitted. For any subsetS of {N,E, S,W}, we say that a (self-avoiding)
walk is anS-walk if all its steps lie inS. We say that a SAW isdirectedif it involves at most two types of
steps, andpartially directedif it involves at most three types of steps. The definition of weakly directed
walks stems for the following simple observations:

(i) between two visits to any given horizontal line, aNE-walk only takesE steps,
(ii) between two visits to any given horizontal line, aNEW-walk only takesE andW steps.

Conversely, a walk satisfies (i) if and only if it is either aNE-walk or, symmetrically, aSE-walk. Similarly,
a walk satisfies (ii) if and only if it is either aNEW-walk or, symmetrically, aSEW-walk. Conditions (i)
and (ii) thus respectively characterize (up to symmetry)NE-walks andNEW-walks.

Definition 1 A walk isweakly directedif, between two visits to any given horizontal line, the walkis
partially directed (that is, avoids at least one of the stepsN, E, S, W).

Examples are shown in Fig. 2.

v
n

v0

Fig. 2: Two weakly directed walks. The second one is a bridge, formedof 5 irreducible bridges. Observe that these
irreducible bridges are partially directed.

We will primarily focus on the enumeration of weakly directed bridges. As we shall see, this does
not affect the growth constant. A self-avoiding walk starting atv0 and ending atvn is abridge if all its
verticesv 6= vn satisfyh(v0) ≤ h(v) < h(vn), whereh(v), theheightof v, is its ordinate. Concatenating
two bridges always gives a bridge. Conversely, every bridgecan be uniquely factored into a sequence
of irreducible bridges (bridges that cannot be written as the product of twonon-empty bridges). This
factorization is obtained by cutting the walk above each horizontal line of heightn + 1/2 (with n ∈ Z)
that the walk intersects only once (Fig. 2, right). It is known that the growth constant of bridges is the
same as for general self-avoiding walks [20]. Generally speaking, the fact that bridges can be freely
concatenated makes them useful objects in the study of self-avoiding walks [14, 15, 18, 19, 20].

The following result shows that the enumeration of weakly directed bridges boils down to the enumer-
ation of (irreducible) partially directed bridges.
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Proposition 2 A bridge is weakly directed if and only if each of its irreducible bridges is partially directed
(that is, avoids at least one of the stepsN, E, S, W).

We discuss in Section 6 a variant of weakly directed walks, where we constrain the walk to be partially
directed between two visits to the samediagonalline (Fig. 3). The notion of bridges is adapted accord-
ingly, by defining theheightof a vertex as the sum of its coordinates. We will refer to thismodel as the
diagonal model, and to the original one as the horizontal model. There is, however, no simple counterpart
of Proposition 2: a (diagonal) bridge whose irreducible bridges are partially directed is always weakly
directed, but the converse is not true, as can be seen in Fig. 3. Thus bridges with partially directed irre-
ducible bridges form a proper subclass of weakly directed bridges. We will enumerate this subclass, and
study its asymptotic properties.

Fig. 3: Two weakly directed walks in the diagonal model. The second one is a bridge, factored into 6 irreducible
bridges. Observe that the third irreducible bridge isnot partially directed.

3 Partially directed bridges: a step-by-step approach
Let us equip the square latticeZ2 with its standard coordinate system. With each model (horizontal or
diagonal) is associated a notion ofheight: the height of a vertexv, denotedh(v), is its ordinate in the
horizontal model, while in the diagonal model, it is the sum of its coordinates. Recall that a walk, starting
at v0 and ending atvn, is a bridge if all its verticesv 6= vn satisfyh(v0) ≤ h(v) < h(vn). If the weaker
inequalityh(v0) ≤ h(v) ≤ h(vn) holds for allv, we say the walk is apseudo-bridge. Note that nonempty
bridges are obtained by adding a step of height1 to a pseudo-bridge (aN step in the horizontal model, a
N or E step in the diagonal model). It is thus equivalent to count bridges or pseudo-bridges.

By Proposition 2, the enumeration of weakly directed bridges boils down to the enumeration of (irre-
ducible) partially directed bridges. In this section and the following one, we address the enumeration of
these building blocks, first in a rather systematic way basedon a step-by-step construction, then in a more
combinatorial way based onheaps of cycles.
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Fig. 4: A NES-pseudo-bridge in the horizontal model. (b) AnESW-pseudo-bridge in the diagonal model. (c) A
NES-pseudo-bridge in the diagonal model.

As partially directed walks are defined by the avoidance of (at least) one step, there are four kinds
of these. Hence, in principle, we should count, for each model (horizontal and diagonal), four families
of partially directed bridges. However, in the horizontal model, there exists noESW-bridge, and every
NEW-walk is a pseudo-bridge. The latter class of walks is very easy to count. Moreover, a symmetry
transformsNES-bridges intoNSW-bridges, so that there is really one class of bridges that weneed to
count. In the diagonal model, we need to countESW-bridges (which are equivalent toNSW-bridges by
a diagonal symmetry) andNES-bridges (which are equivalent toNEW-bridges). Finally, to avoid certain
ambiguities, we need to countES-bridges, but this has already been done in [5].

From now on, the starting point of our walks is always at height 0. The height of a walk is then defined
to be the maximal height reached by its vertices.

3.1 NES-bridges in the horizontal model
Proposition 3 Letk ≥ 0. In the horizontal model, the length generating function ofNES-pseudo-bridges
of heightk is

B(k)(t) =
tk

Gk(t)
,

whereGk(t) is the sequence of polynomials defined by

G−1 = 1, G0 = 1− t, and fork ≥ 0, Gk+1 = (1− t+ t2 + t3)Gk − t2Gk−1.

Equivalently,
∑

k≥0

vktk

B(k)(t)
=

∑

k≥0

vkGk =
1− t− t2v

1− (1 − t+ t2 + t3)v + t2v2
,

or

B(k)(t) =
U − Ū(

(1 − t)U − t
)
Uk −

(
(1 − t)Ū − t

)
Ūk

,

where

U =
1− t+ t2 + t3 −

√
(1− t4) (1− 2t− t2)

2t

is a root oftu2 −
(
1− t+ t2 + t3

)
u+ t = 0 andŪ := 1/U is the other root of this polynomial.
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Proof: Let T be the set ofNES-walks that end with anE step, and in which each vertexv satisfies
0 ≤ h(v) ≤ k. Let Ti be the subset ofT consisting of walks that end at heighti. Let Ti(t) ≡ Ti be the
length generating function ofTi, and define the bivariate generating function

T (t;u) ≡ T (u) =

k∑

i=0

Ti(t)u
i.

This series counts walks ofT by their length and the height of their endpoint. Pseudo-bridges walks of
heightk containing at least oneE step are obtained by adding a sequence ofN steps of appropriate length
to a walk ofT , and this gives

B(k)(t) = tk +

k∑

i=0

Ti(t)t
k−i = tk (1 + T (1/t)) (2)

(the termtk accounts for the walk formed ofk consecutiveN steps.)
A step-by-step construction of the walks ofT yields the following lemma.

Lemma 4 Let ū = 1/u. The seriesT (t;u), denotedT (u) for short, satisfies the following equation:

(
1− ut2

1− tu
− t

1− tū

)
T (u) = t

1− (tu)k+1

1− tu
− t

(tu)k+1

1− tu
T (1/t)− t2ū

1− tū
T (t).

The equation of Lemma 4 is easily solved using thekernel method(see e.g. [2, 4, 23]). Thekernelof
the equation is the coefficient ofT (u), namely

1− ut2

1− tu
− t

1− tū
.

It vanishes whenu = U andu = Ū := 1/U , whereU is defined in the lemma. SinceT (u) is a polynomial
in u, the seriesT (U) andT (Ū) are well-defined. Replacingu byU or Ū in the functional equation cancels
the left-hand side, and hence the right-hand side. One thus obtains two linear equations betweenT (t) and
T (1/t), which involve the seriesU . Solving them gives in particular the value ofT (1/t), and thus of
B(k)(t) (thanks to (2)). This provides the second expression ofB(k)(t) given in the lemma. The other
results easily follow, using elementary arguments about linear recurrence relations and rational generating
functions.

3.2 ESW-bridges in the diagonal model
Proposition 5 Letk ≥ 0. In the diagonal model, the length generating function ofESW-pseudo-bridges
of heightk is

B
(k)
1 (t) =

tk

Gk(t)
,

whereGk(t) is the sequence of polynomials defined by

G0 = 1, G1 = 1− t2 and fork ≥ 1, Gk+1 = (1 + t2)Gk − t2(2− t2)Gk−1.
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The length generating function ofNES-pseudo-bridges of heightk is

B
(k)
2 (t) = (2 − t2)kB

(k)
1 (t).

Finally, the length generating function ofES-pseudo-bridges of heightk is

B
(k)
0 (t) =

tk

Fk(t)
,

where the sequenceFk(t) is defined byF−1 = 1, F0 = 1, andFk+1 = Fk − t2Fk−1 for k ≥ 0.

4 Partially directed bridges via heaps of cycles
In this section, we give alternative (and more combinatorial) proofs of the results of Section 3. In partic-
ular, these proofs explain why the numerators of series counting partially directed bridges of heightk are
so simple (tk or tk(2− t2)k, depending on the model).

Let Γ = (V,E) be a directed graph. To each edge of this graph, we associate aweight taken in some
commutative ring (typically, a ring of formal power series). A cycleof Γ is a path ending at its starting
point, taken up to a cyclic permutation. A path isself-avoidingif it does not visit the same vertex twice.
A self-avoiding cycle is called anelementary cycle. Two paths aredisjoint if their vertex sets are disjoint.
Theweightw(π) of a path (or cycle)π is the product of the weights of its edges. Aconfiguration of cycles
γ = {γ1, . . . , γr} is a set of pairwise disjoint elementary cycles. Thesigned weightof γ is

w̃(γ) := (−1)r
r∏

i=1

w(γi).

For two verticesi andj, denote byWi,j the generating function of paths going from fromi to j:

Wi,j =
∑

π:i;j

w(π).

We assume that this sum is well-defined, which is always the case when considering length generating
functions.

Proposition 6 The generating function of paths going fromi to j in the weighted digraphΓ is

Wi,j =
Ni,j

G
,

whereG =
∑

γ w̃(γ) is the signed generating function of configuration of cycles, and

Ni,j =
∑

η,γ

w(η)w̃(γ),

whereη is a self-avoiding path going fromi to j andγ is a configuration of cycles disjoint fromη.
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This result can be proved as follows: one first identifiesNi,j as the(i, j) coefficient of the matrix(1 −
A)−1, whereA is the adjacency matrix ofΓ. Thanks to standard linear algebra, this coefficient can be
expressed in terms of the determinant of(1 − A) and one of its cofactors. A simple expansion of these
as sums over permutations shows that the determinant isG, and the cofactorNi,j . Proposition 6 can also
be proved without any reference to linear algebra, using thetheory ofpartially commutative monoids, or
heaps of pieces[11, 25]. In this context, configurations of cycles are called trivial heaps of cycles. This
justifies the title of this section.

4.1 Bridges with large down steps

LetΓk be the graph with vertices{0, . . . , k} and with the following weighted edges:
– ascendingedges of height1, i → i+ 1, with weightA, for i = 0, . . . , k − 1;
– descendingedges of heighth, i → i− h, with weightDh, for i = h, . . . , k andh ≥ 0.

Fork ≥ 0, denote byC(k) the generating function of paths from0 to k in the graphΓk. These paths may
be seen as pseudo-bridges of heightk with general down steps.

Lemma 7 The generating function of pseudo-bridges of heightk is

C(k) =
Ak

Hk

,

where the generating function of the denominatorsHk is

∑

k≥0

Hkv
k =

1−D(vA)

1− v + vD(vA)
, (3)

with D(v) the generating function of descending steps:

D(v) =
∑

h≥0

Dhv
h.

Proof: With the notation of Proposition 6, the seriesC(k) readsN0,k/G. Since all ascending edges have
height 1, the only self-avoiding path from0 to k consists ofk ascending edges, and has weightAk. As it
visits every vertex of the graph, the only configuration of cycles disjoint from it is the empty configuration.
Therefore, the numeratorN0,k is simplyAk. The elementary cycles consist of a descending step of height,
say,h, followed byh ascending steps. The weight of this cycle isDhA

h.
To underline the dependance of our graph ink, denote byHk the denominatorG of Proposition 6.

Consider a configuration of cycles ofΓk: either the vertexk is free, or it is occupied by a cycle; this gives
the following recurrence relation, valid fork ≥ 0:

Hk = Hk−1 −
k∑

h=0

DhA
hHk−h−1.

with the initial conditionH−1 = 1. This is equivalent to (3).



Weakly directed self-avoiding walks 9

4.2 Partially directed self-avoiding walks as arbitrary paths
It is not straightforward to apply Proposition 6 (or Lemma 7)to the enumeration of partially directed
bridges, because of the self-avoidance condition. To circumvent this difficulty, we will first prove that
partially directed self-avoiding walks are arbitrary paths on a graph with generalized steps. We only deal
with the horizontal model, but the diagonal model can be addressed in a similar way.

Let us say that aNES-walk is proper if it neither begins nor ends with aS step. All NES-pseudo-
bridges are proper, whether in the horizontal or diagonal model. The following lemma explains how to
see properNES-walks as sequences of generalized steps.

Lemma 8 Every properNES-walk has a unique factorization intoN steps and nonempty properES-
walks with no consecutiveE steps.

This result, combined with Lemma 7, gives an alternative proof of Proposition 3.

5 Weakly directed walks: the horizontal model
We now return to the weakly directed walks defined in Section 2. We determine their generating function,
study their asymptotic number and average end-to-end distance, and finally prove that the generating
function we have obtained has infinitely many singularities, and hence, cannot be D-finite.

5.1 Generating function
By combining Propositions 2 and 3, it is now easy to count weakly directedbridges.

Proposition 9 In the horizontal model, the generating function of weakly directed bridges is:

W (t) =
1

1 + t− 2tB
1+tB

whereB :=
∑

k≥0 B
(k)(t) is the generating function ofNES-pseudo-bridges, given by Proposition3.

The generating function ofgeneralweakly directed walks is a bit more involved, but the numbersof
weakly directed walks and bridges of lengthn only differ asymptotically by a multiplicative constant.

5.2 Asymptotic results
Proposition 10 The generating functionW of weakly directed bridges, given in Proposition9, is mero-
morphic in the diskD = {z : |z| <

√
2− 1}. It has a unique dominant pole in this disk,ρ ≃ 0.3929. This

pole is simple. Consequently, the numberwn of weakly directed bridges of lengthn satisfieswn ∼ κµn,
with µ = 1/ρ ≃ 2.5447.

LetNn denote the number of irreducible bridges in a random weakly directed bridge of lengthn. The
mean and variance ofNn satisfy:

E(Nn) ∼ mn, V(Nn) ∼ s
2 n,

wherem ≃ 0.318 ands2 ≃ 0.7, and the random variableNn−mn

s

√
n

converges in law to a standard normal

distribution. In particular, the average end-to-end distance, being bounded from below byE(Nn), grows
linearly withn.
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We have designed an algorithm for the random generation of weakly directed bridges, using aBoltzmann
sampler[9]. A sample output of this algorithm is shown in Figure 5, confirming the linear form of weakly
directed bridges.

Fig. 5: A random weakly directed bridge of length 1009, rotated by90
◦.

5.3 Nature of the series
Proposition 11 The generating functionB of NES-pseudo-bridges, given in Proposition3, converges
around0 and has a meromorphic continuation inC\E , whereE consists of the two real intervals[−

√
2−

1,−1] and[
√
2− 1, 1], and of the curve

E0 =

{
x+ iy : x ≥ 0, y2 =

1− x2 − 2 x3

1 + 2 x

}
. (4)

This curve, shown in Fig.6, is a natural boundary ofB. That is, every point ofE0 is a singularity ofB.
The above statements hold as well for the generating functionW of weakly directed bridges. In partic-

ular, neitherB norW is D-finite.

–1

–0.5

0.5

1

y

–2 –1.5 –1 –0.5 0.5 1

x

Fig. 6: The curveE0 and the zeroes of the polynomialG20.

6 The diagonal model
We have defined weakly directed walks in Section 2 by requiring that the portion of the walk joining
two visits to the same diagonal is partially directed. Here,we study a proper subclass of these walks,
consisting of bridges formed of partially directed irreducible bridges.
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Proposition 12 The generating function of bridges formed of partially directed irreducible bridges is

W∆(t) =
1

1 + 2t− 2tB1

1 + tB1
− 4tB2

1 + 2tB2
+

2tB0

1 + tB0

,

where the seriesBi =
∑

k≥0 B
(k)
i (t) are given in Proposition5.

The growth constant is found to be a bit smaller than in the horizontal model (about2.5378). The
end-to-end distance is again linear.
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