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Abstract

A new finite volume method for one dimensional convection diffusion prob-
lems is designed. The scheme is based on the Polynomial Reconstruction
Operator (PRO-scheme) where a 5-degree polynomial representation is pro-
vided for each cell using the mean-values of the neighboring cells. Convec-
tive and diffusive numerical fluxes derive from the polynomial reconstruction
and lead to a finite volume scheme of sixth-order of accuracy. Numerical ex-
amples are proposed to show the effectiveness of the method and the ability
to manage the convection and the diffusion independently, ¢.e. the scheme
is still functional even with vanishing viscosity.

Keywords: Finite Volume, very high-order, convection-diffusion,
Polynomial Reconstruction Operator (PRO).

1. Introduction

Efficient numerical schemes to solve convection diffusion equations is a
constant challenge due to the wide range of problems which concern the
coupling of the two major physical phenomena. Finite difference and finite
element methods are very popular to produce numerical approximations
(|5, 16, 22]) and a lot of academic or commercial codes are based on such
techniques. The finite volume method for convection diffusion equations
has been introduced in the sixties [20, 21] but do not received attention
during three decades whereas the finite element method has known a wide
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expansion. In the early eighties, the FV method was brought to the fore
with the original book of Patankar [19] for structured meshes and widely
employed by engineers or physicists. Indeed, the method appears to be
an interesting alternative due to its simplicity (one information per cell),
the built-in conservative property, and the capacity to handle unstructured
and non-conformal meshes. Important developments have been realised in
this way and several classes of methods have been proposed. First, the
original Patankar scheme for structured meshes has been extended to the
non-structured case where an orthogonality condition is required to allow
admissible diffusion flux (FV4 scheme [2, 3, 14, 13|). The diamond scheme
based on a local reconstruction of the gradient on each edge has been in-
troduce by [8, 9, 18] while a finite volume scheme based on primal and dual
meshes (DDFV scheme) has been proposed and developed by [17, 12, 10].
In the last six years, new techniques to design efficient finite volume schemes
has been realised and a large proposal of numerical algorithms is now avail-
able such as the mixed-hybrid schemes [11, 15| or mimetic schemes [1, 4].

Despite a constant effort to improve the schemes, a serious drawback
of the finite volume method is the large amount of numerical viscosity and
the weak convergence rate (at most second-order convergence). In the finite
volume context, mean values are the fundamental data and the traditional
(and implicit) identification "mean values = point-wise value at centroid”
used by most of the authors is responsible of the discrepancy leading to, at
most, a second-order scheme. The fact to reject such an identification is
the crucial aspect of the method to provide sixth-order accuracy schemes.
The main tool of the method is a local polynomial reconstruction in which
the coefficients are determined from the mean values of the neighboring
cells [6, 7]. Another important point is the choice of the reconstruction in
function of the operator. For the convective part, we only employ inter-
nal values, i.e. mean-values on the cells, to determine the reconstructed
polynomial function whereas we introduce the Dirichlet conditions in the
polynomial reconstruction employed in the diffusive contribution to enforce
the boundary conditions.

This paper is devoted to a new class of finite volume schemes for steady-
state convection-diffusion problem able to reach the sixth-order accuracy in
space. We present the method for the one-dimensional case to detail the
scheme with simple examples considering the convection-diffusion equation



in the domain 2 := ]0, 1| with Dirichlet boundary conditions

— (a) + (vu) = f on Q

w(0) = wr,  u(l) = sy,

where we assume that a and v are regular functions on Q with a(z) = a > 0
for all z € Q) while f represents a regular source term. Extension for two-
and three-dimensional geometries is under study.

The rest of the paper is as follows. The second section recalls the classical
finite volume scheme for convection-diffusion problem (namely the Patankar
method). Then, we introduce several polynomial reconstructions in section
three, while the fourth section is devoted to the high-order finite volume
schemes. The last section concerns the numerical tests to show the scheme
capacity to provide sixth-order accuracy both for the convective and the
diffusive part of the operator.

2. Patankar finite volume schemes

To design the numerical schemes, we denote by 7, a mesh of €2 constitu-
ted of cells K; := [x;_1/2, %iy1/2], i = 1,..., I, of centroid ¢;, where z1/, := 0
and T 12 := x;_1/2 + h;, and set h, as the ratio between the length of two

consecutive cells, that is h, ;== —,i=1,3,..., 1 — 1 (¢f. Fig. 1).

hita
K, | K; | K;
C1 ! C'z ! Cr
T = 0 T3 Zi-1 il  Tp-L T =1
h;

Figure 1: Mesh, cells and interface notations

In the finite volume context, u; denotes an approximation of the mean
1
value over cell K, that is u; ~ 7w u(z)dz. For the sake of consistency,
i JK;
we recall that the Patankar scheme for each cell K;, i = 1,...,1, is given



- [fzpr%(uiaui-&-l) - fzi,%(uz‘—la UL)]
+ []'—(Z+%(Uz‘,ui+1) - ]:Z’Di,%(ui—hui)] = hifi, (1)
where the diffusive and the convective fluxes write

2(Uz‘+1 - Uz)

P o
fd,i+%(ui7ui+1) T a’(xiJr%) (hz + hz’+1) ) (2)
f£+%(ui,ui+1) = [v($i+g)]+ui + [U(IH—%)]_UH—M (3)
respectively. We have set hg := 0, hyy = 0, up := Wi, U1 1= Upg, and
used the notation [a]" := %'a‘, and [a] ™ = %M Finally, f; denotes an

1
approximation of the mean value of f over cell K;, that is f; ~ h_J fdz.
Equations (1), (2), (3) lead to the linear system

APU = F + Fp,

with U := (uy,...,ur)" € Rl the unknown values, A” an M-matrix, F :=
(hifi,...,hrfr)t € RT the source term, and

Fp = ({2‘2—(10) + [U(O)r}ulf,o, .0, {2‘2(11) + [v(1)]}urg)t e R!

the vector collecting the contributions deriving from the Dirichlet boundary
conditions. Remark that the finite volume scheme is not equivalent to the
finite element scheme or finite difference one for non-uniform meshes.

3. Polynomial reconstruction operators (PRO)

The main tool to provide very high-order approximations is a cute poly-
nomial approximation. In the sequel, we shall consider three kinds of re-
constructions. For each cell K;, i = 1,...,1, we denote by v(i) the stencil
associated to cell K; such that i ¢ v(i), i.e. a set of neighboring cells, and
by u;(x;v(i),d) € Py the polynomial reconstruction on cell K; of degree d
based on the stencil v(7).

In practice, we build the stencil v(7) in function of the polynomial degree
d we shall reconstruct picking up the nearest d + 1 cells to K;. A difficulty
arises when dealing with cells which share a point with the boundary. The
three proposed reconstructions vary in the manner that the boundary con-

ditions are considered.
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3.1. Design of polynomial u;(z;v(1),d)
For each cell K;, i =1,...,I, we consider the polynomial expression (we
skip the v(i) reference for the sake of simplicity)

d
A~ 1
ui(z;d) == u; + Z R, [(x — )" — h_J (x — cl-)o‘dx] :
a=1 it JK;

where the coefficients 7%?1, a=1,...,d, are the minimizers of the functional
2
( ) = Z [ f u;(z; d)dx—uj] i=1,...,1.
jev(s) J K;

As we shall see, such a reconstruction is well-adapted for the hyperbolic
part of the convection diffusion operator.

3.2. Design of polynomial u;(x;v(1),d)
For each cell K;, i = 2,...,1 — i, we use the same polynomial function
than above setting RL : R Wlth

wi(z;d) == u; + ﬁfxlx—ci ——f x—clo‘dx]
1

o=

To provide the reconstructed polynomial function for ¢ = 1, we slightly
modify the functional introducing the boundary condition

E (ﬁi) = (@(0) —w)* + )] [hi L

jev(0) L7 Y

2
Uy (z;d) de — uj] :

where we set v(0) := v(1) —{last cell of v(1)}. In the same way, we compute
the last polynomial by minimizing functional

2
~ [~ 1

E(RL) = [h—J a](x;d)dx—uj] + ((1) — urg)?,
jev(1+1) L' YK

where now we set v(I + 1) := v(I) — {first cell of v(I)}. We shall see in
the sequel that the reconstruction is well-adapted for the elliptic part of the

convection diffusion operator.



3.3. Design of polynomial u;(z;v(i),d)

We first define reconstruction ;(x;d) := u;(z;d) for ¢ = 1,...,1 and
add two new polynomial functions for ¢ = 0 and ¢ = I + 1. For i = 0, we
set

d
lo(x;d) = we + Y. RO(z —0)°,

a=1

where we determine the coefficients minimizing the functional

F)- 3 |,

jev(0) L7 Y

2
Up(z;d) dx — uj] :
In the same way, we set

d
Uryr(z;d) = U + Z R (2 — 1)~
a=1
where now the coeflicients minimize the functional
. 2
jev(I+1) L' YK

(r(0) and v(I + 1) are the same sets of the previous subsection).

4. Finite volume schemes

The design of the finite volume schemes is based on the Polynomial Re-
construction Operator (PRO-FV-scheme). The diffusive and the convective
fluxes for the interior points write

and

Ug($i+%; d) + Ug+1(%+%§ d)
"rd,i-s-%(uia Uit1) 1= @(%Jré) 9
o + . - :
Feier(uiyuir) o= [o(z; )] iz 1:d) + [o(z )] wis (2,1:d),
i=1,...,1 —1, respectively, where u means % or u or u.
Numerical flux at the boundary has to be evaluated as a function of the
polynomial reconstruction for ¢+ = 0 and ¢ = [ + 1 when necessary. For the
convective flux, we use the extension 4y = Uy := wyr and Uy.q = Upyq 1= Uy

when employing reconstructions u or u respectively. For the diffusive flux
6



we set Ug := %y and Uy := U;.¢. It is important to remark that notations
tlg and ;.1 have different meanings with respect to the convective flux or

the diffusive flux.

Based on the polynomial reconstruction and the definition of the fluxes,
we now introduce three affine operators U — G*(U; wig, Uy, f,d), o = 1,2, 3,
from R! into R’ given component by component by:

Gzl(Uv uf, urg7 f7 d) =

GIQ(U’ uyr, Urg7 fa d) :

— ['Fd,i+%(ai’ ﬂi{»l) - fd,i*% (1\2“ ai+l):|

o

f

c it (i Uiy1)

f

C

@) | = i (@)

- [”Fd,i-‘r%(aiv Uip1) — Fai-i (@, ﬁiﬂ)]

2

+ ]:C,H%(ﬂu Uiy1) — ~7:C7¢,%(17i, Uis1)| — hifi, (5)
AU g, £, ) 1= = | oy (s 1) = Fayy (@, i) |
+ }—c,i+§(aiv aiH) - fc,i—%(ah az’+1) - hzfz (6)

It results that the numerical solution of system (4), (5) or (6) is the solution
U of the affine problem

Ga(U; Uif, Urg, f, d) = (0, <oy O)t

Remark 1. To determine the numerical solution, we recast the problem as
a linear system of equations in the form Ax = b. To this end, we first de-
termine the right-hand side term setting b := G*(0; wy, Uy, f,d). We then
determine column A; with A; := G*(e;; wyy, U, f,d) — b, €; being the canon-
tcal vector, i = 1,...,1. For the sake of simplicity, we employ a direct
method solving the linear system allowing to evaluate the conditioning num-
ber of the system k(A). Of course, iterative method like Krylov method will
be more efficient for larger system.

5. Numerical tests

To highlight the effectiveness and robustness of the scheme we detail
five tests dedicated to each specific aspect of the method: the choice of the
reconstruction, strong Peclet number, pure convective or diffusive problems,
robustness of the scheme with non-uniform meshes, and diffusion equation
with non-constant coefficients. Note that NA means "not applicable" in the

tables.
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5.1. Error measurements

In the following, |U]x = max |u;| represents the L® norm of vector
1=1,..,

U. Note that we intentionally use the L* norm since we deal with regular
functions.

We first measure the consistency error of the schemes to observe the rate
of convergence using the exact solution in the algorithm. For the Patankar
scheme, the consistency error is given by

Eo(U) := |APU — F — Fp| o,

while we introduce the consistency error for the three schemes G*, a =
1,2,3, by
EC(U> = “GQ(U7 Uity Urg, f> d)Hoo’

where )
U:=(W,..., 1), ﬂizz—J udz,
I Jie

are the exact mean values of the solution of the continuous problem.
The error between the solution and its approximations is provided with
L* norm, namely

Ey = max |u; — ;.
i=1

Note that Ey does not depend on the polynomial reconstruction but on the
mean values.

Since diffusive flux use derivatives at the interface, we introduce E; as
the L*® error of the derivative. For the G schemes, we use the polynomial
reconstruction, setting

With such a definition, we measure the error of the derivatives with F; ()
and E (@) for scheme G' and G? respectively. For the third scheme, we
use E1(u) since we have to compare the derivative approximation with the
true derivative at the interface which only involves polynomials u. For the
Patankar scheme, we provide an approximation of the derivative using the
divided differences.

U;(szr%) - UI(ZL‘H%)



5.2. Erample 1

In the first test, we consider the very simple convection diffusion problem
with constant diffusion and velocity coefficients setting a = 1, v = 1 and
we = 1, uyg = e on the boundary while f = 0. The exact solution is
u(x) = exp(x). Computations are carried out on uniform meshes (h, = 1)

of I cells

with I = 10,20,40,80 respectively. We plot in Figure 2 the

convergence curves for the G® scheme while we display in Tables 1, 2, and
3 the errors E¢, Ey, and E; with their respective convergence rate for the
three schemes.

e The

e The

e The

G' scheme

Error Ee. All the reconstructions achieve the expected optimal
order d. Indeed, we can not expect a d+ 1 convergence rate since
only polynomial derivatives appear in the diffusive flux expres-
sion.

Error Ey. For the Py, P3, and Ps reconstruction, we are close
to the optimal order convergence with 2, 4, and 6 respectively,
whereas we do not reach the expected optimal reconstruction and
observe an accuracy discrepancy for the P, and P4 reconstruc-
tions.

Error E;. All the reconstructions are close to the optimal order
convergence for the derivative approximations.

The conditioning number of the matrices increases with the re-
construction order and the number of cells.

G? scheme

The convergence rate is very similar to the case G'. We just
remark that the P; does not provide the expected convergence
rate.

The conditioning numbers of matrices deriving from the G? scheme
are slightly higher with respect to the G scheme.

G? scheme

We obtain very similar results with the G! scheme and observe a
discrepancy of the order of convergence for the P; reconstruction.

Matrices conditioning number are equal to the case G2.



— Convergence curves are linear providing clear convergence rates.

107 —¥— Patankar —¥— Patankar
6 AP A-p1
. -©-P2 107% -o-P2
107p =-p3 8-r3
pa P4
1 --pP5 2 --pP5

i | |
1/80 1/40 1120 1110 1/80 1/40 1/20 110
h h

Figure 2: The G scheme: convergence curves of Ey (left) and F; (right).

5.3. Example 2

We now consider a similar convection diffusion problem with a large
Peclet number setting a = 1 and v = 10000 with the same boundary con-
ditions as Example 1 and uniform meshes. We set f(z) = 9999 exp(z) in
order to find again the solution u(z) = exp(z).

We give in Tables 4 and 5 the errors E¢, Fy, and E; with their respective
convergence rate for the two schemes G? and G®. Clearly, the Patankar
scheme does not provide a good solution while the PRO-schemes achieve the
expected convergence order. Note that the discretisation of the convective
term in the Patankar scheme is mainly responsible of the order discrepancy
and could be improved using a MUSCL technique up to a second-order one.

5.4. Example 3

In the third test, we simulate a pure convection problem on uniform
meshes setting @ = 0, v = 1, f(z) = exp(x), and the inflow condition
wr = 1. Note that the outflow condition u,, = e should not be prescribed.
Nervertheless, by construction of operator G2, we have to define a Dirichlet
condition at x = 1 and we introduce the right outflow condition u,, = e
compatible with the solution. To observe the scheme dependency on the
extra condition, we also test the method using an arbitrary value for the
outflow condition setting u,, = 100.

Table 6 shows the Ee and Ej errors with their respective convergence rate
for schemes G* and G® using the extra condition u,;, = e while Table 7
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presents that errors for the same two schemes with the outflow condition
ug = 100. Clearly, scheme G? provides wrong results in the last case
since the convective flux uses a polynomial reconstruction which include
the Dirichlet condition. Such a reconstruction does not make sense for the
convective flux for outgoing velocity. Scheme G® is more relevant because
polynomials u; are independent of the boundaries condition we observe a
good convergence rate even with an arbitrary outflow condition.

5.5, Fxample J

We address in the present test the scheme robustness problem with re-
spect to the mesh with large form factor. Once again we consider the simple
convection-diffusion problem with Pe—1 as Example 1 and Pe—=10000 as FEx-
ample 2 but using irregular meshes with A, = 20.

Table 8 gives the Ejy and F; errors and their respective convergence rates
with Pe=1, while Table 9 provides the same informations for Pe=10000.
We achieve a very good convergence order for the P; and Ps reconstructions
with the optimal convergence rate both for small and large Peclet numbers.

5.6. Fxample 5

The last example is dedicated to the convection diffusion problem with
non-constant coefficients. We only treat the diffusive part of the operator

for the sake of simplicity setting a(x) and v = 0 with the

3+ 2cos(27x)
right-hand side term f(z) = 1 and the boundary conditions w; = 0 and
Urg = 10.

Tables 10 and 11 give the Ej error and its respective convergence rates
using uniform meshes and meshes with the form factor h, = 20 respectively.
We plot the convergence curves of Fy in Figure 3 for the non-uniform mesh.

The Patankar scheme provides a second-order method since the convec-
tive part is removed. The G® scheme achieves very good convergence rate
both for the uniform and the non-uniform meshes for the P3 and Ps recon-
struction while the algorithm order is reduced of one order for P, and P,.
Indeed, we expect a third-order scheme for the P, whereas we obtain an
effective second-order scheme with the numerical simulations. We observe
a similar behavior with the P, polynomial reconstruction.

11
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Figure 3: Regular coefficient case: convergence curves for Ey and h, = 20.

6. Conclusion

We have presented a new finite volume method for one-dimensional
convection-diffusion problem which provides very high-order accuracy. Nu-
merical simulations have been carried out to prove the capacity of the
method to effectively reach the sixth-order accuracy. Several extensions
are under consideration. The two- and three-dimensional case is of course
of crucial importance, but we will also investigate the schemes for both
Dirichlet and Neumann boundary conditions. Another difficulty concerns
the solution stability when dealing with rough data. A strategy based on
the MOOD method ([6, 7]) is currently being developed.

Acknowledgements: This research was financed by FEDER Funds through
Programa Operacional Factores de Competitividade — COMPETE and by
Portuguese Funds through FCT — Fundagcao para a Ciéncia e a Tecnologia,
within the Project PEst-C/MAT /UI0013/2011.
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Table 1: Example 1 — u(z) = exp(z), a(z) =1, v=1, wr=1, uyg =€, hy =1, G*

I

k(A)

Ec
err

ord

Eo
err

ord

En
err

ord

Patankar

10
20
40
30

4.0E+01
1.6E+402
6.4E+02
2.6E+03

7.8E—-02
4.2E-02
2.2E-02
1.1E-02

NA
0.9
0.9
1.0

8.3E—-03
4.6E—03
2.5E—-03
1.3E-03

NA
0.8
0.9
1.0

7.4E-02
3.8E—-02
1.9E-02
9.8E—-03

NA
1.0
1.0
1.0

10
20
40
80

1.1E+01
4.2E+01
1.6E+02
6.4E+02

1.6E—-01
8.2E—-02
4.2E-02
2.1E-02

NA
1.0
1.0
1.0

4.1E-02
1.1E-02
2.9E-03
7.6E—04

NA
1.9
1.9
2.0

1.7E-01
7.9E-02
3.8E—02
1.8E—-02

NA
1.1
1.1
1.0

P2(5)

10
20
40
80

1.1E+401
4.1E+01
1.6E+02
6.3E+02

2.2E-02
6.0E-03
1.6E—-03
4.0E-04

NA
1.9
1.9
2.0

3.2E—-03
5.2E—-04
7.4E—-05
1.4E-05

NA
2.6
2.8
24

1.1E-02
3.3E-03
9.6E—-04
2.6E—-04

NA
1.7
1.8
1.9

10
20
40
80

3.5E+01
1.4E+402
5.4E+02
2.2E403

1.0E-03
1.4E—-04
1.8E—-05
2.4E—-06

NA
2.9
2.9
3.0

5.9E-05
4.7E—-06
3.3E-07
2.2E—-08

NA
3.6
3.8
3.9

4.0E-04
5.0E—-05
7.3E-06
9.3E-07

NA
2.9
2.9
3.0

P4(7)

10
20
40
80

3.6E+01
1.4E+02
5.6E+02
2.2E+03

1.5E-04
1.1E-05
7.3E-07
4.7TE—-08

NA
3.8
3.9
4.0

7.8E—06
3.9E-07
1.56E—-08
7.0E—-10

NA
4.3
4.7
4.4

1.3E—-05
1.5E—-06
1.2E-07
8.6E—09

NA
3.1
3.6
3.8

10
20
40
80

6.9E+01
2.7E+02
1.1E+03
4.3E+03

4.7TE—06
1.7E-07
5.6E—09
1.8E-10

NA
4.8
4.9
2.0

9.9E—-08
2.3E—-09
4.2E-11
8.1E—-13

NA
2.5
2.8
2.7

1.4E—-06
5.2E—-08
1.7E—-09
5.6E—-11

NA
4.8
4.9
4.9

14



Table 2: Example 1 — u(z) = exp(z), a(z) =1, v=1 wr =1, uyg =€, hy = 1, G*

I

k(A)

Ec
err

ord

Eo
err

ord

En
err

ord

Patankar

10
20
40
80

4.0E+01
1.6E+402
6.4E+02
2.6E+03

7.8E—-02
4.2E—-02
2.2E-02
1.1E-02

NA
0.9
0.9
1.0

8.3E—-03
4.6E—03
2.5E—-03
1.3E-03

NA
0.8
0.9
1.0

7.4E-02
3.8E—-02
1.9E-02
9.8E—-03

NA
1.0
1.0
1.0

P1(3)

10
20
40
80

1.8E+01
5.3E+01
1.8E+402
6.7E+02

1.8E—-01
9.1E-02
4.6E—-02
2.3E-02

NA
1.0
1.0
1.0

1.4E—-01
4.9E-02
1.7E-02
5.8E—-03

NA
1.5
1.5
1.5

3.2E-01
1.50E-01
7.3E—-02
3.5E—-02

NA
1.1
1.1
1.0

10
20
40
80

1.2E+401
4.2E+01
1.6E+02
6.4E+02

2.5E—-02
6.6E—03
1.7E-03
4.4E-04

NA
1.9
1.9
2.0

3.9E-03
6.2E—-04
8.6E—05
1.4E—-05

NA
2.7
2.8
2.7

1.0E—-02
3.6E—-03
1.1E-03
3.0E-04

NA
2.1
1.7
1.9

10
20
40
80

3.7E+01
1.4E+402
5.7E+02
2.3E+03

9.7TE—-04
1.3E-04
1.7E—-05
2.2E—-06

NA
2.9
2.9
3.0

6.0E—-05
4.7E—-06
3.3E-07
2.2E—-08

NA
3.7
3.9
3.9

4.0E-04
5.0E—-05
7.2E—-06
9.3E-07

NA
2.9
2.9
3.0

10
20
40
80

3.8E+01
1.5E+02
5.9E+02
2.4E+03

1.4E-04
1.0E—-05
6.8E—-07
4.4E—-08

NA
3.8
3.9
4.0

8.0E—06
4.0E—-07
1.50E—-08
7.0E—-10

NA
4.3
4.7
4.4

1.2E-05
1.5E—-06
1.2E-07
8.6E—09

NA
3.0
3.6
3.8

10
20
40
80

7.0E+01
2.8E+02
1.1E+03
4.4E+03

4.4E—-06
1.6E-07
5.3E-09
1.7E-10

NA
4.8
4.9
3.0

1.0E-07
2.3E—-09
4.2E-11
7.50E—-13

NA
)
2.8
2.8

1.4E—-06
5.2E—-08
1.7E—-09
5.6E—11

NA
4.8
4.9
4.9
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Table 3: Example 1 — u(z) = exp(z), a(z) =1, v=1 wr=1, upg =€, hy = 1, G*

I

k(A)

Ec
err

ord

Eo
err

ord

En
err

ord

Patankar

10
20
40
80

4.0E+01
1.6E+402
6.4E+02
2.6E+03

7.8E—-02
4.2E—-02
2.2E-02
1.1E-02

NA
0.9
0.9
1.0

8.3E—-03
4.6E—03
2.5E—-03
1.3E-03

NA
0.8
0.9
1.0

7.4E-02
3.8E—-02
1.9E-02
9.8E—-03

NA
1.0
1.0
1.0

P1(3)

10
20
40
80

1.7E+01
5.2E+01
1.8E+402
6.7E+02

1.7E-01
8.9E—-02
4.6E—-02
2.3E-02

NA
0.9
1.0
1.0

1.2E-01
4.5E—-02
1.6E—-02
5.6E—03

NA
1.4
1.5
1.5

29E-01
1.4E-01
7.0E-02
3.5E—-02

NA
1.0
1.0
1.0

10
20
40
80

1.1E+401
4.1E+01
1.6E+02
6.4E+02

2.4E-02
6.5E—-03
1.7E-03
4.4E-04

NA
1.9
1.9
2.0

3.6E—-03
6.0E-04
8.5E—05
1.4E—-05

NA
2.6
2.8
2.6

1.4E-02
3.6E—03
1.1E-03
2.9E-04

NA
2.0
1.7
1.9

10
20
40
80

3.7E+01
1.5E+402
5.7E+02
2.3E+03

8.8E—04
1.3E-04
1.7E—-05
2.2E—-06

NA
2.8
2.9
3.0

6.2E—05
4.9E—-06
3.3E-07
2.2E—-08

NA
3.7
3.9
3.9

4.1E-04
5.0E—-05
7.3E-06
9.3E-07

NA
2.9
2.9
3.0

10
20
40
80

3.9E+01
1.5E+02
5.9E+02
2.4E+03

1.3E-04
9.7TE—-06
6.6E—07
4.3E—08

NA
3.7
3.9
3.9

8.5E—06
4.1E-07
1.50E—-08
7.0E—-10

NA
4.4
4.7
4.5

2.3E-05
1.5E—-06
1.2E-07
8.6E—09

NA
3.9
3.7
3.8

10
20
40
80

7.2E401
2.8E+02
1.1E+03
4.4E+03

3.8E—06
1.5E-07
5.1E—-09
1.6E—-10

NA
4.7
4.8
3.0

1.2E-07
2.4E—-09
4.3E—-11
7.6E—-13

NA
2.6
2.8
2.8

1.4E—-06
5.2E—-08
1.7E—-09
5.6E—11

NA
4.8
4.9
4.9
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Table 4: Example 2 — u(z) = exp(z), a(z) = 1, v = 10000, we = 1, uyg =€, hy =1, G*

I

k(A)

Ec
err

ord

Eo
err

ord

En
err

ord

Patankar

10
20
40
80

1.3E+01
2.6E+01
5.2E+01
1.0E+02

5.3E+02
2.6E+02
1.3E+402
6.3E+01

NA
1.0
1.0
1.0

1.3E-01
6.6—02
3.3E—02
1.7E-02

NA
1.0
1.0
1.0

2.7E+00
2.7E+00
2.7E+00
2.7E+00

NA
0.0
0.0
0.0

P1(3)

10
20
40
80

1.3E+01
2.6E+01
5.1E+01
1.0E+402

5.0E+01
1.2E+01
3.1E+00
7.6E—-01

NA
2.0
2.0
2.0

5.8E—03
1.5E—-03
3.9E-04
9.6E—-05

NA
1.9
2.0
2.0

2.1E-01
1.1E-01
5.4E—-02
2.7TE—-02

NA
1.0
1.0
1.0

10
20
40
80

1.3E+01
2.5E+01
5.0E+01
1.0E+02

7.9E+00
1.1E+400
1.3E-01
1.7E-02

NA
2.9
3.0
3.0

7.5E—04
1.1E-04
1.4E—-05
1.8E—-06

NA
2.8
2.9
3.0

2.3E-02
6.1E-03
1.6E—-03
4.0E-04

NA
1.9
1.9
2.0

10
20
40
80

2.1E+01
3.5E+01
6.3E+01
1.2E+02

2.9E-01
2.0E-02
1.3E-03
8.3E—05

NA
3.9
3.9
4.0

2.4E-05
1.7E—-06
1.1E-07
7.0E-09

NA
3.9
3.9
4.0

4.9E-04
6.4E—05
8.0E—06
9.9E-07

NA
3.0
3.0
3.0

10
20
40
80

1.9E+01
3.2E+01
5.7E+01
1.1E+402

4.1E-02
1.5E—-03
5.0E-05
1.6E—-06

NA
4.8
4.9
5.0

2.9E—-06
1.1E-07
3.6E—-09
1.2E-10

NA
4.8
4.9
4.9

9.1E-05
6.3E—-06
4.1E-07
2.7TE—-08

NA
3.9
3.9
4.0

10
20
40
80

8.6E+01
1.2E+02
1.6E+02
2.1E+02

1.6E—-03
2.9E-05
4.8E—-07
8.1E—09

NA
2.8
2.9
2.9

1.0E-07
1.7E—-09
2.7TE-11
3.9E—-13

NA
2.9
2.9
6.1

2.0E—-06
7.4E—-08
2.5E—-09
6.5E—11

NA
4.7
4.9
5.2
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Table 5: Example 2 — u(z) = exp(z), a(z) = 1, v = 10000, wg = 1, uyg =€, hy =1, G*

I

k(A)

Ec
err

ord

Eo
err

ord

En
err

ord

Patankar

10
20
40
80

1.3E+01
2.6E+01
5.2E+01
1.0E+02

5.3E+02
2.6E+02
1.3E+402
6.3E+01

NA
1.0
1.0
1.0

1.3E-01
6.6—02
3.3E—02
1.7E-02

NA
1.0
1.0
1.0

2.7E+00
2.7E+00
2.7E+00
2.7E+00

NA
0.0
0.0
0.0

P1(3)

10
20
40
80

1.3E+01
2.6E+01
5.1E+01
1.0E+402

1.1E+02
2.9E+01
7.5E+00
1.9E400

NA
1.9
2.0
2.0

6.4E—03
1.8E—-03
4.8E—-04
1.2E-04

NA
1.8
1.9
2.0

1.6E—-01
8.5E—02
4.4E-02
2.2E-02

NA
0.9
1.0
1.0

10
20
40
80

1.3E+01
2.5E+01
5.0E+01
1.0E+02

1.8E+01
2.4E4-00
3.1E-01
4.0E-02

NA
2.9
2.9
3.0

1.6E—-03
2.0E-04
2.6E—-05
3.3E—-06

NA
3.0
3.0
3.0

2.4E-02
6.3E—03
1.6E—-03
4.1E-04

NA
1.9
2.0
2.0

10
20
40
80

1.8E+01
3.6E+01
7.2E+01
1.4E+02

1.1E400
7.9E—-02
5.2E—-03
3.3E-04

NA
3.9
3.9
4.0

7.2E—-05
4.5E—-06
2.8E—-07
1.8E—-08

NA
4.0
4.0
4.0

8.2E—04
1.1E-04
1.5E—-05
1.9E—-06

NA
2.9
2.9
3.0

10
20
40
80

2.0E+01
3.9E+01
7.7E+01
1.5E+02

1.7E-01
6.0E—-03
2.0E—-04
6.5E—06

NA
4.8
4.9
5.0

1.0E-05
3.1E-07
9.6E—-09
3.0E-10

NA
5.1
2.0
2.0

3.4E—-04
2.1E-05
1.3E—-06
8.2E—-08

NA
4.0
4.0
4.0

10
20
40
80

4.1E+01
7.6E+01
1.5E+02
2.9E+02

7.3E-03
1.3E-04
2.2E—-06
3.7TE—-08

NA
2.8
2.9
2.9

3.1E-07
4.8E—-09
7.3E-11
1.1E-12

NA
6.0
6.0
6.0

5.3E-06
1.6E—-07
4.6E—09
1.4E-10

NA
2.0
5.1
2.0
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Table 6: Example 3 — f(x) =
v = 17 uyf = 1 (urg = e), hr = 1, P3(5)

I Ee Ey
err ord err ord

10 29E-05 NA 24E-05 NA
20 20E-06 39 17E-06 3.8
40 1.3E-07 39 1.1E-07 3.9
80 85E—-09 4.0 T7.1E-09 4.0

10 1.1E-04 NA T7.2E-05 NA
20 7T9E-06 3.9 4.5E-06 4.0
40 5.2E-07 39 28E-07 4.0
80 3.3E-08 4.0 1.8E-08 4.0

G2

GS

Table 7: Example 3 — f(z) = exp(z), a(z) = 0,
v=1, ws=1 (uyg = 100), hy = 1, P3(5)

1 Ee Ey
err ord err ord

10 81E+01 NA 1.7E4+02 NA
20 8.1E+4+01 0.0 1.YE402 0.0
40 8.1E+01 0.0 1.YE402 0.0
80 8.1E+4+01 0.0 1.YE402 0.0

10 1.1E-04 NA 7.2E-05 NA
20 T9E—-06 3.9 45E-06 4.0
40 5.2E-07 39 28E-07 4.0
80 3.3E-08 4.0 18E-08 4.0

G2

GS
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Table 8: Example 4 — u(z) = exp(x), a(z) =1, v =1,

ufs = 1 (urg = e), hr = 20, G3

1

Eq
err

ord

E,
err

ord

10
Patankar Zg

80

9.6E—03
5.0E-03
2.5E-03
1.3E-03

NA
0.9
1.0
1.0

1.6E-01
8.6E—02
4.4E-02
2.2E-02

NA
0.9
1.0
1.0

10
20
40
80

3.5E—-04
4.5E-05
4.3E—06
3.5E-07

NA
2.9
3.4
3.6

1.2E-03
1.6E—-04
2.1E-05
2.6E—-06

NA
2.9
3.0
3.0

10
20
40
80

8.5E—-07
1.7E—-08
3.0E-10
4.9E—-12

NA
5.7
5.8
5.9

2.5E-06
8.3E—-08
2.8E-09
9.3E—-11

NA
4.9
4.9
4.9

Table 9: Example 4 — u(z) = exp(x), a(z) = 1,

10000, wr = 1, trg = €, hy = 20, G

1

Eq
err

ord

E,
err

ord

10
20
Patankar 40
80

2.4E-01
1.2E-01
6.3E—02
3.2E-02

NA
1.0
1.0
1.0

2.6E+00
2.6E+00
2.5E+00
2.5E+00

NA
0.0
0.1
0.0

10
20
P5(5) 40
80

3.2E—-05
2.2E—-06
1.4E-07
9.3E-09

NA
3.9
3.9
3.9

1.6E—-03
1.7E-04
2.1E-05
2.5E—-06

NA
3.2
3.1
3.1

10
20

80

1.9E-07
2.6E—-09
4.2E-11
6.8E—13

NA
6.2
6.0
6.0

1.3E-05
3.4E-07
9.9E-09
3.0E—-10

NA
5.2
5.1
5.0

20



Table 10: Example 5 — f(z) = 1,
v =20, uyr =0,

a(x) = 3+2cos(2mx)?
Upg = 10, hy = 1, G3

1

I

Eo
err

ord

Patankar

10
20
40
80
160
320

4.4E-02
1.1E-02
2.8E—-03
6.9E—04
1.7E-04
4.3E—-05

NA
2.0
2.0
2.0
2.0
2.0

P>(5)

10
20
40
80
160
320

4.0E-01
4.9E-02
1.2E-02
3.0E-03
7.6E—04
2.0E-04

NA
3.0
2.1
2.0
2.0
2.0

10
20
40
80
160
320

4.4E-02
2.6E—-03
1.1E-04
5.6E—06
3.3E-07
2.0E—-08

NA
4.1
4.5
4.4
4.1
4.0

10
20
40
30
160
320

3.8E—-02
1.4E-03
1.0E-04
6.7E—-06
4.3E-07
2.7TE—-08

NA
4.8
3.8
3.9
4.0
4.0

10
20
40
80
160
320

3.4E-03
6.8E—05
8.6E—07
9.5E-09
1.2E-10
3.7TE—-12

NA
2.6
6.3
6.5
6.3
3.0
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Table 11: Example 5 — f(z) = 1,
v =0, w =0,
Urg = 10, hy = 20, G3

a(r) =

1

3+2cos(2mx)?

I

Eo
err

ord

Patankar

10
20
40
80
160
320

1.6E—01
4.1E-02
1.0E-02
2.6E—-03
6.5E—04
1.6E—-04

NA
1.9
2.0
2.0
2.0
2.0

P>(5)

10
20
40
80
160
320

4.9E-01
7.7E—-02
1.3E-02
2.4E-03
6.5E—04
1.7E-04

NA
2.7
2.5
2.5
1.9
1.9

10
20
40
80
160
320

2.7TE-01
4.4E-02
3.1E-03
1.8E—-04
1.0E—-05
6.1E-07

NA
2.6
3.8
4.1
4.1
4.1

10
20
40
30
160
320

9.8E—-02
1.9E-03
1.0E-04
6.1E—06
3.7E-07
2.3E—-08

NA
2.7
4.2
4.1
4.0
4.0

10
20
40
80
160
320

1.2E-02
4.8E—04
7.3E-06
1.2E-07
1.9E-09
3.0E—-11

NA
4.7
6.0
2.9
6.0
6.0
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