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ON THE BOUNDARY OF THE ATTAINABLE SET

OF THE DIRICHLET SPECTRUM

LORENZO BRASCO, CARLO NITSCH, AND ALDO PRATELLI

Abstract. Denoting by E ⊆ R
2 the set of the pairs

(

λ1(Ω), λ2(Ω)
)

for all the open sets Ω ⊆ R
N

with unit measure, and by Θ ⊆ R
N the union of two disjoint balls of half measure, we give an

elementary proof of the fact that ∂E has horizontal tangent at its lowest point
(

λ1(Θ), λ2(Θ)
)

.

1. Introduction

Given an open set Ω ⊆ R
N with finite measure, its Dirichlet-Laplacian spectrum is given by

the numbers λ > 0 such that the boundary value problem

−∆u = λu in Ω, u = 0 on ∂Ω,

has non trivial solutions. Such numbers λ are called eigenvalues of the Dirichlet-Laplacian in

Ω, and form a discrete increasing sequence 0 < λ1(Ω) ≤ λ2(Ω) ≤ λ3(Ω) . . . , diverging to +∞
(see [4], for example). In this paper, we will work with the first two eigenvalues λ1 and λ2, for

which we briefly recall the variational characterization: introducing the Rayleigh quotient as

RΩ(u) =
‖∇u‖2L2(Ω)

‖u‖2
L2(Ω)

, u ∈ H1(Ω) ,

the first two eigenvalues of the Dirichlet-Laplacian satisfy

λ1(Ω) = min
{
RΩ(u) : u ∈ H1

0 (Ω) \ {0}
}
,

λ2(Ω) = min

{
RΩ(u) : u ∈ H1

0 (Ω) \ {0},
∫

Ω
u(x)u1(x) dx = 0

}
,

where u1 is a first eigenfunction.

We are concerned about the attainable set of the first two eigenvalues λ1 and λ2, that is,

E :=
{(

λ1(Ω), λ2(Ω)
)
∈ R

2 :
∣∣Ω

∣∣ = ωN

}
,

where ωN is the volume of the ball of unit radius in R
N . Of course, the set E depends on the

dimension N of the ambient space. The set E has been deeply studied (see for instance [1, 3, 6]);

an approximate plot is shown in Figure 1. Let us recall now some of the most important known

facts. In what follows, we will always denote by B a ball of unit radius (then, of volume ωN ),

and by Θ a disjoint union of two balls of volume ωN/2.

Basic properties of E. The attainable set E has the following properties:

(i) for every (λ1, λ2) ∈ E and every t ≥ 1, one has (t λ1, t λ2) ∈ E;
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Figure 1. The attainable set E

(ii)

E ⊆
{
x ≥ λ1(B), y ≥ λ2(Θ), 1 ≤ y

x
≤ λ2(B)

λ1(B)

}
;

(iii) E is horizontally and vertically convex, i.e., for every 0 ≤ t ≤ 1

(x0, y), (x1, y) ∈ E =⇒
(
(1− t)x0 + tx1, y

)
∈ E ,

(x, y0), (x, y1) ∈ E =⇒
(
x, (1− t)y0 + ty1

)
∈ E .

The first property is a simple consequence of the scaling property λi(tΩ) = t−2λi(Ω), valid

for any open set Ω ⊆ R
N and any t > 0. The second property is true because, for every open

set Ω of unit measure, the Faber–Krahn inequality ensures λ1(Ω) ≥ λ1(B), the Krahn–Szego

inequality (see [5, 7, 8]) ensures λ2(Ω) ≥ λ2(Θ) = λ1(Θ), and a celebrated result by Ashbaugh

and Benguria (see [2]) ensures

1 ≤ λ2(Ω)

λ1(Ω)
≤ λ2(B)

λ1(B)
.

Finally, the third property is proven in [3]. It has been conjectured also that the set E is convex,

as it seems reasonable by a numerical plot, but a proof for this fact is still not known.

Thanks to the above listed properties, the set E is completely known once one knows its

“lower boundary”

C :=
{(

λ1, λ2

)
∈ E : ∀ t < 1,

(
tλ1, tλ2

)
/∈ E

}
,

therefore studying E is equivalent to study C. Notice in particular that ∂E consists of the union

of C with the two half-lines

{
(t, t) : t ≥ λ1(Θ)

}
and

{(
t,
λ2(B)

λ1(B)
t

)
: t ≥ λ1(B)

}
.

Let us call for brevity P and Q the endpoints of C, that is, P ≡
(
λ1(Θ), λ2(Θ)

)
and Q ≡(

λ1(B), λ2(B)
)
.

The plot of the set E seems to suggest that the curve C reaches the point Q with vertical

tangent, and the point P with horizontal tangent. In fact, Wolf and Keller in [6, Section 5]
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proved the first fact, and they also suggested that the second fact should be true, providing a

numerical evidence. The aim of the present paper is to give a short proof of this fact.

Theorem. For every dimension N ≥ 2, the curve C reaches the point P with horizontal tangent.

The rest of the paper is devoted to prove this result: the proof will be achieved by exhibiting

a suitable family {Ω̃ε}ε>0 of deformations of Θ having measure ωN and such that

lim
ε→0

λ2(Ω̃ε)− λ2(Θ)

λ1(Θ)− λ1(Ω̃ε)
= 0 . (1.1)

2. Proof of the Theorem

Throughout this section, for any given x = (x1, ..., xN ) ∈ R
N , we will write x = (x1, x

′)

where x1 ∈ R and x′ ∈ R
N−1.

We will make use of the sets {Ωε} ⊆ R
N , shown in Figure 2, defined by

Ωε :=
{
(x1, x

′) ∈ R
+ × R

N−1 : (x1 − 1 + ε)2 + |x′|2 < 1
}

∪
{
(x1, x

′) ∈ R
− × R

N−1 : (x1 + 1− ε)2 + |x′|2 < 1
}

=:Ω+
ε ∪ Ω−

ε .

for every ε > 0 sufficiently small. The sets Ω̃ε for which we will eventually prove (1.1) will be

rescaled copies of Ωε, in order to have measure ωN .

To get our thesis, we need to provide an upper bound to λ1(Ωε) and an upper bound to

λ2(Ωε); this will be the content of Lemmas 2.1 and 2.2 respectively.

Ω+
ε

∼ 2
√
2
√
ε

2ε

Ω−
ε

Figure 2. The sets Ωε = Ω+
ε ∪ Ω−

ε

Lemma 2.1. There exists a constant γ1 > 0 such that for every ε ≪ 1 it is

λ1(Ωε) ≤ λ1(B)− γ1 ε
N/2. (2.1)

Proof. Let Bε be the ball of unit radius centered at (1− ε, 0), so that Bε ⊆ Ωε and in particular

Ω+
ε = Bε ∩ {x1 > 0}. Let also u be a first Dirichlet eigenfunction of Bε with unit L2 norm,

and denote by T the region (shaded in Figure 3) bounded by the right circular conical surface

{
√
2ε− ε2 − x1 − |x′| = 0} and by the plane {x1 = 0}.
Since the normal derivative of u is constantly κ on ∂B+

ε , we know that

Du(x1, x
′) = Du(0, x′) +O

(√
ε
)
=

(
κ, 0

)
+O

(√
ε
)

on T . (2.2)
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Bε

T

Figure 3. The ball Bε and the cone T (shaded) in the proof of Lemma 2.1

Let us now define the function ũ : Ω+
ε → R as

ũ(x1, x
′) :=

{
u(x1, x

′) if (x1, x
′) /∈ T ,

u(x1, x
′) +

κ

2

(√
2ε− ε2 − x1 − |x′|

)
if (x1, x

′) ∈ T .

It is immediate to observe that ũ = u on the surface
{√

2ε− ε2 − x1 − |x′| = 0
}
∩ {x1 > 0}, so

that ũ ∈ H1(Ω+
ε ). Notice that ũ /∈ H1

0 (Ω
+
ε ) since ũ does not vanish on {x1 = 0} ∩ ∂Ω+

ε . By

construction and recalling (2.2),

Dũ(x1, x
′) = Du(x1, x

′) +
(
− κ

2
,− κ

2

x′

|x′|
)
=

(κ
2
,− κ

2

x′

|x′|
)
+O

(√
ε
)

on T . (2.3)

Since ũ ≥ u on Ω+
ε , and recalling that u ∈ H1

0 (B
+
ε ), one clearly has

∫

Ω+
ε

ũ2dx ≥
∫

Ω+
ε

u2dx =

∫

B+
ε

u2dx+O(ε(N+5)/2) = 1 +O(ε(N+5)/2) , (2.4)

since the small region Bε \ Ω+
ε has volume O(ε(N+1)/2), and on this region u = O(ε).

On the other hand, comparing (2.2) and (2.3), one has

∣∣Dũ
∣∣2 = |Du

∣∣2 − κ2

2
+O

(√
ε
)

on T ,

and since the volume of T is
ωN−1

N

(
2ε− ε2

)N/2
we deduce

∫

Ω+
ε

∣∣Dũ
∣∣2 dx =

∫

Ω+
ε

∣∣Du
∣∣2 dx− ωN−1

N

(
2ε− ε2

)N/2
(
κ2

2
+O(

√
ε)

)

=

∫

Ω+
ε

∣∣Du
∣∣2 dx− ωN−1

N
κ22(N/2−1)εN/2 +O(ε(N+1)/2)

=

∫

B+
ε

∣∣Du
∣∣2 dx− CNκ2εN/2 +O(ε(N+1)/2) ,

(2.5)

where CN =
ωN−1

N 2(N/2−1).

Therefore, by (2.4) and (2.5) we obtain

RΩ+
ε
(ũ) =

∫

Ω+
ε

∣∣Dũ
∣∣2 dx

∫

Ω+
ε

ũ2 dx

≤ RB+
ε
(u)− CNκ2εN/2 +O(ε(N+1)/2)

= λ1(B)− CNκ2εN/2 +O(ε(N+1)/2) .
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We can finally extend ũ to the whole Ωε, simply defining ũ(x1, x
′) = ũ(|x1|, x′) on Ω−

ε . By

construction, ũ ∈ H1
0 (Ωε), and

λ1(Ωε) ≤ RΩε
(ũ) = RΩ+

ε
(ũ) ≤ λ1(B)− CNκ2εN/2 +O(ε(N+1)/2) ,

so that (2.1) follows and the proof is concluded. �

Lemma 2.2. There exists a constant γ2 > 0 such that for every ε ≪ 1, it is

λ2(Ωε) ≤ λ1(B) + γ2 ε
(N+1)/2. (2.6)

Proof. First of all, we start underlining that

λ2(Ωε) ≤ λ1(Ω
+
ε ) ; (2.7)

in fact if we define

ũ(x1, x
′) :=

{
uε(x1, x

′) , if x1 ∈ Ω+
ε ,

−uε(−x1, x
′) , if x1 ∈ Ω−

ε ,

then by construction it readily follows that −∆ũ = λ1(Ω
+
ε )ũ. As a consequance λ1(Ω

+
ε ) is an

eigenvalue of Ωε, say λ1(Ω
+
ε ) = λℓ(Ωε). Since Ωε is connected and ũ changes sign, it is not

possible ℓ = 1, hence

λ2(Ωε) ≤ λℓ(Ωε) = λ1(Ω
+
ε ) .

It is then enough for us to estimate λ1(Ω
+
ε ). To this aim, define the set

Oε :=
{
(x1, x

′) ∈ Ω+
ε : x1 ≥ ε

}
,

and take a Lipschitz cut-off function ξε ∈ W 1,∞(Ω+
ε ) such that

0 ≤ ξε ≤ 1 on Ω+
ε , ξε ≡ 1 on Oε , ξε ≡ 0 on ∂Ω+

ε ∩ {x1 = 0} , ‖∇ξε‖∞ ≤ Lε−1 .

As in Lemma 2.1, let again u be a first eigenfunction of the ball Bε of radius 1 centered at

(1− ε, 0) having unit L2 norm, and define on Ωε the function ϕ = u ξε. Since by construction ϕ

belongs to H1
0 (Ωε), we obtain

λ1(Ω
+
ε ) ≤ R(ϕ,Ω+

ε ) =

∫

Ω+
ε

[
|∇u|2 ξ2ε + |∇ξε|2 u2 + 2u ξε 〈∇u,∇ξε〉

]
dx

∫

Ω+
ε

u2 ξ2ε dx

. (2.8)

We can start estimating the denominator very similarly to what already done in (2.4). Indeed,

recalling that
∣∣Ω+

ε \ Oε

∣∣ = O(ε(N+1)/2) and that in that small region u = O(ε), we have
∫

Ω+
ε

u2 ξ2ε dx =

∫

Bε

u2 dx−
∫

Bε\Ω
+
ε

u2 dx−
∫

Ω+
ε \Oε

u2(1− ξ2ε ) dx = 1 +O(ε(N+5)/2) .

Let us pass to study the numerator: first of all, being 0 ≤ ξε ≤ 1 we have
∫

Ω+
ε

|∇u|2 ξ2ε dx ≤
∫

Bε

|∇u|2 dx = λ1(B) .

Moreover,
∫

Ω+
ε

|∇ξε|2 u2 dx =

∫

Ω+
ε \Oε

|∇ξε|2 u2 dx ≤ L2

ε2
|Ω+

ε \ Oε| ‖u‖2L∞(Ω+
ε \Oε)

= O(ε(N+1)/2) ,
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and in the same way
∫

Ω+
ε

u ξε 〈∇u,∇ξε〉 dx ≤
∫

Ω+
ε \Oε

|u| |∇u| |∇ξε| dx = O(ε(N+1)/2) .

Summarizing, by (2.8) we deduce

λ1(Ω
+
ε ) ≤ λ1(B) +O(ε(N+1)/2) ,

thus by (2.7) we get the thesis. �

We are now ready to conclude the paper by giving the proof of the Theorem.

Proof of the Theorem. For any small ε > 0, we define Ω̃ε = tεΩε, where tε =
N
√
ωN/|Ωε| so that

|Ω̃ε| = ωN . Notice that

|Ωε| = 2ωN +O(ε(N+1)/2) ,

thus tε = 2−1/N + O(ε(N+1)/2). Recalling the trivial rescaling formula λi(tΩ) = t−2λi(Ω), valid

for any natural i, any positive t and any open set Ω, we can then estimate by Lemma 2.1 and

Lemma 2.2

λ1(Ω̃ε) =

( |Ωε|
ωN

)2/N

λ1(Ωε) ≤ 22/Nλ1(B)− 22/Nγ1ε
N/2 +O(ε(N+1)/2) ,

λ2(Ω̃ε) =

( |Ωε|
ωN

)2/N

λ2(Ωε) ≤ 22/Nλ1(B) +O(ε(N+1)/2) .

Since λ1(Θ) = λ2(Θ) = 22/Nλ1(B), the two above estimates give

lim
ε→0

λ2(Ω̃ε)− λ2(Θ)

λ1(Θ)− λ1(Ω̃ε)
= 0 ,

which as already noticed in (1.1) implies the thesis. �

Acknowledgements. The three authors have been supported by the ERC Starting Grant n.

258685; L. B. and A. P. have been supported also by the ERC Advanced Grant n. 226234.

References

[1] P. S. Antunes, A. Henrot, On the range of the first two Dirichlet and Neumann eigenvalues of the Laplacian,

to appear in Proc. R. Soc. of Lond. A (2011), available at http://hal.inria.fr/hal-00511096/en

[2] M. S. Ashbaugh, R. D. Benguria, A sharp bound for the ratio of the first two eigenvalues of Dirichlet

Laplacians and extensions, Ann. of Math. 135 (1992), 601–628.

[3] D. Bucur, G. Buttazzo, I. Figueiredo, The attainable eigenvalues of the Laplace operator, SIAM J. Math.

Anal., 30 (1999), 527–536.

[4] A. Henrot, Extremum problems for eigenvalues of elliptic operators. Frontiers in Mathematics. Birkhäuser
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Monte S. Angelo, Via Cintia, 80126 Napoli, Italy

E-mail address: c.nitsch@unina.it

Dipartimento di Matematica “F. Casorati”, Università di Pavia, via Ferrata 1, 27100 Pavia,

Italy

E-mail address: aldo.pratelli@unipv.it


