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Abstract—Local knowledge routing schemes based on virtual
coordinates taken from the hyperbolic plane have attracted
considerable interest in recent years. In this paper, we propose a
new approach for seizing the power of the hyperbolic geometry.
We aim at building a scalable and reliable system for creating
and managing overlay networks over the Internet. The system
is implemented as a peer-to-peer infrastructure based on the
transport layer connections between the peers. Through analysis,
we show the limitations of the Poincaré disk model for providing
virtual coordinates. Through simulations, we assess the practica-
bility of our proposal. Results show that peer-to-peer overlays
based on hyperbolic geometry have acceptable performances
while introducing scalability and flexibility in dynamic peer-to-
peer overlay networks.

I. INTRODUCTION

Internet routing is based on forwarding tables populated
by blocks of IP addresses. However, the construction and
maintenance of such tables requires the use of complex routing
protocols that are typically not scalable in terms of memory
and CPU usage. Moreover, experience shows that the IP
addressing plane is insufficient due to the semantic of an IP
address being both an identifier and a locator. Many efforts
are currently undertaken to define new routing schemes that
make use only of local information such as the addresses of
the node’s neighbors.

In order to test new ideas and systems, overlay networks
built on top of transport layer connections (e.g., TCP or UDP)
are a very convenient solution. Based on a peer-to-peer (P2P)
paradigm, each overlay node (typically an IP terminal node)
runs the same code and participates to the proper functioning
of the overlay. Thus overlays can easily be deployed and
modified, as the researcher has the full control of the nodes
(as opposed to IP routers controlled only by operators).

In recent years, many new routing models emerge to solve
more efficiently the problem of routing in a graph. The idea
of using the information of the node location (i.e., geographic
or geometric position in a space) in order to send messages
has been proposed in many papers. In this paper, we propose
a P2P overlay system using virtual coordinates taken from
the hyperbolic plane. The forwarding of the packets inside
the overlay thus requires a dedicated addressing and routing
scheme. We also let the nodes connect arbitrarily to each others
which leads to an overlay having a free topology.

The remainder of this paper is organized as follows. Section
II gives an overview of the related previous work. Section

III highlights some geometric properties of the hyperbolic
plane in the Poincaré disk model and shows some limitations
incurred by its use. Section IV defines the architecture of
our overlay system as well as our addressing and routing
algorithms. Finally, section V presents our simulation results
concerning the routing and addressing schemes in both static
and dynamic contexts.

II. RELATED WORK

Many existing distributed routing schemes rely on greedy
algorithms [1]–[4]. The simplest routing techniques based on
geographic coordinates are greedy, in the sense that nodes
always forward messages to the neighbor which is closest
to the destination by using the Euclidean metric [5]–[8].
However, the greediness may be wrong when there exists a
node which is nearer to the destination than all of its neighbors
without itself being the destination. This node is called a local
minimum and packets crossing this node will fail to reach
the given destination. Face routing techniques can be used for
overcoming this problem but they have poor performances,
that is why some researchers have even tried to predict local
minima such as Liu and Wu [9].

To avoid local minima, another solution is to define an
embedding. An embedding is a graph embedded in a metric
space, which is a space where the notion of distance between
elements is properly defined. An embedding is greedy, if and
only if greedy routing is always successful (i.e., the triangular
inequality is respected). The notion of greedy embedding of
graphs was defined by Papadimitriou and Ratajczak [10] and
extended by Kleinberg [11] who proved that any connected
finite graph has a greedy embedding in the hyperbolic plane.
Kleinberg also showed that we can easily embed a graph
greedily in the hyperbolic plane by creating a spanning tree
of the graph. More recently, Westphal and Pei showed in [12]
a greedy embedding on a space of dimension O(log(n))
with route tables of polylogarithmic size at each node thus
making routing scalable. Flury et al. proposed in [13] the
first polynomial-time algorithm that embeds combinatorial unit
disk graphs into O(log2(n)) dimensional space, permitting
greedy routing with constant stretch.

Which metric to use is a crucial choice. For instance, in [5]
the metric space is the Euclidean plane, virtual coordinates
are assigned using a distributed version of Tutte’s rubber
band algorithm and the embedded graph is planar, namely



it can be drawn in the plane so that the edges are continuous
curves that do not intersect each other. More recently, Moitra
and Leighton [14] resolved a conjecture of [10] that every 3-
connected planar graph admits a greedy embedding into the
Euclidean plane. Thus, to map virtual coordinates to network
nodes, one has to define a subgraph and a space. Because
a metric space biases the type of the subgraph, another
approach is to find an adequate metric space to avoid this
issue as proposed by Goodrich [15]. However, this proposition
is difficult to implement in a distributed context and this aspect
has not been studied in his paper.

An embedding technique suited for a distributed implemen-
tation is proposed by Kleinberg in [11]. However, the em-
bedding requires a full knowledge of the graph topology and
this topology is considered static. Recently, Cvetkovski and
Crovella [16] have complemented the work of Kleinberg with
the Gravity-Pressure algorithm to solve the local minimum
issues that arise in dynamic networks subject to node and link
failures. In this paper, we follow the groundbreaking work of
Kleinberg [11] by modifying his method in order to apply
it to large dynamic overlay networks. We use the hyperbolic
plane as our metric space for selecting virtual coordinates and
we propose and evaluate a scalable algorithm for dynamically
assigning those coordinates to the overlay nodes.

III. PRACTICAL USE OF THE HYPERBOLIC GEOMETRY

In this section, we recall some facts about hyperbolic ge-
ometry. Hyperbolic geometry is similar to Euclidean geometry
in many respects. It has the concepts of distances and angles,
and there are many theorems common to both. The simplest
hyperbolic space is the two-dimensional hyperbolic plane H2

of constant negative curvature −1 as opposed to the Euclidean
space which is not curved. The model that we use to represent
the hyperbolic plane is called the Poincaré disk model. In
this model, we refer to points by using complex coordinates.
We can find in the literature all the necessary information to
understand the hyperbolic plane [11], [17].

A. Properties of the hyperbolic plane

Our embedding is based on a geometric property of the
hyperbolic plane which allows to create distinct areas called
half planes.

1) Tiling of the hyperbolic plane: in the hyperbolic plane,
we can create n half spaces pair wise disjoint whatever n. This
property is the base of our embedded algorithm (red line in
Figure 1). While in Euclidean space an elementary property is
the impossibility to create more than two half planes without
having them intersect. Another important property is that we
can tile the hyperbolic plane with polygons of any sizes, called
p-gons. Each tessellation is represented by a notation of the
form {p, q} where each polygon has p sides with q of them
at each vertex. This form is called a schläfli symbol. There
exists a hyperbolic tessellation {p, q} for every couple {p, q}
obeying (p − 2) × (q − 2) > 4. In a tiling, p is the number
of sides of the polygons of the primal (the black edges and

green vertices in Figure 1) and q is the number of sides of the
polygons of the dual (the red triangles in Figure 1).

n1 [0.5;0]

n2 [-0.25;0.433]

n3 [-0.25;-0.433]

n0 [0;0]

n5

n4

n6

n7

n8

n9

Fig. 1. 3-regular tree in the hyperbolic plane.

Our purpose is to partition the plane and address each node
uniquely. That is why, we set p to infinity, thus transforming
the primal into an infinite regular tree of degree q. The
dual is then tessellated with an infinite number of q-gons
(the red triangles in Figure 1) . This particular tiling splits
the hyperbolic plane in distinct spaces and constructs our
embedded tree. An example of such a hyperbolic tree with
q = 3 is shown in Figure 1.

2) The hyperbolic distance: in the Poincaré disk model,
the distances between any two points z and w are given by
curves minimizing the distance between these two points and
are called geodesics of the hyperbolic plane. To compute the
length of a geodesic between two points z and w and thus
obtain their hyperbolic distance dH, we use the Poincaré metric
which is an isometric invariant:

dH(z, w) = argcosh(1 +
2(|z − w|2)

(1− |z|2)(1− |w|2)
) (1)

The hyperbolic distance dH(z, w) is additive along geodesics
and is a Riemannian metric. For more details on the Poincaré
metric we refer the reader to the proof in [17].

B. Evaluation of the practical addressing capacity

In theoretical perspective, the hyperbolic plane is unlimited.
However, it is necessary to use a modeled representation of
this plane and this implies the use of a precision threshold for
carrying out the calculations.

1) Floating point precision issue: one property of the
Poincaré model is misleading: the distances are not preserved.
If we observe the Poincaré model from an outside point of
view, the distance are smaller than the reality (i.e., inside the
plane) because the model is a representation of the hyperbolic
plane in the Euclidean plane. Indeed, the closer the points
are to the boundary of the unit circle, the farther they are in
reality. The hyperbolic plane has a boundary circle at infinity
represented in the Poincaré disk model by a circle of radius 1



and centered on the origin (0, 0). The open unit disk around
the origin is the set of points whose complex modulus is less
than 1.

In practice, an embedding of such a mathematical space is
constrained by the precision of the floating type used, typically
a double. This brings us to a practical concern: how can we
determine the maximum number of subspaces that we can
create to assign a coordinate to a node? This is a problem of
arithmetic precision as we reach the maximal accuracy allowed
by the calculation in floating point. The calculations usually
obey to the IEEE 754 standard which determines the binary
floating point representation. The floating point arithmetic can
also be implemented with variable length significant numbers
that are sized depending on the needs. This is called Arbitrary
Precision Arithmetic (APA). As the complexity of using APA
is important and as we have enough addressing capacity by
using standard floating point numbers, we keep on using the
classic double type representation. Thus two points cannot be
closer that the minimum non zero double. Hence, the minimal
half space is the space that can contain one distinct point.

To determine the maximum number of available addresses,
we proceed as follows. We embed a tree with a degree of
32 and a depth equals to 32. Then, we assign an address
to each node. We show in Figure 2 the gap between the
number of addresses in theory and in practice. We set the
maximum precision threshold to a given value and compute
the addresses. We vary this maximum precision threshold from
10−6 to 10−12. With these settings, the theoretical addressing
capacity remains the same whatever the precision. We see
in Figure 2 that the practical addressing capacity increases
strongly between an accuracy of 6 to 9 digits. This increase is
reduced a lot in the transition from 9 to 12 digits because less
disjoint points can be created. Furthermore, we have observed
that after 12 digits the numbers are not significant due to
the rounding errors of the log and sqrt library functions. We
observe a threshold where the addressing capacity is equal
to 2.246E+08 with the above parameters. This upper limit is
induced by the hardware and software memory restrictions of
the computer doing the calculations (i.e., 4GB of RAM and
about the same amount of swap file).
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Fig. 2. Addressing capacity as a function of the floating point precision
threshold.

2) Influence of the degree on the addressing capacity:
The precision is set to 10−12 and the tree depth is set to 32
hops. The tree degree evolves from 4 to 256. Figure 3 shows
that the theoretical addressing capacity increases linearly in
function of the degree which is expected. We see in Figure
4 that the practical addressing capacity does not follow the
same trend and remains between 2× 108 and 3× 108. When
the degree is higher than 32 the gain in addressing capacity
is weak compared to the order of magnitude observed in 3.
A fine tuning of the degree parameter can improve a bit the
addressing capacity as we can set the degree of the tree q
to the most suitable value. This is possible because, as we
create an overlay network, we have some freedom over the
building of the overlay links and thus we can restrain the
degree of the addressing tree. However, we can state that,
whatever the q degree chosen and despite the floating point
precision issues, we are guaranteed to have at least 200 million
useable addresses.
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Fig. 3. Influence of the degree on
the number of theoretical addresses.

 1e+08

 2e+08

 3e+08

 4e+08

 5e+08

 6e+08

 7e+08

 8e+08

 9e+08

 1e+09

 4  8  16  32  64  128  256

A
dd

re
ss

in
g 

ca
pa

ci
ty

Degree

practical

Fig. 4. Influence of the degree on
the number of practical addresses.

3) Influence of the depth on the addressing capacity: To
analyze the influence of the depth, we use a precision of
10−12 and the tree degree is set to 32. The tree depth evolves
from 4 to 32. In Figure 5, we can see that the increase of
the theoretical addressing capacity is exponential when the
depth increases. As expected, this matches with the normal
characteristics of H2. Because of this exponential relation
between the depth and the number of addresses, in practice, the
addressing capacity reaches the machine limits at 2.246E+08
with only a depth of 8.
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Fig. 5. Influence of the depth on the number of addresses.



IV. ADDRESSING AND ROUTING IN THE HYPERBOLIC
PLANE

We now explain in this section how we create the hyperbolic
addressing tree and how packets are routed in the overlay. We
propose a distributed, dynamic and scalable routing algorithm
in hyperbolic plane for Internet-wide overlay networks. We
solve these two issues in this paper:

1) Each node in the graph has to compute its coordinates in
the hyperbolic space without having any global knowl-
edge of the graph topology.

2) The graph can grow and shrink over time.

A. Creating the addressing tree

We recall that the hyperbolic coordinates (i.e., a complex
number) of a node of the addressing tree are used as the
address of the corresponding peer in the overlay. A node of
the tree can give the addresses corresponding to its children
in the tree. The degree determines how many addresses each
peer will be able to give. The degree of the tree is fixed at the
beginning for all the lifetime of the overlay. In the overlay,
a peer can connect to any other peer at any time in order to
obtain an address thus fixing the degree does not prevent the
overlay to grow. This specificity renders our method scalable
because unlike [11], we do not have to make a two-pass
algorithm over the whole network to find its highest degree.

The overlay is then built incrementally, with each new peer
joining one or more existing peers. Over time, the peers will
leave the overlay until there is no peer left which sets the end
of the overlay. The first step in the creation of an overlay is to
start the first peer and to choose the degree of the addressing
tree. We nail the root of the tree at the origin of the primal
and we begin the tiling at the origin of the disk in function
of q. Each splitting of the space in order to create disjoint
subspaces is ensured once the half spaces are tangent ; hence
the primal is an infinite q-regular tree. We use the theoretical
infinite q-regular tree to construct the greedy embedding of our
q-regular tree. So, the regular degree of the tree is the number
of sides of the polygon used to build the dual (see Figure 1).
In other words, the space is allocated for q child peers. Each
peer repeats the computation for its own half space. In half
space, the space is again allocated for q − 1 children. Each
child can distribute its addresses in its half space.

The first step is thus to define the degree of the tree because
it allows building the dual, namely the regular q − gon. The
algorithm 1 shows how to calculate the addresses that can
be given to the children of a peer. The first peer takes the
hyperbolic address (0;0) and is the root of the tree. The root
can assign q addresses while all the others can assign q − 1
addresses.

This distributed algorithm ensures that the peers are con-
tained in distinct spaces and have unique coordinates. All the
steps of the presented algorithm are suitable for distributed
and asynchronous computation. This algorithm allows the
assignment of addresses as coordinates in dynamic topologies.
As the global knowledge of the overlay is not necessary, a new

Algorithm 1: Calculating the coordinates of a peer’s children
CalcChildrenCoords(peer, q) ;
begin

step← argcosh(1/sin(π/q));
angle← 2π/q;
childCoords← peer.Coords;
for i← 1, q do

ChildCoords.rotationLeft(angle);
ChildCoords.translation(step);
ChildCoords.rotationRight(π);
if ChildCoords 6= peer.ParentCoords then

StoreChildCoords(ChildCoords);
end if

end for
end

peer can obtain coordinates simply by asking an existing peer
to be its parent and to give it an address for itself. If the
asked peer has already given all its addresses, the new peer
must ask an address to another existing peer. When a new peer
obtains an address, it computes the addresses (i.e., hyperbolic
coordinates) of its future children. The addressing tree is thus
incrementally built at the same time than the overlay.

B. Routing inside the overlay

When a new peer has connected to peers already inside the
overlay and has obtained an address from one of those peers,
it can start sending data packets.

Algorithm 2: Routing a packet in the overlay
GetNextHop(peer, packet) return Peer ;
begin

w = packet.destinationPeerCoords;
m = peer.Coords;

dmin = argcosh

(
1 + 2

|m−w|2

(1−|m|2)(1−|w|2)

)
;

pmin = peer;
forall the neighbor ∈ peer.Neighbors do

n = neighbor.Coords;

d = argcosh

(
1 + 2

|n−w|2

(1−|n|2)(1−|w|2)

)
;

if d < dmin then
dmin = d;
pmin = neighbor;

end if
end forall
return pmin

end

The routing process is done in each peer on the path (starting
from the sender) towards the destination by using a greedy
algorithm based on the hyperbolic distances between the peers.
When a packet is received by a peer, the peer calculates the
distance from each of its neighbors to the destination and
forwards the packet to its neighbor which is the closest to
the destination as shown in the algorithm 2. If no neighbor is
closer than the peer itself then the packet has reached a local
minima and other methods explained in subsection IV-C must
be used to successfully route the packet to the destination. If
no other method is successful then the packet is dropped.

C. Coping with dynamic topologies

In a dynamic context, several problems appear. The authors
of [16] say that the greediness of the embedding in [11] de-



pends critically on the connectivity provided by the underlying
embedded spanning tree (or planar graph). Indeed, the routing
in the hyperbolic plane is robust as long as the tree integrity
is maintained. In real network environments, link and peer
failures are expected to happen often. Clearly, the drawback
of this method is the resilience at failures. In our overlay
approach we have two levels of failures:
• The first level deals with failures in the addressing q-

regular tree.
• The second level deals with failures in the overlay graph.
At the first level, if a link in the tree fails then the greedy

hyperbolic routing will fail for paths taking this link. In
addition, if a peer other than a leaf peer fails, this will partition
the tree into a forest of up to q sub-trees and thus will disturb
the connectivity of the tree [16]. We can use a recovery or
maintenance technique of the tree forest with such a random
walks which are a natural approach to graph exploration.

The idea is attractive but in our case we do not assure to
keep the consistency addressing when the trees merge, namely
not create local minimum. Indeed, the merging without up to
date the nodes addresses of the sub tree is not acceptable.
Furthermore, whatever the existing solution, the Achilles’ heel
remains the root. Moreover the random walks is not efficient in
hyperbolic space because it tends to infinity. Thus to cope with
failures, it is necessary to design alternative routing methods.
If the addressing tree is broken, two main approaches can be
used to restore the connectivity:
• Flush the addresses attributed to the nodes beyond the

failed peer or link and reassign addresses to those nodes.
• Try to restore the tree by replacing the failed link by an

identical new link or the failed peer by a new peer with
the same connections.

The first solution that we call the flush method may be costly
if the overlay size is very large and/or if the area beyond the
failed peer/link is wide as it can lead to the renumbering of a
vast part of the network. The second solution that we call the
restore method is cheaper because the addresses are kept but
it is much more difficult to implement in the case of a peer
failure. Indeed, it will be hard for the new peer to set up the
same connections as those of the failed peer that it replaces.

At the second level, if a link of the overlay not belonging to
the addressing tree fails or if a leaf peer fails then the greedy
hyperbolic routing will still work without error although the
overlay paths may be longer. Figure 6 shows an examples of
failure on peer n6. The arrows are the alternative link usable
to route the packets.

The addressing tree is built on the overlay, this means that
it exists underlying links, potentially shorts cut which can
be became the only possible route. During the time when
the above solutions are used to repair the addressing tree,
other techniques can be used to ensure routing success. One
technique consists, for the children losing their parent, in
trying to establish overlay links to their first ancestor (i.e.,
grand-parent) as well as to their siblings as shown in Figure
6. If they succeed in doing this, then the hyperbolic greedy

n2

Ancestor

n6
n14n15

Siblings

Fig. 6. Setting alternate overlay links to overcome the failure of a peer.

routing will be guaranteed. If they do not and the addressing
tree remains broken, then the greedy hyperbolic routing may
fail because of local minima issues.

To overcome the problem, one such heuristic called Gravity-
Pressure (GP) is presented in [16] and also used in [18]. Upon
arriving in a local minimum peer, the packet enters a pressure
mode. In this mode, the packet maintains a list of the nodes
it has visited since it entered this mode, and the number of
visits to each peer. This process continues until the packet
finds a peer whose distance to the destination is smaller than
the current local minimum distance. The presented solution
requires the storage of variable length information in the
packet header which may be difficult and cumbersome to
implement.

V. SIMULATIONS

In this Section, we present the results of the simulations that
we have carried out to assess the practicability, and in some
cases the scalability, of our addressing and routing system
based on hyperbolic coordinates. We have used a packet driven
discrete event network simulator called nem [19] for obtaining
all the results shown in this paper.

A. Settings and parameters

In order to evaluate our overlay system on realistic topolo-
gies, we have used Internet maps created from real Internet
data measurements (with nec [20] and CAIDA [21]. We have
used one IPv4 75k-node map from 2003, one BGP4 34k-node
map from 2010 and one IPv6 4k-node from 2004. The floating
point precision threshold is fixed to 10−9 for all simulations.
In all simulations, the first peer creating the overlay is always
a randomly picked node of the map.

In Subsection V-B concerning the static simulations, we
have considered that every node of the map is a peer node that
is a member of the overlay. Thus, the topology of the overlay
is equal to the topology of the map and can be considered
Internet-like. The simulations are defined as static because
the nodes are always operational all the time and the packets



are instantly delivered between the nodes. The advantage of
running static simulations is that the computation costs are low
so we can use all the nodes of the map as overlay members
and thus assess the scalability of our system.

In Subsection V-C concerning the dynamic simulations, we
have considered that only some nodes at any given time are
acting as overlay peers. The simulator’s engine manages a
simulation time and each overlay peer starts at a given time
for a given duration on a random node of the map. The peer
that creates the overlay remains active for all the duration of
a simulation. The packets are delivered between the nodes
by taking the transmission time of the links into account.
Each simulation runs for 1 hour, thus only measurements
in the middle of the simulation (around 30 minutes) can be
considered as representing a steady state regime.

The number of new peers is set to 30 per minute with
random inter-arrival times set with a probability following an
exponential distribution. Each peer has a random lifetime set
with a probability following an exponential distribution with
λ = 10−5 which gives a median value of 300 seconds and a
90th percentile value of 1000 seconds. As each dynamic sim-
ulation lasts for 1 hour, this distribution of the peers’ session
lengths produces a lot of churn. The peers create overlay links
with other peers by selecting those which are closer in terms
of network hops. Finally, we collect measurements every 600
seconds.

B. Static simulations of the routing schemes

In this Subsection, we use for comparison a standard
addressing tree scheme such as the one defined in [22] and
the hyperbolic addressing tree scheme previously presented in
Section IV. We carry out simulations to evaluate the addressing
tree depth, the stretch and the congestion metrics for both
addressing schemes and on each of our three Internet maps:
IPv4, BGP4 and IPv6. We study these metrics in function of
the addressing tree degree.

We address all the nodes of a map by a breadth first
distribution algorithm. A randomly picked first node is chosen
as the root of the addressing tree. This root then computes
the d coordinates of its children in the addressing tree and
gives these addresses to its neighbor peers. Next, each of the
d addressed children computes again d − 1 coordinates and
gives these addresses to its neighbor peers. Each child repeats
the previous process until every node has an address. Each
point shown on the following graphs was calculated with a
confidence level of 95% and a relative statistical error of 5%
(not shown on graphs).

We now study the influence of the chosen degree d on
the depth of the addressing tree. The standard tree addressing
scheme has variable length addresses depending on the radius
of the graph. Indeed the first node is labeled 1, its fourth
child will be labeled 1.4, the sixth child of this child will be
labeled 1.4.6 and so on. As we use 1 byte for each level, we
can see that the number of bytes in an address will depend
on the maximum distance to the root. To the contrary, in the
hyperbolic addressing scheme each address has a fixed length

of 16 bytes (2x8-byte double types), however the depth of
the addressing tree has a maximal value that is reached when
the points are too close to the unit disk. The maximum depth
observed thus depends on the degree chosen as well as the
precision chosen.
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With Figure 7 and Figure 8 we show as a function of
the tree degree the standard addressing tree depth vs. the
hyperbolic addressing tree depth. The degree ranges from
4 to 256. We can see that in a hyperbolic tree the results
are similar to the standard tree except for the IPv4 map
where the depth is greater. However this has no impact on
the addresses as they have a fixed length in the hyperbolic
addressing. We can conclude from these two figures that for a
degree above 16, the standard tree needs addresses of length
around 15-17 bytes which is close to the fixed length of the
hyperbolic addresses. For IPv6 however, 27 bytes are required
thus making hyperbolic addressing is a better choice.

We now study the metrics related to the routing evaluation:
the stretch and the congestion. We also still show here the
influence of the tree degree as an input parameter. Obviously,
we do not study the success rate of the data delivery. In a
static setting, this rate is always 100% as explained in Section
IV. The dynamic setting will be presented in Subsection V-C.

In order to better evaluate the efficiency of these two
local routing schemes we measure here the stretch of the
routing paths. The stretch is equal to the local routing scheme
(standard or hyperbolic) path length divided by the global
routing shortest path length (i.e., the shortest possible path
computed in a centralized way by the Dijkstra algorithm). The
Figures 9 and 10 show that the degree has an impact on the
stretch. The stretch is better when we route in the standard
tree although there is a diminishing return for IP maps when
the degree is increased above 16.

In Figure 10 the best stretch values for IP are respectively
1.7 with a degree of 16 and 1.5 with degree of 32. The value of
the lowest stretch is 1.3 for the BGP map with a degree equal
to 256. In the hyperbolic routing scheme, when the degree is
higher than 32, the stretch tends to degrade and increase again
for IP maps. However we must remember that the standard
tree uses source routing which is less robust in presence of
node failures. Furthermore, the hyperbolic greedy routing is
based on a true metric (as seen in Section III) and this enables
packets to take shortcuts and be more robust in presence of
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Fig. 9. Average stretch measured
when using the standard source rout-
ing scheme
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Fig. 10. Average stretch measured
when using the hyperbolic greedy
routing scheme

node or link failures.
As the topology of the overlay is equal to the topology of

the map and that the path length between nodes is measured
with our routing algorithm, we can conclude that the paths
between any two nodes are farther in the hyperbolic scheme.
Indeed, we remark that BGP nodes have the lowest stretch and
thus the lowest path length between node which is expected
as we measure AS hops and not IP hops here. The number
of hops in AS maps are known to be much shorter than in IP
maps. Now, we evaluate the efficiency of these local routing
schemes by looking at the congestion. We define the average
congestion of a node as the number of paths passing through
it divided by the total number of paths. The Figures 11 and
12 show the congestion in the two cases. In both figures we
observe that the congestion remains quite low. Furthermore,
it is substantially the same between the two figures. However,
we note that the IPv6 map has the highest congestion. This is
because this map is much smaller than the other two. Finally,
unlike the stretch, these plots show that the degree has a weak
influence on the congestion.
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Fig. 11. Congestion measured when
using the standard source routing
scheme
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Fig. 12. Congestion measured when
using the hyperbolic greedy routing
scheme

C. Dynamic simulations of the routing schemes

In this Subsection, we evaluate the performance of our
routing system in presence of churn. Data packets are sent by
each peer (that has an address) at a rate of 1 every 10 seconds.
The routing success rate for a given peer is equal to the number
of data packets properly received by their destinations divided
by those sent by the peer. Each point shown on the following
graphs is the average value of 20 runs, and the associated
standard deviation values are plotted as error bars.

In this Subsection , we only use the hyperbolic greedy rout-
ing scheme presented in Section IV. We also limit the degree

to 64 because we saw in Subsection V-B that very high degrees
do not improve the performances. When the addressing tree is
broken because of leaving peers, the addressing tree is restored
by using the flush method described in Section IV. None of
the heuristics presented in SectionIV have been used here for
improving the routing success rate. We evaluate the average
routing success rate, the average path length and the stretch
on the smallest IP map, that is the IPv6 map, because of
the computation costs of the simulations. In Figure 13, we
can see that the routing success rate is always above 90%
which confirms the proper functioning of our system and the
efficiency of the flush method in maintaining a high routing
rate despite the churn.
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Fig. 13. Average routing success rate

Figure 14 shows the average path length of the hyperbolic
routing. The path length is measured as the number of IP hops
covered by the packet from the source peer to the destination
peer. We can see that values are larger than the ones measured
in the static simulations because here only a subset of the
nodes are peers belonging to the overlay thus statistically
increasing the distances. In the static simulations, the paths
from all pairs were evaluated and the overlay topology was
the same as the map itself. Here the nodes form an overlay
which may have a different topology and thus lower path
length optimality. This remains true even though overlay peers
always try to establish overlay links to hop-wise closer peers.
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Fig. 14. Average path length between peers when using the hyperbolic greedy
routing scheme

Finally, Figure 15 plots the stretch of the paths given by
the hyperbolic greedy routing. As before, we define the stretch



as being equal to the hyperbolic routing path length divided
by the shortest path length computed with full topology
knowledge. We observe that the stretch values are much higher
than in the static simulations for the same reasons as those
explained above for Figure 13. For all degrees above 4, the
typical stretch is around 2.6. Paradoxically for the degree 4,
the stretch is lower (around 2.3) than for higher degrees which
is again in opposition to what was observed in figure 10. The
reason may be that when the degree increases, the peers can
connect only to few other peers without having to search
a lot and may end up not optimizing enough the network
distances. With a low degree such as 4, peers have to ask
many other peers before being able to connect to them and
thus can have better peer choices with regard to the network
distance. Globally in all situations the stretch remains below
3 which is an acceptable trade-off for the flexibility brought
by an overlay routing system.
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Fig. 15. Stretch measured when using the hyperbolic greedy routing scheme

VI. CONCLUSION

In this paper, we have proposed a dynamic P2P overlay
system relying on the hyperbolic geometry. This system is able
to provide addressing and routing services to all of its peers.
The algorithms used inside our system are fully distributed
and dynamic thus ensuring that the overlays are scalable and
reliable. Our theoretical analysis of the Poincaré disk model
has shown that even though we lose a huge number of potential
addresses because of the floating point accuracy limitations,
we can still handle a vast amount of nodes (i.e., an order of
magnitude of 108) before reaching the limits of this model.
Thus, the addressing capacity is sufficient for most overlays.
Our simulation results have demonstrated in the static case that
the greedy routing yields a reasonable path stretch and a low
congestion ratio for overlay sizes ranging from 4k to 75k peers.
They have also proved in the dynamic case that the routing
success rate remains above 90% in the presence of churn. In
our future work, we plan to study more complex scenarios
involving data traffic between the overlay peers. Measuring
the throughput between the peers is a difficult task to model
and thus this will probably require the use of a real prototype.
The pipelining of transport layer connections required by the
overlay routing will surely affect this metric and this issue
needs to be thoroughly studied.
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