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ABSTRACT. In a previous work by the first author with J. Turi [2], a stastic variational inequality has been
introduced to model an elasto-plastic oscillator with Boi\ major advantage of the stochastic variational
inequality is to overcome the need to describe the trajgdipiphases (elastic or plastic). This is useful, since
the sequence of phases cannot be characterized easilytitufza, when a change of regime occurs, there are
numerous small elastic phases which may appear as an aéfae Wiener process. However, it remains
important to have informations on both the elastic and astases. In order to reconcile these contradictory
issues, we introduce an approximation of stochastic variat inequalities by imposing artificial small jumps
between phases allowing a clear separation of the eladliplastic regimes. In this work, we prove that the
approximate solution converges on any finite time intenwalen the size of jumps tends @o

1. Introduction. The elastic-perfectly-plastic (EPP) oscillator undendt&rd white noise excitation is the
simplest structural model exhibiting a hysteretic behavibloreover, the model is representative of the
behavior of mechanical structures which vibrate mainly lagirtfirst deformation mode. In the context of
earthquake engineering, relevant applications to pipystesns under random vibrations can be accessed
this way [6, 7]. The main difficulty to study these systems esrfrom a frequent occurrence of nonlinear
phases (plastic phases) on small time intervals. A nonlippase corresponds to a permanent deformation,
or in other words to a plastic deformation. A plastic defatiorais produced when the stress of the structure
exceeds an elastic limit. Denoting byt) the elasto-plastic displacement, we consider the problem

&+ cox + F(z(s),0 < s <t)=w, (1.1)
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with initial conditions of displacement and velocity
z(0)=z , #(0)=uy.

Herec, > 0 is the viscous damping coefficierit,> 0 the stiffnessy is a Wiener process afti({z(s),0 <
s < t}) is a nonlinear functional which depends on the entire ttajgc{x(s),0 < s < ¢} up to timet.
Denotey(t) := @(t). Equation (1.1) written as a stochastic differential emue(SDE) reads

dy(t) = —(coy(t) + F({z(s),0 < s < t}))dt + dw(t), dx(t) = y(t)dt. (1.2)

Beyond a given threshold”({z(s),0 < s < ¢})| = kY for the nonlinear restoring force, the material goes
through plastic deformation (see e.g. [9]). Introducig), the total plastic yielding accumulated up to
timet, we can define a new state variablg) asz(t) := z(t) — A(t). It follows that in the plastic regime,
2(t) = 0. From now on, we choose to express the restoring férger(s),0 < s < t}) in (1.2) in terms of
the new variable:(t) asF({z(s),0 < s < t}) := kz(t) where|z(t)| < Y. In other words we consider a
linear restoring force of the variablgt) (whose modulus equals Y during the plastic phases). Thiesdyp
force characterizes the elasto-perfectly-plastic befmavi

In [2], for the previous choice foF', it is shown that (1.2) is equivalent to a stochastic vasial inequal-
ity (SVI). In addition, existence and uniqueness of an ilrd@rmeasure for the solution of SVI have also
been proven. For a general framework dealing with this aéswequalities we refer the reader to [1] and to
[5] for specific deterministic applications to mechanicdthBugh SVIs have been already studied in [1] to
represent reflection-diffusion processes in convex setspnnection with random vibration problems had
been made so far. From [2], the solutify(t), z(t)) € R? of (1.2) satisfies

y(t) = —(coy(t) + kz(t)) +w(t), (2(t) —y@)(P —2(t)) 20, V|g| <Y, [2() <Y. (1.3)

In terms of dynamics of the proce$s(t), z(t)), a plastic deformation begins whetit) reaches and is
absorbed by (resp. —Y’) with positive (resp. negative) slopg(t) > 0. (resp. y(t) < 0) i.e. when
sign(y(t))z(t) = Y. Then, the plastic behavior ends when the velocity charigas At that time, the elastic
behavior is reactivated. However, around 0, the velocitictvis subjected to white noise, changes sign an
infinite number of times during any small time interval. @ftéhis leads to a return into plastic behavior in
a short time duration. This phenomenon is calteidro-elastic phasin@nd has been studied in [8] using
the numerical method developed in [4] for the SVI (1.3). lyd a crucial role on frequency and statistics
of plastic deformations. Because of this phenomenon, &ecy of occurence, statistics (time duration or
absolute plastic deformation) and the sequence of entryasstip phase (as well as the sequence of exit)
are not well defined. In this paper, we consider an EPP ofwillander standard white noise excitation
subjected to jumps (presented below) to study phase fi@msitlt has the advantage of separating phases
clearly, while being an approximation. We prove the congaag of the approximated process towards the
solution of the stochastic variational inequality (1.3).

1.1. Model definition and convergence results.In this subsection, we introduce a stochastic variational
inequality whose dynamics is “almost" similar to the one df3] except that the second component is
subjected to jumps of magnitude > 0 at some random times corresponding to the various exitseof th
plastic phases.

Precisely, we describe the evolution of the new pro¢gss), z¢(¢)) by the following procedure; we start
by definingr§ := 0 and by(y§(t), z5(t)) the solution of (1.3), with initial conditions:

y5(0) =y and z5(0) =z, (y.2) € R x (<Y.Y) = D.
Then, we define
i :=1inf{t >0, y5(t)=0 and |z5(t)|=Y}.
Fort > 7¢, let (y{(t), z{(t)) be the solution of (1.3) with initial conditions:

yi(ri) =0 and z{(r) = sign(z(r1)) (Y —€),
2



again, we define
75 = inf{t > 7f, yi(t)=0 and |2{(t)|=Y}.
In a recurrent manner, knowingg, v, (¢), andz¢ (¢), we define
Toy c=inf{t > 75, yr(t) =0 and |z, ()] =Y},
and(yy, 1 (t), 25,1 (t)) be the solution of (1.3) with initial conditions:
Y1 (Tog1) =0 and 2 (7541) = sign(z;, (17,11)) (Y —¢).

Now, we define the procegg(t), z°(t)) on each interval of timéry;, 75 ;) as follows:

ye(t) = —(coy(t) + kz°(t)) + (), (£°(t) —y (1)@ —2(t)) 20, Vig| <Y, [(t)| <Y (1.4)
with the following jump-conditions:
y(r—) =0,  2(1,—) = z1(7),
and
y(r,) =0, 2(7;) = sign(z;,_; (75,)) (Y — €).

Remark 1.1. By construction, the procesg“(t), z°(¢)) is cadlag; hence it is regular. In particular, for
each fixedimeT > 0, the number of jumps arise (i, 7], is finite a.s.

We will prove that the solutioify®(¢), z¢(¢)) converges tdy(t), z(t)) on any finite time interval, whea
goes ta) in the sense described below.

2. Main results. Our main result is the following theorem.

Theorem 2.1. Fix T > 0, and consider the processésg(t), z(t)) and (y°(t), z°(¢)) satisfying(1.3) and
(1.4)respectively. Suppose that> X (cp) := 1 <—%° +co\/%
property holds:

+ 4%0>. Then, the following convergence

lH-z[sup {|y(t)—ye(t)|2+k:|z(t)—ze(t)|2}] 50 as e0.
€ 0<t<T

Remark 2.2. Observe that the above condition relatihgand ¢ is purely technical. It will appear clearly
in the proof of Lemma 2.5 below.

2.1. Preliminary results. For(y, z) € D := Rx(-Y,Y), we consider the “elastic" procegg,.(t), z,.(t)):
—ec 1 1 t c
2ye(t) = 72 {z 008 (wt) + —(y + T2) sin ()} + / e~ =) sin (w(t — 5))duw(s),
w w Jo
Co _cot

yet) = = Laye(t) + e F {—wzsin () + (y + L2) cos (wi)} + /0 e~ B cos (w(t — s))chw(s).

where, assumingk > 3,

\/ 4k — c%.

2

Remark 2.3. The terminology “elastic” is justified from the observatithat (y,.(t), z,-(t)) is actually the
solution of

W =

y(t) = —(coy(t) + kz(t) +w(t), 2(t) =y(), (yy=(0),242(0)) = (y,2),
that is the explicit solution of1.3)when the threshold™ = oo (purely elastic case). Note that the condition

4k > ¢} is needed so thaty(t), z(t)) have real valued solutions.
3



Define
0(y,z) :=inf{t >0, |z.(t)| =Y}, (2.5)
where(y,.(0), z,-(0)) = (y, 2). Fort € [0,T], we setu(y, z,t) := P[A(y,z) > T — t]. This function is
regular and satisfies the mixed Cauchy-Dirichlet paratfilid
—up+Au=0,inD; wu(y,Y,t)=0, y>0; u(y,-Y,t)=0, y<0; wu(yzT)=1 (2.6)
with )
Au = — 5y + (coy + k2)uy — yu..
Fort < T, the functionu(y, z,t) is locally smooth. On the other hand, in the particular caberw
(1y=(0),24-(0)) := (0,Y — ¢€), we consider the probability density functiphof (yo,y—(t), z0,y—e(t)). It
is also known thap® satisfies Chapman-Kolmogorov’'s equation
P+ AP =0, p(y,2,0)=0d0y-c(y,2), (2.7)
where A* represents the adjoint operator4fthat is

X € 1 € € €
A" = —opyy — ((coy + k2)p%)y + ypt.

Next, observe that the processgs _(t) andyo,y_.(t) are gaussian processes. The key point is to express
the solution of (2.6) through its variational formulatiotithvp® as test function (see proof of Lemma 2.4).

The mean, variance and covariance®f _.(t) andyg y _.(t) write:

m(t) .= (Y — e)eic%t(cos wt + 26—0 sinwt), o%(t) = % /t e~ 0% sin?(ws)ds, (2.8)
w w= Jo
cot t

q(t) == —(Y — e)ge_T sin wt, O'Z(t) = /0 e % (cosws — 20—2) sin ws)?ds, (2.9)

and 1
oys(t) = 2—w26*‘3°tsin2 wt. (2.10)

The densityp® then explicitly writes
c _ 1 1 (y—q°®)? | (z—m (1)’
P00 e o —2or? ™ {_2<1 P2(0)) { 20 o0

= 2p(O)(y —q“ (1) (2 — me(t))} } 211
7000 ’ N

where the correlation coefficieptt) is defined byr,.(t) /o, (t)o(t). Observe that for = 0, (2.11) reduces
to

o 1 e { g [ 4 LW, (2= m'(1)?
P = Doy — PO »{-sa 20 T 20
= 2p(0)(y = ¢"(1)(z — mo(t))} } 212
o) (0 ’ (212
with
mP(t) := Ye_c%t(cos wt + 20—3 sinwt), ¢°(t) := —Yge_%t sinwt. (2.13)
From (2.8)-(2.13) we can easily see that
me(t) =mO(t) — ef(t), q‘(t) = q°(t) + eg(t), (2.14)
with L
= _%t COs W C—Osinw = —e_%t sin wt.
ft):=e 2 ( t+ 70 t) and g¢g(t) " t
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Plugging (2.14) into (2.11), we obtain

+

Py, 2, t) = ! 1 [(y — [¢°(t) + eg(t)])?

2 (t)ery () (1 — ()72 {—2<1 —2(0) 10
(= [0 S O] 20000 = [2°0) + co®) e = [0 - OD | 510
22(1) 7, (0.0 - @

Now, notice that

(y — [¢°(t) + eg(t)])? L= [m°(t) —ef ()] 2p(t)(y — [¢"(t) + eg(D)]) (= — [m°(t) — ef (1)])

oy () o2 (t) - oy(t)o=(t)

PO omF 20 SOt o[£, 2O, 200070)
=10 2(0) 7,070 20 ") " o, 00-0)
(y—a’®)g(t) (= —m’(t)f(t) p(t

—2¢ O';(t) - O’%(t) + O'y(t)O'Z(t) ((y - qo(t))f(t) - (Z - mo(t))g( )):| (2 16)

Then considering (2.12), we have

¢ - r —(z—m S

(2.17)
where
B 1 g@) | L2 | 2p@)g(t)f(t)
Al = T <05<t>+az<t>+ 7y (1) (1) )
0 = L% e
s = PO gt

We now give a representation@f0, Y —¢, 0) in terms of the densitigs’ andp® of the Gaussian processes
(20,y—€(t), yo,y—e(t)) and(zo,y (t), yo,v (t)) respectively. The proof is postponed to Section 3.

Lemma 2.4. Letu be a solution of(2.6). Then, it satisfies
u0.Y — 6.0 = [ [ T) = 90,2, T)] dy
D

—l—/Tyu(y,Y,t)pO(y,Y, t) [exp{—%ezA(t)—l-( pz(?f)) t)} ]dydt

1 c(yr(t) ~ Y1(1)
- [yt 10010 o {50 + LT b -

(2.18)
with
Yh(t) = qo(t)r(t) + (Y —mo(t))s(t), h(t) := —g(t)r(t) + (1 = f(£))s(D),
Yi(t) = qo(t)r(t) = (Y +mo(t)s(t), l(t) := —g(t)r(t) — (1 + f(t))s(t),
Df = (0,T) x (0,00) and D7, := (0,7T) x (—00,0).

5



Now consider the terms

H¢ :/D [pg(yaZaT) _pO(y, Z’T)] dydz’

€ _ u 0 ox _162 e(yr(t) — Yh(t)) _
1= [ v fon {-stan + TG < ek @i

L /D yuly, Y05y, Y1) [exp {—16214(15) L _clyr(®) — Vi) } - 1] dydt.

2 (1= p2(t))oy(t)o=(t)
Next, we study the behavior of these last integrals, witfatisfying (2.6) so that the previous lemma holds,
whene is sufficiently small. The proof is also postponed to Sec8on

Lemma 2.5. LetJ¢, I, and H¢ be the integrals of above. Suppose that

1 c 1 c
k>X+(Co) 125 <—§O+CO §+4EO> .

Then,
° liminfe_m L — oo,
° hmHO |s finite,
° 11m5—>o * is finite.
Therefore,
lim u0.Y =0 _ +o0o and lim u(0, =Y +6,0) _
e—0 € e—0 €

2.2. Proof of Theorem 2.1. We shall use the notation, = sign(z¢(75—)). Recall that, for each > 1,
the stopping timer represents the instant of the-th jump of the proceséy©(t), z°(¢)). Hence, for all
Tn <t <Th g andn > 1, we deduce from (1.3) and (1.4) that

y(t) =g (t) = = [eo(y(t) — y°(1)) + k(z(t) — 2°(¢))], and

(5() =y (£)(=(1) — 25(1)) > 0,

(2(t) —y(@))(z°(t) — 2(t)) = 0.

By using the notatior//dt of derivatives, we obtain

L (wt) ~ v (0) = —eolu(®) () — k(=(t) — (1), 2.20)
(0= =0 = ) = (0) ) () ~ =) <0, @.21)

Multiplying by (y(t) — y°(¢)) in (2.20) and using the product rule for derivatives, we getnf (2.20) and
(2.21)

=l — (O + colylt) —y OF < —k(=() — <) (D) (1)
< DL~ <) (222)
forallr;, <t <75, andn > 1. Now, integrating (2.22) ofry;, 75, 1) and noting thay(7;—) = y(75),
yE(TfL—) =y (15) =0, 2(1,—) = 2(7f), for alln. > 1, we obtain
)l =2 [ IO =y OF b |=(r50) = 2 o) Pk () - (70 <0

7'L

(2.23)
6



But
k|z(7s) — 2°(r5)

n

k|(2(75) — 2°(r5=)) + (2°(75—) — 2°(75))?
k|2(m6) — 25(15 =) 2 + k €2

+2ke oy, (2(15) — 2°(15—)) - (2.24)
Plugging (2.24) into (2.23), and rearranging terms, weinobta
[y )|” = [y )P+ k[2(r500) = (i1 o) = k() = 255

260 / Tyt — g (OF db < ke + 2ke(052(r5) — Y.

We can drop the terrdke(cf z(75) — Y) < 0 and get
\y n+1| — |y(7, | +k‘ (1) — 2 (Thg1— | —klz(ry,) — Ze(ﬁ—)|2

Tht1 . 9 9
+2cg ly(t) — y(t)|” dt < ke®. (2.25)

€
n

Observe that, foiv € N*, we can iterate (2.25) for < n < N to obtain
€ 2 € € € € 2 € € €
‘y(TNJrl)‘ - |y(71)|2+k‘Z(TN+1) -z (TN+1—)| —klz(mf) — 2 (7'1—)|2

+200/ ) — gt ()2 dt < kNe2.

€
1

Also, recalling thay (r{) = 0, |2(r{) — 2“(r{—)|* = 0, and that["" |y(t) — y*(t)|* dt = 0, we derive:

€ 2 € €(, € 2 TIEVJrl € 2 2
|y(7'N+1)| +k|2(th ) — 2 (TN+1—)| +2CO/O ly(t) —y“(t)|” dt < ke*N. (2.26)

Denote the total number of jumps of the procég<t), z¢(¢)) arising in the time interval0, T') by N, :=
maxy {75y < T'}. Note thatl’ < Tne+1. Hence, from (2.26), we deduce

T
swp WP +k sup (o) — (o) 200 [0~y OF o < kN (227
1<n<NS+1 1<n<NS+1 0
Assume firstz(0) = Y — e. According to the definition of (2.5) seét := 6(0,Y — ¢) = inf{t >
0, |2°(t)] =Y} =inf{t > 0, |20y_c(t)] = Y}. Itis clear thatr{ > 6 a.s. and the®(r{ >
T) > P(#° > T). Now, let us assume(0) = —Y + e. Itis easy to verify thau(—y, —z,t) = u(y, 2, 1),
which gives
P > T) = u(0,Y —€,0) = u(0, =Y +¢,0).
Thus, by Lemma 2.5 we hav%ge%ﬂ — +oo. Therefore, if the initial conditiorz(0) associated to (1.4),

is a random variabl& (law) P10y —e + (1 — p1)d_y 4. independent of the Wiener proces$t), then again
settingdf. :=inf{t > 0, |zr(t)| =Y},

w—)+o® as e¢— 0.

Coming back to equation (2.26) and noting thet = x(-<<7}, We get
ENf =Y Ex{r<ry = Exgrpery + ) Exgr<ry. (2.28)
n=1 n=2
Observe that for ath > 2 and thatr;; — 7°_, is independent of;_,

Ex{re<ry = E [X{T;_lST}X{TW;_IST*T;_J} < Ex(re <y EX{rg—re_ <1} (2.29)
7



But note that
EX{rg—re_,<ry <P(0°<T).

From the last inequality and using (2.29), we deduce

EX{rs<r) < Exgre<ry(1 —u(0,Y —¢€,0)" .

This yields
(I —u(0,Y —¢,0)) €EX {re<y
ENS < Eyy e < L . 2.30
T = EXA<T) u(0,Y —¢,0) 7 eu(0,Y —¢€,0) (2.30)
Hence, from Lemmas 2.4 and 2.5
e EN;: — 0 ase—0. (2.31)

Thus, as goes ta), (2.27) and (2.31) yield

1
- {E [ sup  |y(75)[
€ 1<n<Ng+1

Since the forced jumps have magnitudé¢his implies:

1
€

sup  |z(7) — 2%( fl—)|2 — 0.

T
- 2COE/ ly(t) — y(t)]* dt + kE <
0 1<n<Ng+1

(2.32)

T
sup \y(TfL)\Q + QCOE/ ly(t) — yE(t)\2 dt + kE sup  |z(7) — 2'6(7'71)]2 — 0.
0

1<n<NSA+1 1<n<NS+1
(2.33)
Also, by (2.22), we can see that any < t < 7, ; satisfies
ly(8) =y (O = ly(m)|? + kl=(t) — ()7 = k|2(75) — 2°(75)|* < 0.
This gives
sup  {Jy(t) = y (O + klz(t) = 2 ()} < y(r)|” + kz(r) = = (7).
7'6<t<’rnJr1

Hence,

sup {Jy(t) =y O +kl2(t) = (P} < sup { sup  {ly(t) =y () + K |2(t) —zﬁ(t)\Q}}
TE<t<T 1<n<NgA+1 | 75<t<rs,,

< sup LR+ k) - 1}
1<n<N&+1

Also,

sup {Iy(®) =y (O)F + ko) — 0P} < sup )P +klar) — 2R}

0<t<T 1<n<N&+1

Therefore, (2.33) gives
1

-E

€ 0<t<T

sup {|y(t) g )+ k|2(t) — ﬂt)ﬁ}] 0 ase—0.

8



3. Proof of the technical lemmas. This section is devoted to the proofs of Lemmas 2.4 and 2.5.
Proof of Lemma 2.4F-rom (2.6), we have

T
0 = / /(—ut + Au)p® dydzdt

= / / uyy (coy + kz)uy — yu)p® dydzdt

= —/ “(y,z,T)dydz + u(0,Y — / / up;dydzdt

//—upyydydzdt // (coy + kz)p©),dydzdt

—/ yu(y,Y,t)p E(y,Y,t)dyalt—i—/ yu(y, =Y, t)p(y, =Y, t)dydt

Dy

/ / yupsdydzdt. (3.34)

By using (2.7) and rearranging terms, (3.34) becomes

w(0,Y —€,0) = / PX(y, 2, T)dydz + / yuly, Y, p (5, Y £)dydt — / yuly, Y, Oy (y, Y, £)dyc.
D - D

Dr T
(3.35)
In addition,p®(y, z,0) := o,y (v, 2), and

+

0= [ P Tidyds + [ gty YooYty — [ yuly, Y00 -Y. k. (3:36)
D T Dy
Using (2.17) and substracting (3.36) to (3.35), we can dedue result (2.18).

Proof of Lemma 2.5First note that, on a neighborhoodﬁo& 0, we have the following expansions:
o f(t)= e % (Cos wt + g2 sinwt) =1 — k:% + £0(cB + 2w)t3 + o(t3),
e g(t)= fei Y sinwt = kt(1 — 2t) + o(tQ).
From (2.8)-(2.10), we also have
e oi(t) =t—cot®> +o(t?), oy(t) =Vt ((1—S1t)+o(t)),
o o2(t) =5 — ol +o(th), o.(t) =5 ((1-22t) +o(t)),
o Z0 = (1421 + o)),
o p(t) = L3 (1— Lt +o(t)), recalling thaip() = aﬁ)ﬁ)@)-
Equation (2. 13) yields
e g ():—th(l—— )+ o(t )
o« mO(t) =Y (1 - kﬁ) +o(1?).
Recalling thatr(t) = L@() + p(t)f(t) and s(t) := f(t)”(“)(t) + p(t)g(t) and using the previous es-
timations, we can check thatg(t)r(t) = —2{3¢ + 33kt 4 o(t2) and (1 — f(t))s(t) = =3¢ +
f (k2 — 3ok — ) t2 4 o(t?). Thereforeh(t) ~ fP(co, k)t? where

3
Pleo k) = k2 + L - Q0
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DenoteX (¢p) := <—— + coy /% + 4%0). Since we have assumed that- X (co), it then follows that

R (0) = 0 andr” (0 fpéco’k) > 0. We can thus consider a fixed interv@l £) such that” () > 0 on

[0,%], henceh(t) > 0 on (0,). Also, we haver(t) = @(1 — @t + o(t)). Hence, there exists a positive
constantt such that-(t) > 0 on[0,#]. Letty := min{¢,#}. This implies that(t) > 0 andr(t) > 0 on
(0,%p). Recall thath(0) = 0. Now write, from (2.19)

I°=If + 15,

(0) =

with
5= [0 oo [en {-geam + 2 i ()» S b e
o - [ [rnaleo{ o Y e

From the definition ofy, h(t) > 0 andr(t) > 0for0 < t < ty A T. Moreover,y < 0in I{, so we have

1 e(yr(t) - Yh(t))
2 AN T 2, 0. @

Therefore, the integrand i is a positive function. Now, using the basic inequaliyp{—z} — 1 <
—zexp{—=a}, forxz > 0, we can write

[T [t vy [feai - DT ]

1 e(yr(t) — Yh(t))
X‘“p{‘igA“)+<1—p%ﬂb¢@wxw}}*“t

/WT/ Y0¥ | &»m]

e(yr(t) — Yh(t))
X exp {—§E2A(t) + 0= 2(0))oy o0 }] dydt. (3.37)

As the integrand in the right hand side of (3.37) is a posifivection, Fatou’s lemma yields the following

inequality,
g X oA 0 (yr(t) — Yh(t))
gt = /0 /ooy Y 00" (5 Y2t) [(1 —pz(t))ay(t)az(t)] dvel

As A(t) > 0, we get

(3.38)

Note that in (3.38) the right hand side may-bec. For IS, sincet > to AT, there is no singularity &t= 0.
Therefore, taking the limit 01‘5/6 we obtain

im inf -2 yu y,Yt O(y, Y. t)(yr(t) — Yh(t))
! f /to/\T/ — p2(t))oy(t)o(t) dydt (3.39)

e—0 €

which is finite. Note that

_ " |h(t)] 0
J = —/0 a7 [/ yu(y,Y,t)p°(y, Y, t)dy| dt




is finite. Indeed, from the expansion bkft) we have that locally in time
h(t)
oy(t)o=(t)
is bounded. Moreover from (3.36) above

T 0
- / / yuly, Y. 05 (4, Y, H)dydt < oc.
0 —00

Collecting results we can assert that

caede o T 0 yPr(®uly, Y 0p°(y, Y, t)dydt
1 5—>0f € 2/0 /oo (1 —Pz(t))ay(t)O'z(t) (340)

B 4 h(t) 0 0
Y[ o 207y D=0 </oo yuly, Y, 0)p <y’Y’”dy> a

The second integral is finite. Now, let us show that the fitgtgral is+oco. We check that

0
lim [ y?u(y,Y,t)p’(y,Y,t)dy > 0.

t—0 o

The functionu(y, z, t) is increasing irt. Indeed, from the probabilistic representation we have
u(y, z,t1) =Pl0(y,z) > T —t1] <Pl0(y,z) > T — ta] = u(y, z,t2), Vi1 <to.

Therefore, we have
0 0
lim [ y*u(y,Y,0)p°(y, Y, t)dy < lim / y*uly, Y, t)p"(y, Y, t)dy (3.41)
t—0 ) _ t—=0 ) _
Now,
u, (0—,Y,0) < 0.
Indeed Ve >0, wu(—c,Y,0) > 0andu(0,Y,0) = 0. So,
u, (0—,Y,0) <0.
It cannot be equal t0, otherwise the derivative exists ang(0, Y, 0) = 0. But then by minimum properties
we haveu,, (0,Y,0) > 0, that contradicts

1
—u(0,Y,0) — §uyy(O,Y, 0) =0.
Therefore fory < 0 close to0 we have
u(y,Y,0) ~ay, a<D0.

On the interval —7, 0), we can assume(y, Y, 0) > Sy. So,

0

0
lim [ y?u(y,Y,0)p°(y,Y,t)dy > lim / 2y (y, Y, t)dy.
t—0 _y t—0 _q 2

From (3.40), sincg(OT (1_p2(t;")(jz GrEO) dt = +o0, it is sufficient to check the property

0

li 30001, Y. .
lim _nyp(y, ,t)dy < 0

Set
p()Y (1 — f(t))oy(t)
o(t) ’

Go(t) :==qo(t) +
11



then
0 ! o (LY S (= @)’
) = e RO (5o ) e 2<1—p2<t>>oz<t>>‘
Hence,denoting

3

y exp (_ (v — () > dy
oy V2m0, (1) (1 — p2(t))1/2 2(1 - p2()oz(t))
we get
0 1 1Y2(1— f(t))?
30(y, Y, t)dy = <__ 7>L_ 3.42
/_nyp(y )dy Vo P\ n (3.42)
In addition, by change of variables, we have
T 1, du
_ [ a=p?@M 2oy 20172 3 _ 1.2
L, / e @n(0)+ (1= p(0) 2o (1) exp(—gut) . (3.43)
(1=p2 )/ 20y 1)
Therefore, fort close to0 we havegy(t) ~ —m and we can check using formula (3.42) and (3.43) that
. 0 13 3 15
lim ny 5y, Y, t)dy = PP _Oou exp(—gu”)du.
Finally, smce% 2t2 (1+ 3C°t + o(t)), the first integral in the right hand side in (3.40Hisc. We
thus have proven
lim I— = +4o00.
e—0 €

Next, consider from (2.19) the term

Lot [ [ vty [ow {-1eam + 0O Ly g

1= 2(1)a, (Dot

From (2.12) we have

_ 1 ol L [=dW)? (e mO)?
210 (8)oy () (1 — p2(£))172 2(1
L 200y = )Y + mo(t))} } _
oy(t)o=(t)
Due to the termexp{— %} we do not have a singularity becauseroft). Indeed,Y +m?°(t) >
Y (1 —exp(—%7)), and fort close to0 we have

1 exp [ — (Y +mO(t))?
o+ (t) 2(1 = p*(t))oz(t)
< 2(1 - p?(1)) Y +m(t) exp (_ (Y +m(t))* >

Y(1—exp(—22)) \ /2(1 — p2(1))o-(t) 2(1 = p2(t))o2(t)

(- mO))?

<Cow (- 15— A
whereC' > 0 is a constant depending @h From the above equation and recalling the asymptotj¢s) ~
\V/t for t close to0, we deduce that the quantity

(yr(t) —YI(?))
/ / yu(y, =Y, t)p ( -Y, t)[(l = pz(t))ay(t)az(t)]dydt

pO (ya —Y’ t)




is well defined. In the same way
=t | 00D P T)) ey,
has a well defined limitTherefore, from (2.18), we deduce
u(0,Y —¢,0)
€
As before, let us assume thg)) = —Y + €. Itis easy to see that(—y, —z,t) = u(y, z,t). This yields

PO >T)=u(0,Y —¢,t) =u(0,-Y +¢0),

— 400 as e—0. (3.44)

u(0,—Y +¢,0)
€

SO — 400 as well. This completes the proof.
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