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1. Introduction. The elastic-perfectly-plastic (EPP) oscillator under standard white noise excitation is the simplest structural model exhibiting a hysteretic behavior. Moreover, the model is representative of the behavior of mechanical structures which vibrate mainly on their first deformation mode. In the context of earthquake engineering, relevant applications to piping systems under random vibrations can be accessed this way [START_REF] Feau | Les méthodes probabilistes en mécanique sismique. Applications aux calculs de tuyauteries fissurées[END_REF][START_REF] Feau | Probabilistic response of an elastic perfectly plastic oscillator under Gaussian white noise[END_REF]. The main difficulty to study these systems comes from a frequent occurrence of nonlinear phases (plastic phases) on small time intervals. A nonlinear phase corresponds to a permanent deformation, or in other words to a plastic deformation. A plastic deformation is produced when the stress of the structure exceeds an elastic limit. Denoting by x(t) the elasto-plastic displacement, we consider the problem ẍ + c 0 ẋ + F(x(s), 0 ≤ s ≤ t) = ẇ, Here c 0 > 0 is the viscous damping coefficient, k > 0 the stiffness, w is a Wiener process and F({x(s), 0 ≤ s ≤ t}) is a nonlinear functional which depends on the entire trajectory {x(s), 0 ≤ s ≤ t} up to time t. Denote y(t) := ẋ(t). Equation (1.1) written as a stochastic differential equation (SDE) reads dy(t) = -(c 0 y(t) + F ({x(s), 0 ≤ s ≤ t}))dt + dw(t), dx(t) = y(t)dt.

(1.2)

Beyond a given threshold |F ({x(s), 0 ≤ s ≤ t})| = kY for the nonlinear restoring force, the material goes through plastic deformation (see e.g. [START_REF] Karnopp | Plastic deformation in random vibration[END_REF]). Introducing ∆(t), the total plastic yielding accumulated up to time t, we can define a new state variable z(t) as z(t) := x(t) -∆(t). It follows that in the plastic regime, ż(t) = 0. From now on, we choose to express the restoring force F ({x(s), 0 ≤ s ≤ t}) in (1.2) in terms of the new variable z(t) as F ({x(s), 0 ≤ s ≤ t}) := kz(t) where |z(t)| ≤ Y . In other words we consider a linear restoring force of the variable z(t) (whose modulus equals Y during the plastic phases). This type of force characterizes the elasto-perfectly-plastic behavior.

In [START_REF] Bensoussan | Degenerate Dirichlet Problems Related to the Invariant Measure of Elasto-Plastic Oscillators[END_REF], for the previous choice for F , it is shown that (1.2) is equivalent to a stochastic variational inequality (SVI). In addition, existence and uniqueness of an invariant measure for the solution of SVI have also been proven. For a general framework dealing with this class of inequalities we refer the reader to [START_REF] Bensoussan | Contrôle impulsionnel et inéquations quasi variationnelles[END_REF] and to [START_REF] Duvaut | Inequalities in Mechanics and Physics[END_REF] for specific deterministic applications to mechanics. Although SVIs have been already studied in [START_REF] Bensoussan | Contrôle impulsionnel et inéquations quasi variationnelles[END_REF] to represent reflection-diffusion processes in convex sets, no connection with random vibration problems had been made so far. From [START_REF] Bensoussan | Degenerate Dirichlet Problems Related to the Invariant Measure of Elasto-Plastic Oscillators[END_REF], the solution (y(t), z(t)) ∈ R 2 of (1.2) satisfies

ẏ(t) = -(c 0 y(t) + kz(t)) + ẇ(t), ( ż(t) -y(t))(φ -z(t)) ≥ 0, ∀|φ| ≤ Y, |z(t)| ≤ Y. (1.3) 
In terms of dynamics of the process (y(t), z(t)), a plastic deformation begins when z(t) reaches and is absorbed by Y (resp. -Y ) with positive (resp. negative) slope, y(t) > 0. (resp. y(t) < 0) i.e. when sign(y(t))z(t) = Y . Then, the plastic behavior ends when the velocity changes sign. At that time, the elastic behavior is reactivated. However, around 0, the velocity which is subjected to white noise, changes sign an infinite number of times during any small time interval. Often, this leads to a return into plastic behavior in a short time duration. This phenomenon is called micro-elastic phasing and has been studied in [START_REF] Feau | An empirical study on plastic deformations of an elasto-plastic problem with noise[END_REF] using the numerical method developed in [START_REF] Bensoussan | An Ultra Weak Finite Element Method as an Alternative to a Monte Carlo Method for an Elasto-Plastic Problem with Noise[END_REF] for the SVI (1.3). It plays a crucial role on frequency and statistics of plastic deformations. Because of this phenomenon, frequency of occurence, statistics (time duration or absolute plastic deformation) and the sequence of entry in plastic phase (as well as the sequence of exit) are not well defined. In this paper, we consider an EPP oscillator under standard white noise excitation subjected to jumps (presented below) to study phase transitions. It has the advantage of separating phases clearly, while being an approximation. We prove the convergence of the approximated process towards the solution of the stochastic variational inequality (1.3).

1.1. Model definition and convergence results. In this subsection, we introduce a stochastic variational inequality whose dynamics is "almost" similar to the one of (1.3) except that the second component is subjected to jumps of magnitude ε > 0 at some random times corresponding to the various exits of the plastic phases. Precisely, we describe the evolution of the new process (y ǫ (t), z ǫ (t)) by the following procedure; we start by defining τ ǫ 0 := 0 and by (y ǫ 0 (t), z ǫ 0 (t)) the solution of (1.3), with initial conditions:

y ǫ 0 (0) = y and z ǫ 0 (0) = z, (y, z) ∈ R × (-Y, Y ) := D. Then, we define τ ǫ 1 := inf{t > 0, y ǫ 0 (t) = 0 and |z ǫ 0 (t)| = Y }. For t ≥ τ ǫ 1 , let (y ǫ 1 (t), z ǫ 1 (t)
) be the solution of (1.3) with initial conditions:

y ǫ 1 (τ ǫ 1 ) = 0 and z ǫ 1 (τ ǫ 1 ) = sign(z ǫ 0 (τ ǫ 1 )) (Y -ǫ) ,
2 again, we define )) (Y -ǫ) . Now, we define the process (y ǫ (t), z ǫ (t)) on each interval of time [τ ǫ n , τ ǫ n+1 ) as follows:

τ ǫ 2 := inf{t > τ ǫ 1 ,
ẏǫ (t) = -(c 0 y ǫ (t) + kz ǫ (t)) + ẇ(t), ( żǫ (t) -y ǫ (t))(φ -z ǫ (t)) ≥ 0, ∀|φ| ≤ Y, |z ǫ (t)| ≤ Y (1.4)
with the following jump-conditions:

y ǫ (τ ǫ n -) = 0, z ǫ (τ ǫ n -) = z ǫ n-1 (τ ǫ n ), and 
y ǫ (τ ǫ n ) = 0, z ǫ (τ ǫ n ) = sign(z ǫ n-1 (τ ǫ n ))(Y -ǫ). Remark 1.1.
By construction, the process (y ǫ (t), z ǫ (t)) is càdlàg; hence it is regular. In particular, for each fixed time T > 0, the number of jumps arise in (0, T ], is finite a.s.

We will prove that the solution (y ǫ (t), z ǫ (t)) converges to (y(t), z(t)) on any finite time interval, when ǫ goes to 0 in the sense described below.

2. Main results. Our main result is the following theorem.

Theorem 2.1. Fix T > 0, and consider the processes (y(t), z(t)) and (y ǫ (t), z ǫ (t)) satisfying (1.3) and

(1.4) respectively. Suppose that k > X + (c 0 ) := 1 2 -c 0 3 + c 0 1 9 + 4 c 0 6
. Then, the following convergence property holds:

1 ǫ E sup 0≤t≤T |y(t) -y ǫ (t)| 2 + k |z(t) -z ǫ (t)| 2
→ 0 as ǫ→0.

Remark 2.2. Observe that the above condition relating k and c 0 is purely technical. It will appear clearly in the proof of Lemma 2.5 below.

2.1. Preliminary results. For (y, z) ∈ D := R×(-Y, Y ), we consider the "elastic" process (y yz (t), z yz (t)):

z yz (t) = e -c 0 t 2 {z cos (ωt) + 1 ω (y + c 0 2 z) sin (ωt)} + 1 ω t 0 e -c 0 2 (t-s) sin (ω(t -s))dw(s), y yz (t) = - c 0 2 z yz (t) + e -c 0 t 2 {-ωz sin (ωt) + (y + c 0 2 z) cos (ωt)} + t 0 e -c 0 2 (t-s) cos (ω(t -s))dw(s).
where, assuming 4k > c 2 0 ,

ω := 4k -c 2 0 2 .
Remark 2.3. The terminology "elastic" is justified from the observation that (y yz (t), z yz (t)) is actually the solution of

ẏ(t) = -(c 0 y(t) + kz(t)) + ẇ(t), ż(t) = y(t), (y yz (0), z yz (0)) = (y, z),
that is the explicit solution of (1.3) when the threshold Y = ∞ (purely elastic case). Note that the condition 4k > c 2 0 is needed so that (y(t), z(t)) have real valued solutions.

Define

θ(y, z) := inf{t > 0, |z yz (t)| = Y }, (2.5 
) where (y yz (0), z yz (0)) = (y, z). For t ∈ [0, T ], we set u(y, z, t) := P[θ(y, z) > T -t]. This function is regular and satisfies the mixed Cauchy-Dirichlet parabolic PDE

-u t + Au = 0, in D; u(y, Y, t) = 0, y > 0; u(y, -Y, t) = 0, y < 0; u(y, z, T ) = 1, (2.6) with Au = - 1 2 u yy + (c 0 y + kz)u y -yu z .
For t < T , the function u(y, z, t) is locally smooth. On the other hand, in the particular case when (y yz (0), z yz (0)) := (0, Y -ǫ), we consider the probability density function p ǫ of (y 0,Y -ǫ (t), z 0,Y -ǫ (t)). It is also known that p ǫ satisfies Chapman-Kolmogorov's equation

p ǫ t + A * p ǫ = 0, p ǫ (y, z, 0) = δ 0,Y -ǫ (y, z), (2.7) 
where A * represents the adjoint operator of A; that is

A * p ǫ = - 1 2 p ǫ yy -((c 0 y + kz)p ǫ ) y + yp ǫ z .
Next, observe that the processes z 0,Y -ǫ (t) and y 0,Y -ǫ (t) are gaussian processes. The key point is to express the solution of (2.6) through its variational formulation with p ǫ as test function (see proof of Lemma 2.4).

The mean, variance and covariance of z 0,Y -ǫ (t) and y 0,Y -ǫ (t) write:

m ǫ (t) := (Y -ǫ)e -c 0 t 2 (cos ωt + c 0 2ω sin ωt), σ 2 z (t) := 1 ω 2 t 0 e -c 0 s sin 2 (ωs)ds, (2.8) 
q ǫ (t) := -(Y -ǫ) k ω e -c 0 t 2 sin ωt, σ 2 y (t) := t 0 e -c 0 s (cos ωs - c 0 2ω sin ωs) 2 ds, (2.9) 
and σ yz (t) := 1 2ω 2 e -c 0 t sin 2 ωt.

(2.10)

The density p ǫ then explicitly writes

p ǫ (y, z, t) = 1 2πσ z (t)σ y (t)(1 -ρ 2 (t)) 1/2 exp - 1 2(1 -ρ 2 (t)) (y -q ǫ (t)) 2 σ 2 y (t) + (z -m ǫ (t)) 2 σ 2 z (t) - 2ρ(t)(y -q ǫ (t))(z -m ǫ (t)) σ y (t)σ z (t) , (2.11) 
where the correlation coefficient ρ(t) is defined by σ yz (t)/σ y (t)σ z (t). Observe that for ǫ = 0, (2.11) reduces to 

p 0 (y, z, t) = 1 2πσ z (t)σ y (t)(1 -ρ 2 (t)) 1/2 exp - 1 2(1 -ρ 2 (t)) (y -q 0 (t)) 2 σ 2 y (t) + (z -m 0 (t)) 2 σ 2 z (t) - 2ρ(t)(y -q 0 (t))(z -m 0 (t)) σ y (t)σ z (t) , (2.12) with m 0 (t) := Y e -c 0 t 2 (cos ωt + c 0 2ω sin ωt), q 0 (t) := -Y k ω e -c
p ǫ (y, z, t) = 1 2πσ z (t)σ y (t)(1 -ρ 2 (t)) 1/2 exp - 1 2(1 -ρ 2 (t)) (y -q 0 (t) + ǫg(t) ) 2 σ 2 y (t) + (z -m 0 (t) -ǫf (t) ) 2 σ 2 z (t) - 2ρ(t)(y -q 0 (t) + ǫg(t) )(z -m 0 (t) -ǫf (t) ) σ y (t)σ z (t) . (2.15)
Now, notice that

(y -q 0 (t) + ǫg(t) ) 2 σ 2 y (t) + (z -m 0 (t) -ǫf (t) ) 2 σ 2 z (t) - 2ρ(t)(y -q 0 (t) + ǫg(t) )(z -m 0 (t) -ǫf (t) ) σ y (t)σ z (t) = (y -q 0 (t)) 2 σ 2 y (t) + (z -m 0 (t)) 2 σ 2 z (t) - 2ρ(t)(y -q 0 (t))(z -m 0 (t)) σ y (t)σ z (t) + ǫ 2 g 2 (t) σ 2 y (t) + f 2 (t) σ 2 z (t) + 2ρ(t)g(t)f (t) σ y (t)σ z (t) -2ǫ (y -q 0 (t))g(t) σ 2 y (t) - (z -m 0 (t))f (t) σ 2 z (t) + ρ(t) σ y (t)σ z (t) (y -q 0 (t))f (t) -(z -m 0 (t))g(t) . (2.16)
Then considering (2.12), we have

p ǫ (y, z, t) =p 0 (y, z, t) exp - ǫ 2 2 A(t) + ǫ (y -q 0 (t))r(t) -(z -m 0 (t))s(t) (1 -ρ 2 (t))σ y (t)σ z (t) .
(2.17)

where

A(t) := 1 1 -ρ 2 (t) g 2 (t) σ 2 y (t) + f 2 (t) σ 2 z (t) + 2ρ(t)g(t)f (t) σ y (t)σ z (t) , r(t) := g(t)σ z (t) σ y (t) + ρ(t)f (t), s(t) := f (t)σ y (t) σ z (t) + ρ(t)g(t).
We now give a representation of u(0, Y -ǫ, 0) in terms of the densities p ǫ and p 0 of the Gaussian processes (z 0,Y -ǫ (t), y 0,Y -ǫ (t)) and (z 0,Y (t), y 0,Y (t)) respectively. The proof is postponed to Section 3. Lemma 2.4. Let u be a solution of (2.6). Then, it satisfies

u(0, Y -ǫ, 0) = D p ǫ (y, z, T ) -p 0 (y, z, T ) dydz + D - T yu(y, Y, t)p 0 (y, Y, t) exp - 1 2 ǫ 2 A(t) + ǫ(yr(t) -Y h(t)) (1 -ρ 2 (t))σ y (t)σ z (t) -1 dydt - D + T yu(y, -Y, t)p 0 (y, -Y, t) exp - 1 2 ǫ 2 A(t) + ǫ(yr(t) -Y l(t)) (1 -ρ 2 (t))σ y (t)σ z (t) -1 dydt, (2.18) with Y h(t) := q 0 (t)r(t) + (Y -m 0 (t))s(t), h(t) := -g(t)r(t) + (1 -f (t))s(t), Y l(t) := q 0 (t)r(t) -(Y + m 0 (t))s(t), l(t) := -g(t)r(t) -(1 + f (t))s(t), D + T := (0, T ) × (0, ∞) and D - T := (0, T ) × (-∞, 0).

Now consider the terms

H ǫ = D p ǫ (y, z, T ) -p 0 (y, z, T ) dydz, I ǫ = D - T yu(y, Y, t)p 0 (y, Y, t) exp - 1 2 ǫ 2 A(t) + ǫ(yr(t) -Y h(t)) (1 -ρ 2 (t))σ y (t)σ z (t) -1 dydt, (2.19) 
J ǫ = - D + T yu(y, -Y, t)p 0 (y, -Y, t) exp - 1 2 ǫ 2 A(t) + ǫ(yr(t) -Y l(t)) (1 -ρ 2 (t))σ y (t)σ z (t) -1 dydt.
Next, we study the behavior of these last integrals, with u satisfying (2.6) so that the previous lemma holds, when ǫ is sufficiently small. The proof is also postponed to Section 3.

Lemma 2.5. Let J ǫ , I ǫ , and H ǫ be the integrals of above. Suppose that

k > X + (c 0 ) := 1 2 - c 0 3 + c 0 1 9 + 4 c 0 6 .
Then,

• lim inf ǫ→0

I ǫ ǫ = +∞, • lim ǫ→0 J ǫ ǫ is finite, • lim ǫ→0 H ǫ ǫ is finite. Therefore, lim ǫ→0 u(0, Y -ǫ, 0) ǫ = +∞ and lim ǫ→0 u(0, -Y + ǫ, 0) ǫ = +∞.
2.2. Proof of Theorem 2.1. We shall use the notation σ ǫ n = sign(z ǫ (τ ǫ n -)). Recall that, for each n ≥ 1, the stopping time τ ǫ n represents the instant of the n-th jump of the process (y ǫ (t), z ǫ (t)). Hence, for all τ ǫ n ≤ t < τ ǫ n+1 and n ≥ 1, we deduce from (1.3) and (1.4) that ẏ(t) -ẏǫ (t) = -[c 0 (y(t) -y ǫ (t)) + k(z(t) -z ǫ (t))] , and ( żǫ (t) -y ǫ (t))(z(t) -z ǫ (t)) ≥ 0, ( ż(t) -y(t))(z ǫ (t) -z(t)) ≥ 0.

By using the notation d/dt of derivatives, we obtain

d dt (y(t) -y ǫ (t)) = -c 0 (y(t) -y ǫ (t)) -k(z(t) -z ǫ (t)), (2.20) 
d dt (z(t) -z ǫ (t)) -(y(t) -y ǫ (t)) (z(t) -z ǫ (t)) ≤ 0, (2.21) 
Multiplying by (y(t) -y ǫ (t)) in (2.20) and using the product rule for derivatives, we get from (2.20) and (2.21)

1 2 d dt |y(t) -y ǫ (t)| 2 + c 0 |y(t) -y ǫ (t)| 2 ≤ -k(z(t) -z ǫ (t))(y(t) -y ǫ (t)) ≤ - k 2 d dt |(z(t) -z ǫ (t))| 2 (2.22)
for all τ ǫ n ≤ t < τ ǫ n+1 and n ≥ 1. Now, integrating (2.22) on [τ ǫ n , τ ǫ n+1 ) and noting that y(τ

ǫ n -) = y(τ ǫ n ), y ǫ (τ ǫ n -) = y ǫ (τ ǫ n ) = 0, z(τ ǫ n -) = z(τ ǫ n ), for all n ≥ 1, we obtain y(τ ǫ n+1 ) 2 -|y(τ ǫ n )| 2 +2c 0 τ ǫ n+1 τ ǫ n |y(t) -y ǫ (t)| 2 dt+k z(τ ǫ n+1 ) -z ǫ (τ ǫ n+1 -) 2 -k |z(τ ǫ n ) -z ǫ (τ ǫ n )| 2 ≤ 0. (2.23) But k |z(τ ǫ n ) -z ǫ (τ ǫ n )| 2 = k |(z(τ ǫ n ) -z ǫ (τ ǫ n -)) + (z ǫ (τ ǫ n -) -z ǫ (τ ǫ n ))| 2 = k |z(τ ǫ n ) -z ǫ (τ ǫ n -)| 2 + k ǫ 2 +2kǫ σ ǫ n (z(τ ǫ n ) -z ǫ (τ ǫ n -)) .
(2.24) Plugging (2.24) into (2.23), and rearranging terms, we obtain

y(τ ǫ n+1 ) 2 -|y(τ ǫ n )| 2 + k z(τ ǫ n+1 ) -z ǫ (τ ǫ n+1 -) 2 -k |z(τ ǫ n ) -z ǫ (τ ǫ n -)| 2 +2c 0 τ ǫ n+1 τ ǫ n |y(t) -y ǫ (t)| 2 dt ≤ kǫ 2 + 2kǫ(σ ǫ n z(τ ǫ n ) -Y ).
We can drop the term 2kǫ(σ

ǫ n z(τ ǫ n ) -Y ) ≤ 0 and get y(τ ǫ n+1 ) 2 -|y(τ ǫ n )| 2 + k z(τ ǫ n+1 ) -z ǫ (τ ǫ n+1 -) 2 -k |z(τ ǫ n ) -z ǫ (τ ǫ n -)| 2 +2c 0 τ ǫ n+1 τ ǫ n |y(t) -y ǫ (t)| 2 dt ≤ kǫ 2 .
(2.25)

Observe that, for N ∈ N ⋆ , we can iterate (2.25) for 1 ≤ n ≤ N to obtain

y(τ ǫ N +1 ) 2 -|y(τ ǫ 1 )| 2 + k z(τ ǫ N +1 ) -z ǫ (τ ǫ N +1 -) 2 -k |z(τ ǫ 1 ) -z ǫ (τ ǫ 1 -)| 2 +2c 0 τ ǫ N+1 τ ǫ 1 |y(t) -y ǫ (t)| 2 dt ≤ kN ǫ 2 .
Also, recalling that y(τ ǫ 1 ) = 0, |z(τ ǫ 1 ) -z ǫ (τ ǫ 1 -)| 2 = 0, and that

τ ǫ 1 0 |y(t) -y ǫ (t)| 2 dt = 0, we derive: y(τ ǫ N +1 ) 2 + k z(τ ǫ N +1 ) -z ǫ (τ ǫ N +1 -) 2 + 2c 0 τ ǫ N+1 0 |y(t) -y ǫ (t)| 2 dt ≤ kǫ 2 N. (2.26)
Denote the total number of jumps of the process (y ǫ (t), z ǫ (t)) arising in the time interval (0, T ) by N ǫ T := max N {τ ǫ N ≤ T }. Note that T < τ N ǫ T +1 . Hence, from (2.26), we deduce

sup 1≤n≤N ǫ T +1 |y(τ ǫ n )| 2 + k sup 1≤n≤N ǫ T +1 |z(τ ǫ n ) -z ǫ (τ ǫ n -)| 2 + 2c 0 T 0 |y(t) -y ǫ (t)| 2 dt ≤ kǫ 2 N ǫ T . (2.27) Assume first z(0) = Y -ǫ.
According to the definition of (2.5) set

θ ǫ := θ(0, Y -ǫ) = inf{t > 0, |z ǫ (t)| = Y } = inf{t > 0, |z 0,Y -ε (t)| = Y }.
It is clear that τ ǫ 1 > θ ǫ a.s. and then P(τ ǫ 1 > T ) > P(θ ǫ > T ). Now, let us assume z(0) = -Y + ǫ. It is easy to verify that u(-y, -z, t) = u(y, z, t), which gives

P(θ ǫ > T ) = u(0, Y -ǫ, 0) = u(0, -Y + ǫ, 0).
Thus, by Lemma 2.5 we have P(θ ǫ >T ) ǫ → +∞. Therefore, if the initial condition z(0) associated to (1.4),

is a random variable Γ (law) = p 1 δ Y -ǫ + (1 -p 1 )δ -Y +ǫ independent of the Wiener process w(t), then again setting θ ǫ Γ := inf{t > 0, |z 0,Γ (t)| = Y }, P(θ ǫ Γ > T ) ǫ → +∞ as ǫ → 0.
Coming back to equation (2.26) and noting that N ǫ T = n χ {τ ǫ n ≤T } , we get

EN ǫ T = ∞ n=1 Eχ {τ ǫ n ≤T } = Eχ {τ ǫ 1 ≤T } + ∞ n=2
Eχ {τ ǫ n ≤T } .

(2.28)

Observe that for all n ≥ 2 and that τ ǫ n -τ ǫ n-1 is independent of τ ǫ n-1 .

Eχ {τ ǫ n ≤T } = E χ {τ ǫ n-1 ≤T } χ {τ ǫ n -τ ǫ n-1 ≤T -τ ǫ n-1 } ≤ Eχ {τ ǫ n-1 ≤T } Eχ {τ ǫ n -τ ǫ n-1 ≤T } . (2.29) But note that Eχ {τ ǫ n -τ ǫ n-1 ≤T } ≤ P(θ ǫ ≤ T ).
From the last inequality and using (2.29), we deduce

Eχ {τ ǫ n ≤T } ≤ Eχ {τ ǫ 1 ≤T } (1 -u(0, Y -ǫ, 0)) n-1 . This yields EN ǫ T ≤ Eχ {τ ǫ 1 ≤T } (1 -u(0, Y -ǫ, 0)) u(0, Y -ǫ, 0) ≤ ǫEχ {τ ǫ 1 ≤T } ǫu(0, Y -ǫ, 0) . (2.30)
Hence, from Lemmas 2.4 and 2.5

ǫ EN ǫ T → 0 as ǫ→0.

(2.31)

Thus, as ǫ goes to 0, (2.27) and (2.31) yield

1 ǫ E sup 1≤n≤N ǫ T +1 |y(τ ǫ n )| 2 + 2c 0 E T 0 |y(t) -y ǫ (t)| 2 dt + kE sup 1≤n≤N ǫ T +1 |z(τ ǫ n ) -z ǫ (τ ǫ n -)| 2 → 0.
(2.32) Since the forced jumps have magnitude ǫ, this implies:

1 ǫ E sup 1≤n≤N ǫ T +1 |y(τ ǫ n )| 2 + 2c 0 E T 0 |y(t) -y ǫ (t)| 2 dt + kE sup 1≤n≤N ǫ T +1 |z(τ ǫ n ) -z ǫ (τ ǫ n )| 2 → 0.
(2.33) Also, by (2.22), we can see that any τ ǫ n ≤ t < τ ǫ n+1 satisfies

|y(t) -y ǫ (t)| 2 -|y(τ ǫ n )| 2 + k|z(t) -z ǫ (t)| 2 -k |z(τ ǫ n ) -z ǫ (τ ǫ n )| 2 ≤ 0.
This gives

sup τ ǫ n ≤t<τ ǫ n+1 |y(t) -y ǫ (t)| 2 + k|z(t) -z ǫ (t)| 2 ≤ |y(τ ǫ n )| 2 + k |z(τ ǫ n ) -z ǫ (τ ǫ n )| 2 .
Hence,

sup τ ǫ 1 ≤t<T |y(t) -y ǫ (t)| 2 + k|z(t) -z ǫ (t)| 2 ≤ sup 1≤n≤N ǫ T +1 sup τ ǫ n ≤t<τ ǫ n+1 |y(t) -y ǫ (t)| 2 + k |z(t) -z ǫ (t)| 2 ≤ sup 1≤n≤N ǫ T +1 |y(τ ǫ n )| 2 + k |z(τ ǫ n ) -z ǫ (τ ǫ n )| 2 .
Also,

sup 0≤t≤T |y(t) -y ǫ (t)| 2 + k |z(t) -z ǫ (t)| 2 ≤ sup 1≤n≤N ǫ T +1 |y(τ ǫ n )| 2 + k |z(τ ǫ n ) -z ǫ (τ ǫ n )| 2 .
Therefore, (2.33) gives

1 ǫ E sup 0≤t≤T |y(t) -y ǫ (t)| 2 + k |z(t) -z ǫ (t)| 2 → 0 as ǫ→0.
3. Proof of the technical lemmas. This section is devoted to the proofs of Lemmas 2.4 and 2.5. Proof of Lemma 2.4. From (2.6), we have

0 = T 0 D (-u t + Au)p ǫ dydzdt = T 0 D (-u t - 1 2 u yy + (c 0 y + kz)u y -yu z )p ǫ dydzdt = - D p ǫ (y, z, T )dydz + u(0, Y -ǫ, 0) + T 0 D up ǫ t dydzdt - T 0 D 1 2 up ǫ yy dydzdt - T 0 D u((c 0 y + kz)p ǫ ) y dydzdt - D - T yu(y, Y, t)p ǫ (y, Y, t)dydt + D + T yu(y, -Y, t)p ǫ (y, -Y, t)dydt + T 0 D yup ǫ z dydzdt. (3.34) 
By using (2.7) and rearranging terms, (3.34) becomes

u(0, Y -ǫ, 0) = D p ǫ (y, z, T )dydz + D - T yu(y, Y, t)p ǫ (y, Y, t)dydt - D + T yu(y, -Y, t)p ǫ (y, -Y, t)dydt.
(3.35) In addition, p 0 (y, z, 0) := δ 0,Y (y, z), and

0 = D p 0 (y, z, T )dydz + D - T yu(y, Y, t)p 0 (y, Y, t)dydt - D + T yu(y, -Y, t)p 0 (y, -Y, t)dydt. (3.36)
Using (2.17) and substracting (3.36) to (3.35), we can deduce the result (2.18).

Proof of Lemma 2.5. First note that, on a neighborhood of t = 0, we have the following expansions:

• f (t) = e -c 0 t 2 (cos ωt + c 0 2ω sin ωt) = 1 -k t 2 2 + c 0 12 (c 2 0 + 2ω 2 )t 3 + o(t 3 ), • g(t) = k ω e -c 0 t 2 sin ωt = kt(1 -c 0 2 t) + o(t 2
). From (2.8)-(2.10), we also have

• σ 2 y (t) = t -c 0 t 2 + o(t 2 ), σ y (t) = √ t (1 -c 0 2 t) + o(t) , • σ 2 z (t) = t 3 3 -c 0 t 4 4 + o(t 4 ), σ z (t) = t 3 2 √ 3 (1 -c 0 3 8 t) + o(t) , • σz(t) σy(t) = t √ 3 (1 + c 0 8 t) + o(t) , • ρ(t) = √ 3 2 1 -c 0 8 t + o(t) , recalling that ρ(t) = σyz(t) σy(t)σz (t) . Equation (2.13) yields • q 0 (t) = -Y kt(1 -c 0 2 t) + o(t 2 ), • m 0 (t) = Y (1 -k t 2 2 ) + o(t 2 ). Recalling that r(t) = g(t)σz (t) σy(t) + ρ(t)f (t) and s(t) := f (t)σy (t) σz (t)
+ ρ(t)g(t) and using the previous estimations, we can check that -g(t)r(t) = -k

√ 3 2 t + 5 √ 3 16 c 0 kt 2 + o(t 2 ) and (1 -f (t))s(t) = k √ 3 2 t + √ 3 4 k 2 -3 4 c 0 k - c 3 0 6 t 2 + o(t 2 ). Therefore, h(t) ∼ √ 3 
4 P (c 0 , k)t 2 where

P (c 0 , k) := k 2 + c 0 3 k - c 3 0 6 .
Denote X + (c 0 ) := 1 2 -c 0 3 + c 0 1 9 + 4 c 0 6 . Since we have assumed that k > X + (c 0 ), it then follows that h ′ (0) = 0 and h ′′ (0) = √ 3P (c 0 ,k) 2 > 0. We can thus consider a fixed interval (0, t) such that h ′′ (t) > 0 on [0, t], hence h(t) > 0 on (0, t). Also, we have r(t) = √ 3

2 (1 -c 0 8 t + o(t)). Hence, there exists a positive constant t such that r(t) > 0 on [0, t]. Let t 0 := min{ t, t}. This implies that h(t) > 0 and r(t) > 0 on (0, t 0 ). Recall that h(0) = 0. Now write, from (2.19)

I ǫ = I ǫ 1 + I ǫ 2 , with I ǫ 1 := t 0 ∧T 0 0 -∞ yu(y, Y, t)p 0 (y, Y, t) exp - 1 2 ǫ 2 A(t) + ǫ(yr(t) -Y h(t)) (1 -ρ 2 (t))σ y (t)σ z (t) -1 dydt, I ǫ 2 := T t 0 ∧T 0 -∞ yu(y, Y, t)p 0 (y, Y, t) exp - 1 2 ǫ 2 A(t) + ǫ(yr(t) -Y h(t)) (1 -ρ 2 (t))σ y (t)σ z (t) -1 dydt.
From the definition of t 0 , h(t) ≥ 0 and r(t) > 0 for 0 < t < t 0 ∧ T . Moreover, y < 0 in I ǫ 1 , so we have

- 1 2 ǫ 2 A(t) + ǫ(yr(t) -Y h(t)) (1 -ρ 2 (t))σ y (t)σ z (t) ≤ 0.
Therefore, the integrand in I ǫ 1 is a positive function. Now, using the basic inequality exp{-x} -1 ≤ -x exp{-x}, for x ≥ 0, we can write

I ǫ 1 ǫ ≥ - t 0 ∧T 0 0 -∞ yu(y, Y, t)p 0 (y, Y, t) 1 2 ǫA(t) - (yr(t) -Y h(t)) (1 -ρ 2 (t))σ y (t)σ z (t) × exp - 1 2 ǫ 2 A(t) + ǫ(yr(t) -Y h(t)) (1 -ρ 2 (t))σ y (t)σ z (t) dydt.
As A(t) ≥ 0, we get

I ǫ 1 ǫ ≥ t 0 ∧T 0 0 -∞ yu(y, Y, t)p 0 (y, Y, t) (yr(t) -Y h(t)) (1 -ρ 2 (t))σ y (t)σ z (t) × exp - 1 2 ǫ 2 A(t) + ǫ(yr(t) -Y h(t)) (1 -ρ 2 (t))σ y (t)σ z (t)
dydt.

(3.37)

As the integrand in the right hand side of (3.37) is a positive function, Fatou's lemma yields the following inequality,

lim inf ǫ→0 I ǫ 1 ǫ ≥ t 0 ∧T 0 0 -∞ yu(y, Y, t)p 0 (y, Y, t) (yr(t) -Y h(t)) (1 -ρ 2 (t))σ y (t)σ z (t)
dydt.

(3.38)

Note that in (3.38) the right hand side may be +∞. For I ǫ 2 , since t ≥ t 0 ∧ T , there is no singularity at t = 0. Therefore, taking the limit of I ǫ 2 /ǫ, we obtain

lim inf ǫ→0 I ǫ 2 ǫ = T t 0 ∧T 0 -∞ yu(y, Y, t)p 0 (y, Y, t)(yr(t) -Y h(t)) (1 -ρ 2 (t))σ y (t)σ z (t) dydt (3.39) which is finite. Note that J = - T 0 |h(t)| (1 -ρ 2 (t))σ y (t)σ z (t) 0 -∞
yu(y, Y, t)p 0 (y, Y, t)dy dt is finite. Indeed, from the expansion of h(t) we have that locally in time

h(t) σ y (t)σ z (t) is bounded. Moreover from (3.36) above - T 0 0 -∞ yu(y, Y, t)p 0 (y, Y, t)dydt < ∞.
Collecting results we can assert that

lim inf ǫ→0 I ǫ ǫ ≥ T 0 0 -∞ y 2 r(t)u(y, Y, t)p 0 (y, Y, t)dydt (1 -ρ 2 (t))σ y (t)σ z (t) (3.40) -Y T 0 h(t) (1 -ρ 2 (t))σ y (t)σ z (t) 0 -∞ yu(y, Y, t)p 0 (y, Y, t)dy dt.
The second integral is finite. Now, let us show that the first integral is +∞. We check that lim t→0 0 -∞ y 2 u(y, Y, t)p 0 (y, Y, t)dy > 0.

The function u(y, z, t) is increasing in t. Indeed, from the probabilistic representation we have

u(y, z, t 1 ) = P[θ(y, z) > T -t 1 ] ≤ P[θ(y, z) > T -t 2 ] = u(y, z, t 2 ), ∀t 1 ≤ t 2 .
Therefore, we have

lim t→0 0 -∞ y 2 u(y, Y, 0)p 0 (y, Y, t)dy ≤ lim t→0 0 -∞ y 2 u(y, Y, t)p 0 (y, Y, t)dy (3.41) Now, u y (0-, Y, 0) < 0.
Indeed, ∀c > 0, u(-c, Y, 0) > 0 and u(0, Y, 0) = 0. So, u y (0-, Y, 0) ≤ 0.

It cannot be equal to 0, otherwise the derivative exists and u y (0, Y, 0) = 0. But then by minimum properties we have u yy (0, Y, 0) > 0, that contradicts

-u t (0, Y, 0) - 1 2 u yy (0, Y, 0) = 0.
Therefore for y < 0 close to 0 we have u(y, Y, 0) ∼ ay, a < 0.

On the interval (-η, 0), we can assume u(y, Y, 0) > a 2 y. So,

lim t→0 0 -η y 2 u(y, Y, 0)p 0 (y, Y, t)dy ≥ lim t→0 0 -η a 2 y 3 p 0 (y, Y, t)dy. From (3.40), since T 0 r(t) (1-ρ 2 (t))σy (t)σz (t) dt = +∞, it is sufficient to check the property lim t→0 0 -η y 3 p 0 (y, Y, t)dy < 0. Set q0 (t) := q 0 (t) + ρ(t)Y (1 -f (t))σ y (t) σ z (t) , then p 0 (y, Y, t) = 1 2πσ y (t)σ z (t)(1 -ρ 2 (t)) 1 2 exp - 1 2 Y 2 (1 -f (t)) 2 σ 2 z (t) exp - (y -q0 (t)) 2 2(1 -ρ 2 (t))σ 2 y (t) .
Hence, denoting ]dydt is well defined. In the same way H ǫ ǫ = 1 ǫ D p ǫ (y, z, T ) -p 0 (y, z, T ) dzdy, has a well defined limit. Therefore, from (2.18), we deduce u(0, Y -ǫ, 0) ǫ → +∞ as ǫ→0.

L η := 0 -η y 3 √ 2πσ y (t)(1 -ρ 2 (t))
(3.44)

As before, let us assume that z(0) = -Y + ǫ. It is easy to see that u(-y, -z, t) = u(y, z, t). This yields P(θ ǫ > T ) = u(0, Y -ǫ, t) = u(0, -Y + ǫ, 0), so u(0,-Y +ǫ,0) ǫ → +∞ as well. This completes the proof.
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