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Through a convenient mathematical approach for the Navier-Stokes equation, we obtain the quadratic dependence v 2 of the drag force FD on a falling sphere, and the drag coefficient, CD, as a function of the Reynolds number. Viscosity effects related to the turbulent boundary layer under transition, from laminar to turbulent, lead to the tensorial integration related to the flux of linear momentum through a conveniently choosen control surface in the falling reference frame. This approach turns out to provide an efficient route for the drag force calculation, since the drag force turns out to be a field of a non-inertial reference frame, allowing an arbitrary and convenient control surface, finally leading to the quadratic term for the drag force.

DEFINING THE MATHEMATICAL PROBLEM

Regarding the application of the Newton second law to a small closed subsystem σ with boundary ∂(δV ) and volume δV of a continuum fluid in an inertial reference frame, one obtains at an instant t:

σ d F ext = δV ρ( r, t) f ( r, t)dV + ∂(δV ) T • ndS, (1)
where f ( r, t) is a locally external acceleration field, ρ( r, t) the scalar density field, and T is the most general tensor due to the effects of the surrounding fluid on σ, being given by:

T ik = -pδ ik + η ∂v i ∂x k + ∂v k ∂x i - 2 3 δ ik ∂v λ ∂x λ + ζδ ik ∂v λ ∂x λ , (2) 
where p is the local thermodynamic pressure field, being T written in terms of its components under the summation convention on repeated indices and where T was obtained from the combination of effects due to strain and shear:

Γ = α(∇ v) ts + β(∇ v) c = α (∇ v) s - 1 3 ∇ • v1 + ζ ∇ • v1, (3) 
from which one defines the viscosity coefficients, α = 2η (this latter relation following from the coupling to the planar flow case, in which one defines the dynamical viscosity η) and ζ, under an isotropic assumption. Back to the Eq. ( 1), one obtains the Navier-Stokes equation:

ρ( r, t) ˙ v( r, t) -ρ( r, t) f ( r, t) + ∇p( r, t) -η ∇ 2 v( r, t) + - 1 3 η + ζ ∇ ∇ • v( r, t) = 0.
(4) Under a divergence-free hypothesis for the velocity field (constant density turns out to be a sufficient condition), one has got, hence, in the ground reference frame, the following mathematical problem:

     ρ ˙ v -ρ g + ∇p -η ∇ 2 v = 0, ∇ • v = 0; lim | r|→∞ v = 0, v (∂ sphere) = ḣ(t)ê z nonslip, (5) 
where g is the local gravitational field and ḣ(t) is the scalar velocity of the center of a falling sphere within the fluid.

GEDANKENEXPERIMENT

One measures the local gravitational field in the noninertial frame attached to the falling sphere from the following gedankenexperiment: hollow sphere having got mass m, with an internal weighing apparatus (with negligible mass) to measure the normal force N that the ground of the hollow sphere exerts on a proof mass m 0 . By isolating the system m + m 0 , and, subsequently, by isolating the system m 0 , one obtains:

N m 0 = F drag (m + m 0 ) = F drag + δ F drag (m 0 ) (m + m 0 ) , (6) 
where F drag is the force the fluid exerts on the hollow sphere, without the proof mass m 0 , and δ F drag (m 0 ) is the increment to this force -due to the consideration of the internal proof mass m 0 . Hence, the gravitational field g 0 within the hollow sphere is given by:

g 0 = lim m0→0 - N m 0 = lim m0→0 - F drag + δ F drag (m 0 ) (m + m 0 ) = - F drag m , (7) 
from which the force we want to calculate turns out to be a property of the non-inertial reference frame attached to the sphere. Adopting this falling reference frame, we have got the mathematical problem:

         ρ ˙ v + ρ F drag m + ∇p -η ∇ 2 v = 0, ∇ • v = 0; lim | r|→∞ v = -ḣ(t)ê z , v (∂ sphere) = 0 nonslip. (8) 
Comparing the Eqs. ( 5) and (8), one infers the force we want to calculate (divided by the sphere mass m) turns out to be an acceleration field in the adopted reference frame, given by the Eq. ( 7). This turns out to be a field at each point of the fluid in the falling reference frame attached to the sphere, from which one may choose a convenient control surface of integration surrounding the sphere, not only the surface of the sphere. This provides an identity, derived in the next section, from which one may extract a convenient information from the adopted control surface.

CALCULATING g0

Applying the continuity equation in its most general form, calculating the instantaneous time rate of linear momentum variation within an arbitrary control volume, fixed and undeformable, one reaches the expression for the calculation of g 0 :

-g 0 = F drag m = 1 ρdV Π • ndS - ∂ ∂t ρ vdV , (9) 
Π = [-1p + Γ -ρ ( v ⊗ v)] , (10) 
since g 0 does not depend on the spatial coordinates within the fluid, once this field equally permeates each point of the fluid in the falling reference frame at any given instant t.

OBTAINING THE DRAG FORCE FD AND THE DRAG COEFFICIENT CD

Applying the Eqs. ( 9) and (10) to the control region F GBAF depicted in the Fig. 1, at the stationary flow regime t → ∞, one obtains:

F ∞ = m m + m BL - F G + GB + BA + AF 1p ∞ • ndS - F G [ρ ( v ∞ ⊗ v ∞ )] • ndS , (11) 
where m BL is the mass of the boundary layer attached to the sphere. The pressure field on F G can be obtained, since this choosen surface (F G) does not violate the laminarity condition for a sufficiently thin boundary layer ∂p/∂r ≈ 0, in relation to DC, in virtue of the internal confinement of turbulence within the region GBAF G (AB touching the boundary layer). Hence:

p F G ∞ = - ρ m ϕ ∞ F G + p 0 ∞ - 9 8 ρ ḣ∞ (t) 2 sin 2 θ, (12) 
where ϕ ∞ is a scalar field due to the vanishing rotational of the force the fluid exerts on the sphere. The pressure field on AB (AB touching the wake, the rear region of the flow) is obtained from the condition of broken equilibrium at the separation point S ≈ B. The obtention of the velocity field profile internal to the boundary layer is accomplished by the time average on the ensemble of turbulence within the boundary layer with the Fourier representation of the velocity field on F G by the step function, since we are firstly interested in the contribution term at high Reynolds number provided a full turbulent flow within the boundary layer at the brink of the drag crisis, where the drag force will suddenly decrease. Hence: Using these results within the Eq. ( 11), one obtains the quadratic contribution for the drag force via straightforward integration:

p S ∞ = - ρ m ϕ ∞ GBAF + p 0 ∞ - 9 16 ρ ḣ∞ (t) 2 sin 2 θ S , (13) 
( v ⊗ v) F G • n t = ( v ∞ ⊗ v ∞ )•n = v 2 F G (R + δ , θ, t
1 + m BL m F ∞ = Buoyancy + m BL m F ∞ + + 9π 32 ρ ḣ∞ (t) 2 R 2 sin 4 θ S êz ⇒ F D = 9π 32 ρ ḣ∞ (t) 2 R 2 sin 4 θ S êz . ( 15 
)
Renaming ḣ∞ (t) ≡ v, knowing that the drag force points along the êz direction, we simply write for the quadratic drag force contribution, the quadratic scalar component:

F D = 9π 32 ρv 2 R 2 sin 4 θ S . (16) 
One should notice this contribution arises from our consideration regarding the turbulent profile within the boundary layer, from which we see there is not any linear contribution arising at this flow regime. Writing the drag force as a series on v:

F D (v) = ∞ k=0 a k v k , (17) 
we know from the low Reynolds number regime that the linear contribution is given by the Stokes force [4]:

a 0 = 0, a 1 v = 6πηRv. (18) 
Hence, up to the drag crisis, the drag force reads:

F D = 6πηRv + 9π 32 ρ sin 4 θ S R 2 v 2 . ( 19 
)
The drag coefficient, C D , and the Reynolds number, R, are defined by:

C D = 2F D πρR 2 v 2 , R = 2ρRv η . ( 20 
)
Hence, from the Eqs. ( 19) and (20), one obtains the drag coefficient as a function of the Reynolds number, up to the drag crisis:

C D (R) = 24 R + 9 16 sin 4 θ S . (21) 
Fig. 3 shows the graph for the Eq. ( 21), for θ S = 70.4 • . This is the separation angle obtained from the Froessling method [START_REF] Schlichting | Boundary-Layer Theory[END_REF]. One sees this dependence on the Reynolds number agrees with the experimental one over the entire range of Reynolds numbers up to the drag crisis, as one verify, e.g., in [START_REF] Landau | Course of Theoretical Physics[END_REF] and [START_REF] Constantinescu | [END_REF]. 
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 1 Fig. 1: Figure for the integration.
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 22 ) cos 2 α(t) êr + cos α(t) sin α(t) êθ t = θ êr , (14) where θ S is the separation angle, depicted in the Fig.2.
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 2 Fig. 2: Depicted elements.
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 3 Fig. 3: Drag coefficient vs. Reynolds number, Eq. (21).
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