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Abstract

Recently we have introduced a simplified model of ecosystem assembly (Capitán et al., 2009) for which we are able to map out all
assembly pathways generated by external invasions in an exact manner. In this paper we provide a deeper analysis of the model,
obtaining analytical results and introducing some approximations which allow us to reconstruct the results of our previous work.
In particular, we show that the population dynamics equations of a very general class of trophic-level structured food-web have
an unique interior equilibrium point which is globally stable. We show analytically that communities found as end states of the
assembly process are pyramidal and we find that the equilibrium abundance of any species at any trophic level is approximately
inversely proportional to the number of species in that level. We also find that the per capita growth rate of a top predator invading a
resident community is key to understand the appearance of complex end states reported in our previous work. The sign of these rates
allows us to separate regions in the space of parameters where the end state is either a single community or a complex set containing
more than one community. We have also built up analytical approximations to the time evolution of species abundances that allow
us to determine, with high accuracy, the sequence of extinctions that an invasion may cause. Finally we apply this analysis to obtain
the communities in the end states. To test the accuracy of the transition probability matrix generated by this analytical procedure
for the end states, we have compared averages over those sets with those obtained from the graph derived by numerical integration
of the Lotka-Volterra equations. The agreement is excellent.

Keywords: Community assembly, Lotka-Volterra equations, Dynamic stability

1. Introduction

A piece of common wisdom in ecology is that biodiver-
sity enhances the stability of ecosystems. This has tradition-
ally been a well established observational fact since the works
of Odum (1953), MacArthur (1955) and Elton (1958) who
showed that simple ecosystems (e.g. man-cultivated lands) un-
dergo very large fluctuations in population and are vulnerable to
invasion, an effect that gets reduced upon increasing the num-
ber of predators and preys in the system. But early in the 70s
May showed that randomly generated dynamical models for
the populations of a community exhibit the opposite feature:
the larger the species abundance the smaller its linear stability
(May, 1972, 1973). Thanks to this controversy we have gained
very much insight into the nature of ecosystems (McCann,
2000). Apart from the introduction of more refined concepts of
ecosystem stability (Pimm, 1982), one of the main conclusions
arising from the comparison of empirical data with May’s pre-
dictions on the bounds for community stability (Dunne, 2006)
is that real ecosystem are within the tiny set of stable ones, no
matter how large they are; in other words, ecosystems are far
from being just random gatherings of species.
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Natural communities carry out a selection mechanism that in-
duces colonizers adaptation. There has been a lot of theoretical
work in the past devoted to study the assembly of communities
through successional invasions (Post and Pimm, 1983; Drake,
1990; Case, 1990; Law and Morton, 1993, 1996; Morton and
Law, 1997). Overall, these papers have provided a theoretical
framework to understand how communities are built up (Law,
1999). The basic process in which these models are based is
the sequential arrival of rare species (invaders) that colonize
the ecosystem and that may be established, possibly causing
a global reconfiguration of the community in the long term by
means of several species extinctions. Obviously, these mod-
els are but idealizations of the complex processes taking place
in real community assembly, but simple mechanisms acting in
these models could be expected to be the ones responsible for
the formation of real ecosystems (Law, 1999). This approach of
devising theoretical paradigms for real situations has been suc-
cessfully applied over and over in the field of statistical mechan-
ics —where, for instance, using such an idealization as the Ising
model provides the clues to understanding ferromagnetism in
real materials (Huang, 1987).

Previous assembly models tend all to rely on the Lotka-
Volterra dynamics [but see the recent work of Lewis and Law
(2007)], although differ in the criterion to accept an invasion.
While Post and Pimm (1983) assumed that new species were
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created ad hoc, according to certain stochastic rules, subsequent
approaches (Drake, 1990; Law and Morton, 1996) introduced
the concept of “species pool”. A regional species pool is a set
of possible invaders whose trophic interactions have been de-
termined in advance (Law and Morton, 1996). Despite these
differences, all previous papers arrive at the conclusion that the
species richness of each resident community increases along
successional time, although the average resistance of a commu-
nity to be colonized increases in time. Therefore community
assembly increases biodiversity as well as stability, understood
as resistance to invasions.

Nevertheless, one must bear in mind that not all assembly
pathways have been explored in these models. The conclusions
reached so far rely on averages of quantities under study over
a finite set of realizations of the underlying stochastic process,
that is ultimately based on a finite pool of possible invaders.
This has raised several question that remained without a defini-
tive answer. For example, there was no clear-cut answer regard-
ing the dependence of the results on the history of invasions.
Morton and Law (1997) found a final end state resistant to in-
vasions by the remaining species in the pool at the end of the
process, and this end state could be either a single ecosystem
or a set involving more than one community connected by inva-
sions with one another. Despite this conclusion, the dependence
of the end state on the assembly history is a matter of discussion
(Fukami and Morin, 2003). Moreover, we should not forget
that the number of species in the pools employed is always rel-
atively small, so the question remains as to whether larger pools
lead to qualitatively different results. In this respect, it has been
pointed out (Case, 1991; Levine and D’Antonio, 1999) that the
exhaustion of good invaders in the early assembly might be just
an artifact of the finiteness of the pool.

Trying to overcome the shortcomings of previous models, in
our previous work Capitán et al. (2009) we proposed a minimal-
istic model of ecosystem assembly with which we were able
to analyze all assembly pathways, thus characterizing the full
assembly process. In spite of its simplicity, we recovered the
same conclusions found previously. Our model is also based
on a pool of species and a niche variable (the trophic level) that
determines their interactions. In contrast, however, our pool is
infinite. In spite of that, within the assumptions of the model,
we found a finite number of (viable) communities linked by col-
onization. This allowed us to define an assembly graph for our
model —similar to that of Warren et al. (2003), who studied
the assembly process experimentally for a small pool of 6 pro-
tist species. By assigning transition probabilities to the links
of this graph the assembly process was mapped to a Markov
chain (Karlin and Taylor, 1975), which is tantamount to say-
ing that we defined a statistical mechanics on the set of viable
communities (microstates). In other words, our model gives
the probability distribution of all these microstates at any time.
This allowed us to characterize both transient and equilibrium
states, as well as to compute the time evolution of any observ-
able along the assembly in an exact manner. But more impor-
tantly, as our model provides a complete and exact (albeit nu-
meric) description of the assembly process, we can positively
state that, under the assumptions of our model, in the long-term

assembly dynamics a unique enstate is reached, and this state
is formed by just one uninvadable community or a closed set of
communities connected between them. These sets contain the
communities that survive in the long term, and the ecosystem
can be regarded as a fluctuating community that can vary each
level occupancy trough successional invasions.

In this paper we will give some analytical results for the un-
derlying population dynamics of our assembly model, and we
will see how these results can be combined together to arrive at
the same conclusions we obtained numerically in our previous
work. Relying on these analytic results, we will be able to de-
scribe the observables that characterize the end states with high
accuracy. In particular, we will reproduce the variation of the
number of communities in each end state with the abundance
of abiotic resources, as well as the average values of quanti-
ties like the species richness. We will leave the computational
and numerical results that can be obtained with this model for
the second paper of this suite (Capitán et al., 2010), which will
be focused in the successional variation of biologically rele-
vant quantities along the assembly, and the analysis of the main
properties of transient states.

This paper is organized as follows. Section 2 is devoted to
the analysis of a rather general model of trophic-level struc-
tured food-webs, and the discussion of its dynamic stability. In
Section 3 we will restrict ourselves to a particular case of com-
munity by making a species symmetry assumption, that renders
our model closer to neutral models and allows a more detailed
analytical study. In Section 4 we will deduce some analyti-
cal properties of the equilibrium point, such as estimations of
the maximum number of species allowed in a community for a
given set of parameters, or the maximum number of trophic lev-
els that the amount of resource allows. Section 5 is dedicated to
discussing some criteria for an invader to establish in a commu-
nity, and to give some global analytical approximations to the
time evolution of a system invaded by a top predator. Finally,
in Section 6 we will apply our analysis to recover the results
obtained in Capitán et al. (2009) by means of a numerical inte-
gration of the population dynamics equations.

The two papers of this suite are self-contained and can be
read separately, although they are cross-referenced. Readers
interested in the underlying population dynamics of our model
will find a detailed discussion in this paper. Those readers more
interested in the ecological consequences and results that the
model provides can skip the technical Sections 4 and 5. For a
full account of the results that we have obtained, we refer them
to the companion paper.

2. Trophic-level structured food-webs

How species are arranged in a network to conform a food-
web is a question difficult to answer. The specific topology
of the network where feeding interactions take place is very
complex and several complicated models have been proposed
for both the structure and the dynamics of food-webs (Dunne,
2006). In contrast, our aim in Capitán et al. (2009) was to
construct a minimalistic model, so we considered the tradi-
tional picture of trophic pyramids of interacting species in dif-
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ferent, well defined trophic levels. Although trophic levels can
be roughly described in real webs (Martinez et al., 2006), we
will assume that feeding interactions take place strictly between
species belonging to contiguous, well defined trophic levels.
This is a standard (and accurate) assumption, as the models of
tri-trophic food chains show (Bascompte and Melián, 2005).
This notwithstanding, it is acknowledged that omnivory, i.e.
predation from several levels, exists although is still an open
question how common it is. For example, work on food-web
motifs has found that omnivory is sometimes under-represented
and sometimes over-represented in real networks (Bascompte
and Melián, 2005). However, the impact of including omnivory
in the model could lead to non trivial results. Since the trophic
level is normally related to species size, feeding from lower lev-
els will provide less energy to predators, so proper allometric
relations should be included in the model to fix the interaction
strengths. For the sake of simplicity, we will not divert our-
selves from the standard assumption of disregarding omnivory.

Therefore, any species at level ` will feed only on species at
level ` − 1 and will be predated only by species at level ` + 1.
Let s` be the number of species in the `-th level. Thus for an
ecological community with L trophic levels the total number of
species is S =

∑L
`=1 s`. In order to determine which species are

predated at each level, we define the set of interaction matrices
Γ`, with dimensions s` × s`−1, such that the element Γ`i j = 1
when species j in level `− 1 is a prey of species i in level `, and
is zero otherwise. Any particular choice of this set of matrices
determines the food-web in our model.

According to our aim of developing a simplified model, we
propose a simple population dynamics with the purpose of cap-
turing on average the main behavior of species abundances. It is
inspired in a model used before to study coexistence in compet-
ing communities (Lässig et al., 2001; Bastolla et al., 2005a,b).
Population dynamics is modelled by Lotka-Volterra equations,
including both predator-prey interactions as well as intra- and
interspecific competition. Thus, in order to keep the model min-
imalistic we have chosen not to include other interaction types
such as mutualism.

Let n` be a column vector with the population densities of all
the species at trophic level `. Following Bastolla et al. (2005a)
we propose the mean-field dynamics

ṅ`i
n`i

=
(
−α + γ`+Γ(`)n`−1 − B`n` − γ`−(Γ`+1)Tn`+1

)
i
. (1)

We assume that the strength of the feeding interactions between
contiguous levels is fixed and determined by the constants γ`+,
which control the amount of energy available to reproduction
for each predation event for species at level `, and γ`− (> γ`+),
which take into account the mean damage caused by predation
over level `. The ratio γ`+/γ

`
− measures the efficiency of conver-

sion of prey biomass into predator biomass.
Interspecific competition in a trophic level is measured by the

off-diagonal elements of the s` × s` matrix B`, while intraspe-
cific competition (diagonal elements) is normalized to unity
(this just amounts to fixing a time scale for the dynamics). A

natural way to represent this matrix is

B` = (1 − ρ`)I + ρ`K`, (2)

where ρ` ≤ 1 measures the relative magnitude between intra–
and interspecific competition, and I is the identity matrix. Di-
agonal elements of K` are equal to 1 due to the normalization of
the intraspecific competition. We will assume (the reasons will
become clearer later) that the competition matrix is symmetric
and positive definite.

Interspecific competition due to sharing common preys is im-
plicitly represented in the predation terms. There is however a
direct competition due to other effects, such as territorial com-
petition, mutual aggressions, etc. We will assume [as in Bas-
tolla et al. (2005b)] that species sharing more preys are closely
related ecologically [this fact might have support from a evolu-
tionary viewpoint as shown in Rezende et al. (2007)], so their
requirements are similar and we can assume that elements of K`

are proportional to the ecological overlapping between species
(Lässig et al., 2001; Bastolla et al., 2005b). Let π`i j represent
the number of common preys for species i and j belonging
to level `. The species overlapping due to common preys is

K`
i j = π`i j/

√
π`i π

`
j, with π`i the total number of preys of species

i. Under our matrix notation, π`i j = (Γ`Γ`T)i j and π`i = (Γ`Γ`T)ii,
so that

B` = (1 − ρ`)I + ρ`D`Γ`(D`Γ`)T, (3)

D` being a diagonal matrix with elements (Γ`Γ`T)−1/2
ii . Ex-

pressed as (3), it is evident that such a competition matrix is
symmetric and positive definite. It is worth mentioning that
this system does not fulfil the hypotheses leading to Gause’s
competitive exclusion principle (Hofbauer and Sigmund, 1998;
Bastolla et al., 2005a), even when there is a single level. Among
other things, this is due to the fact that competition coefficients
between different species are not all the same. This point will
be discussed in more detail in the second paper of this suite
(Capitán et al., 2010).

We regard all the species as consumers, and so they have a
death rate, α`i , which is the i-th component of vector α`. Note
that in a real food-web the interaction coefficients will not be
uniform within a trophic level. In this sense, we represent inter-
actions averaged (mean-field) in each level but we allow varia-
tion in the strength of the interactions among different trophic
levels. Finally, all species at the first level predate on a single
resource, whose time evolution is given by

ṅ0

n0 = R − n0 − γ1
−(Γ1)Tn1. (4)

The constant R is the maximum amount of resource in the ab-
sence of its consumers. The abundance n0 has to be understood
as the amount of a primary abiotic resource, like sunlight, wa-
ter, nitrogen, etc. It has to be considered as an energetic input
for the maintenance of the remaining species in the community.
The amount of such resource is limited, hence the saturation of
n0 at a value R.

The model is supplemented by an extinction threshold, nc >
0, independent of the species. If a population falls below this
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value it is considered extinct (real populations can not be arbi-
trarily small). This viability condition has been previously used
in similar models (Kokkoris et al., 1999; Borrvall et al., 2000;
Eklöf and Ebenman, 2006), and accounts for the vulnerabil-
ity of low density communities against external environmental
variations or adverse mutations (Pimm, 1991). The technical
need for this extinction threshold in our model will become
clearer when we describe the variation of the densities in terms
of the occupancy of each level.

2.1. Dynamic stability of the interior equilibrium point
Equations (1), (4) have several equilibria. Among them, the

main one is obtained by equating the right-hand side of these
equations to zero. If all the equilibrium densities are positive,
this fixed point is called the interior equilibrium. The popula-
tion p` at equilibrium are obtained as the solution of the linear
system of S + 1 equations

γ`+Γ`p`−1 − B`p` − γ`+1
− (Γ`+1)T p`+1 = α`,

p0 + γ1
−(Γ1)T p1 = R.

(5)

for ` = 1, . . . , L. The remaining equilibria are obtained by set-
ting to zero any subset of the populations and solving the linear
system resulting from eliminating those variables. The result-
ing system is the same as (5) but if species i at level ` has zero
equilibrium abundance, the i-th column in the corresponding
matrix Γ` has to be eliminated. Therefore one only needs the
solutions of the linear systems (5) for a given choice of the set
of matrices {Γ`}L`=1 in order to fully determine all the equilib-
rium densities.

Since feeding relations are established among contiguous
levels, (5) acquires a block-tridiagonal structure. Due to this
form, the interior equilibrium can be formally obtained by ap-
plying Gaussian elimination. We put the equilibrium abun-
dances in the form

p`−1 = M`p` + c` (6)

for certain s`−1 × s` matrices M` and s`−1 × 1 vectors c` to be
determined (` = 1, . . . , L + 1). Substitution into (5) gives the
following recursive relations for M` and c`,

M`+1 = γ`+1
−

(
γ`+Γ`M` − B`

)−1
(Γ`+1)T,

c`+1 =
(
γ`+Γ`M` − B`

)−1 (
α` − γ`+Γ`c`

)
.

(7)

Since the resource can only be predated and there is no compe-
tition, we set Γ0 = 0 and ρ0 = 0. This leads to the initial condi-
tions M1 = −γ1

−(Γ1)T and c1 = −R according to (4). Thus, given
a particular set of matrices {Γ`}L`=1, (7) fully determines M` and
c`. After that, starting from the boundary condition pL+1 = 0
(the community has exactly L trophic levels), we backsubstitute
in (6) to get the equilibrium densities.

We can push further the property that our dynamical sys-
tem (1) is block-tridiagonal to study its dynamic stability. Let
us show that interior equilibria p`i , for all i = 1, . . . , s` and
` = 0, . . . , L, are globally stable. This result is based in the
existence a Lyapunov function (Hofbauer and Sigmund, 1998),

which guarantees that any positive initial condition evolves to-
wards the interior equilibrium. The Lyapunov function for this
system is

V({n`}) =

L∑
`=0

A`

s∑̀
j=1

(
n`j − p`j log n`j

)
(8)

where Ak =
∏k

`=1
γ`−
γ`+

for k = 1, . . . , L and A0 = 1.
For (8) to be a Lyapunov function, we just need to check that

V̇ ≤ 0 along any orbit {n`(t)}L`=0 starting with positive initial
abundances (Hofbauer and Sigmund, 1998). Let us compute its
time derivative. If we consider the displaced variables

y`j = n`j − p`j, (9)

we can write (1) as ṅ`i = n`i q
`
i , where

q` = γ`+Γ`y`−1 − B`y` − γ`−
(
Γ`+1

)T
y`+1, (10)

hence the time derivative is simply V̇({n`}) =∑L
`=0 A`

∑s`
j=1 y`j q`j. After substituting (10), we arrive at

V̇({n`}) = −

L∑
`=0

A`(y`)TB`y`

+

L−1∑
`=0

(
A`+1γ

`+1
+ − A`γ

`+1
−

)
(y`+1)TΓ`+1y`.

(11)

Thus our previous choice of Ak cancels the second sum. Since
B` is positive definite, we deduce that the time derivative of the
Lyapunov function is negative along any orbit, and therefore
Lyapunov’s theorem (Hofbauer and Sigmund, 1998) ensures
the global stability of the non-trivial rest point p`. Note that
the existence of this Lyapunov function is a direct consequence
of the block-tridiagonal structure of the dynamical system (1)–
(4), hence the assumption of predation only between contiguous
levels ensures this global stability.

3. Species symmetry assumption

In what follows, we will restrict ourselves to the dynami-
cal system (1) with the particular choice of interaction matrices
Γ`i j = 1 for any i, j, `. This was the system studied in Capitán
et al. (2009). This assumption implies that all species are gen-
eralist, and the model can now be regarded as a mean-field-like
picture of real communities, since all species in contiguous lev-
els interact with each other. We will assume as well that in-
teraction coefficients are independent of the trophic level, and
we will simply denote them as γ+, γ−, ρ and α. These pa-
rameters should now be understood as an average strength of
the processes involved in the population dynamics. These kind
of models, which do not make any explicit difference among
species, are referred to as neutral (Hubbell, 2001; Etienne and
Alonso, 2007). From the point of view of the trophic interac-
tions there is no difference between species (neither the rates
nor the set of preys they feed on make any distinction among
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species). We introduce this symmetric scenario because it will
allow a simpler, analytical description of the community.

Pure neutral models do not make any distinction whatso-
ever between species. This is not our case, because species
can be distinguished by their different balance between intra–
and interspecific competition. Neutrality in our model has to be
understood as a species symmetry assumption (Alonso et al.,
2008) for the strength of the interactions. We will discuss the
case ρ = 1, when the model turns to be fully symmetric (strictly
neutral), in the second paper of this suite (Capitán et al., 2010).

Under this symmetry assumption, the population dynamics
(1) with the competition matrix (3) transforms into ṅ`i = q`i n

`
i ,

where

q`i = −α + γ+N`−1 − (1 − ρ)n`i − ρN` − γ−N`+1,

q0 = R − n0 − γ−N1,
(12)

being N` ≡
∑s`

i=1 n`i . The set of equations (5) for the interior rest
point imply that the equilibrium abundances are equal for any
two species i and j of the same level. Hence the equilibrium
abundances {p`}L`=1 are the solution to the linear system

α = γ+s`−1 p`−1 − [1 + ρ(s` − 1)]p` − γ−s`+1 p`+1,

R = p0 + γ−s1 p1,
(13)

for ` = 1, . . . , L. Note that the global stability result holds only
for this equilibrium point.

3.1. Reduced dynamical system
As in our previous work (Capitán et al., 2009), equilibrium

communities will undergo invasions. Thus we are interested in
the time dynamics of an invaded community initially at equi-
librium. Notice that the per capita growth rates (12) satisfy the
equality

q`i (. . . , n
`
i , . . . , n

`
j, . . . ) = q`j(. . . , n

`
j, . . . , n

`
i , . . . ) (14)

under the interchange of the abundance of two species at the
same level. This symmetry, together with an initial condition
where n`i (0) = n`j(0), is enough to show that the time evolu-
tion of both species is identical (see Appendix A). Thus we
can reduce our dynamical system to a set of L + 1 differential
equations,

ṅ`

n`
= −α + γ+s`−1n`−1 − [1 + ρ(s` − 1)]n` − γ−s`+1n`+1,

ṅ0

n0 = R − n0 − γ−s1n1.

(15)

There is another crucial difference between our model and
usual neutral models in the literature. Although neutral models
ignore species identity, they are stochastic. It is the ecologi-
cal drift what makes species abundances to stochastically vary.
This stochasticity is the ultimate reason for extinction in neutral
models. On the contrary, our dynamical system is determinis-
tic. The reason to include the (somehow arbitrary) extinction
threshold nc is to “mimic” this fluctuation-driven extinction of
species with low abundance.

Thus extinctions must be understood stochastically in our
model. As it was pointed out in Capitán et al. (2009), the
stochastic effect of adverse mutations or external variations of
the environment that make species to go extinct is taken into
account in our deterministic dynamics with the viability con-
dition n` ≥ nc. Notice however that, strictly speaking, when
a species of one level falls below nc the whole level does too.
Extinguishing the whole level as the strict dynamics would re-
quire would be unrealistic. Instead we eliminate species one
by one until viability is recovered (Capitán et al., 2009). This
latter dynamics would approximate better what one would find
in a truly stochastic neutral model, in which the simultaneous
extinction of general species is very unlikely to happen.

3.2. Structural stability
We have chosen the constants to be uniform in our model,

this making all species on each trophic level at equilibrium have
equal abundance. However, according to competitive exclusion
(MacArthur and Levins, 1964), a tiny variation in the param-
eters that makes any difference among species will make the
system unstable. Fortunately, for this class of models the com-
petitive exclusion principle does not hold as such. This has been
discussed at length in Bastolla et al. (2005a). In this paper the
authors derive some bounds to the variation allowed for the con-
stants that the system can tolerate without leading any species
to extinction. In fact, the dynamical system they discuss is the
same as we have described in Section 2, with different con-
stants for different species. The more diverse the ecosystem is
the stricter are these bounds, but in any case, no matter how
diverse the ecosystem is, some variation of the constants is al-
ways tolerated without this leading any species to extinction.
This proves the structural stability of our system, even under
the assumption of species symmetry.

4. Analytical properties of the interior rest point

4.1. Maximum number of species and maximum number of lev-
els

In this subsection we will obtain an analytical estimation of
the maximum number of species that a trophic level can host
among all the possible viable equilibria. We simply set all the
abundances in each level to be equal to nc and solve the result-
ing linear system (13) for {s`}L`=1 and s0 ≡ p0/nc,

s0 + γ−s1 =
R
nc
,

γ+s`−1 − ρs` − γ−s`+1 = 1 − ρ +
α

nc
,

(16)

for ` ≥ 1. We introduce the generating function G(z) =∑∞
`=0 s`z` for the sequence {s`}L`=1. The explicit solution will

depend on two initial conditions s0 and s1, since we have a
two-term recursion. We will leave them undetermined for the
moment. The second equation of (16) allows us to calculate
explicitly G(z),

G(z) =
(1 − ρ + α/nc)z2

(1 − z)(γ+z2 − ρz − γ−)
−
γ−s0 + z(ρs0 + γ−s1)
γ+z2 − ρz − γ−

. (17)
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We recover the general term of s` by a series expansion of the
generating function. Let us first define the constants µ = (1−ρ+

α/nc)/(γ−−γ+ +ρ) and z± = (ρ±
√
ρ2 + 4γ+γ−)/(2γ+). In order

to get compact expressions, we define the auxiliary sequence

a` =

(
γ+

γ−

)` z`+1
+ − z`+1

−

z+ − z−
, (18)

which satisfies the two-term recursion γ−a` = ρa`−1 + γ+a`−2
with initial conditions a−1 = 0, a0 = 1. This recurrence can be
fully expressed as a linear combination of powers of ρ/γ− and
γ+/γ−,

a` =

b`/2c∑
k=0

(
` − k

k

) (
ρ

γ−

)`−2k (
γ+

γ−

)k

, (19)

for all ` ≥ 0, bxc denoting the integer part of x.
Expanding G(z) we obtain s` in terms of a`,

s` = (−1)`
[
γ+

γ−
(s0 + µ)a`−2 − (s1 + µ)a`−1

]
− µ, (20)

for ` ≥ 2, where a` can be evaluated either using (18) or (19).
In order to solve the system (16), we have to impose sL+1 =

0 for an ecosystem to have L trophic levels. This provides a
linear relation between s0 and s1 which, together with the first
equation of (16), forms a linear system that determines both s0
and s1. The result is

s0 =
(R/nc + µγ− + µ)aL − (−1)Lµγ−

aL + γ+aL−1
− µ,

s1 =
γ+(R/nc + µγ− + µ)aL−1 + (−1)Lµγ−

γ−(aL + γ+aL−1)
− µ.

(21)

Substituting (21) into (20) and taking into account that

aLa`−2 − aL−1a`−1 = (−1)`
(
γ+

γ−

)`−1

aL−` (22)

is a direct consequence of the recurrence satisfied by a`, we
finally get

s` =

(
γ+

γ−

)` ( R
nc

+ µγ− + µ

)
aL−`

aL + γ+aL−1

− µ

[
(−1)L+` a`−1 + γ+a`−2

aL + γ+aL−1
+ 1

] (23)

for all ` ≥ 1. This is the analytic solution of the system (16)
and gives an estimate of the maximum occupancy per level as a
function of the parameters of the model. Note that, despite what
(18) might suggest, no additional factors of the form γ+/γ− can
be extracted from a` according to (19), so the lowest power of
the ratio γ+/γ− in the expression for s` is (γ+/γ−)`.

This dependence of s` on (γ+/γ−)` is remarkable. In fact,
in our previous work (Capitán et al., 2009) we observed that
the communities in the end states of the assembly process were
pyramidal. This is, in turn, a consequence of the exhaustion of
the species occupancy in each trophic level. Notice also that the
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Figure 1: Approximate equilibrium densities. Starting from a community with
4 levels and occupancies s1 = 127, s2 = 58, s3 = 7 and s4 = 7, we plot the
variation of p` as a function of s`, which exhibits a dependence C/s`. Full lines
with circles show the exact solution of (13), and dotted lines with crosses show
our approximation (26). Insets contain the relative error of each approximation.
Remaining parameters are R = 1505, γ+ = 0.5, γ− = 5, ρ = 0.3 and α = 1.

estimation of the maximum number of species that a commu-
nity can host depends linearly on the resource saturation. This
linear dependence on R was also observed in our previous work.

Our estimation of the maximum occupancy of each trophic
level also provides a condition for the maximum number of
trophic levels that a set of parameters allows. Imposing sL ≥ 1
yields a condition for the allowance of L trophic levels,

R
nc

+ µ(γ− + 1) ≥
(
γ−
γ+

)L [
(1 + µ)(aL + γ+aL−1)

+ µ(aL−1 + γ+aL−2)
]
.

(24)

Therefore we have a minimum value of the resource saturation
for L trophic levels to be viable in a community.

4.2. Approximation of the equilibrium abundances

In our model, each set {s`}L`=0 of species occupancies in each
level determines a set of equilibrium densities according to (13).
Finding p`({sk}) is difficult, but in this section we will give a
rather good approximation for large enough s`. First we write
the system in terms of the total population at each level, P` =

s`p` (` = 1, . . . , L),

γ+P`−1 −

(
ρ +

1 − ρ
s`

)
P` − γ−P`+1 = α,

P0 + γ−P1 = R.
(25)

Written in this way, it seems natural to expand the solution in
powers of 1/s. In Appendix B we show that we can approxi-
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mate

P` ≈
TL,` − (1 − ρ)

∑L
k,` Qk

L,`/sk

DL − (1 − ρ)
∑L

k=1 BL,k/sk
. (26)

As we can see in Figure 1, this first order approximation cap-
tures accurately the variation of the equilibrium densities p`

with s`. Besides, we also obtain a very accurate approxima-
tion when we vary the number of species s j in levels other than
`. Note that, even when the occupancy of a level is small (lower
panels of Figure 1), the approximation remains good.

In the limit s` � 1 we obtain the dependence p` ≈ C/s`,
which provides the general tendency observed in Figure 1.
Moreover, in the biologically relevant limit R � α, and tak-
ing into account the explicit expressions for TL,` and DL given
in Appendix B, populations behave like

p` ≈
R
s`

(
γ+

γ−

)` aL−`

aL + γ+aL−1
(27)

for ` ≥ 0. Several conclusions can be extracted from this de-
pendence. First, when the number of species in the `-th level
is exhausted, according to (23), we obtain a population density
p` ≈ nc, as expected. But more importantly, it represents an-
other reason for the extinction threshold to be included in our
model. If there were no threshold, equilibrium densities would
monotonically decrease with s` without ever becoming zero.
The assembly graph would then contain infinitely many com-
munities thus becoming intractable.

5. Invaded dynamics

In Capitán et al. (2009) it was assumed that, during the as-
sembly process, successional invasions occur and modify resi-
dent communities at equilibrium. There we made the hypoth-
esis of the average time between consecutive invasions being
much longer than the typical dynamic time scale for the com-
munity to reach the equilibrium state. This is actually what is
observed. In relation to the different time scales between in-
vasion and competition, invasion events may take place at the
scale of decades, long enough time for invaded communities
to stabilize [for example, the rate of new invasions in islands
may be one every few year (Sax et al., 2005)]. This assump-
tion has also been made in previous papers like Kokkoris et al.
(1999), where authors assume that after each invasion there is
a re-organization of the community prior to a new invasion.
Specifically, they solve the dynamical system describing the
new community with the invader until reaching the carrying ca-
pacity. These new densities are then used as initial values for
the new systems resulting from the next invasion [see details
in Kokkoris et al. (1999)]. The same idea was applied in the
construction of our assembly model (Capitán et al., 2009).

We used a second hypothesis as well, namely that the popu-
lation of the invader is small (equal to the extinction threshold
nc). This is what is actually found in real situations. It is a
well established fact that colonizers rarely reach a new habitat
in high numbers (Roughgarden, 1974; Turelli, 1981). In theory,
the probability of a small propagule to extend is used as the

invasibility criterion. In biological control, management of in-
vasions is based on looking for a small density of species in new
areas (Liebhold and Bascompte, 2003). In this case, theoretical
and empirical work has taken advantage to predict conditions
of eradication based on density thresholds (Allee effects) and
demographic stochasticity.

Therefore we can assume invaders arriving at some level of
a community in equilibrium with a small abundance set equal
to the extinction threshold. Under the species symmetry as-
sumption, the dynamic system ṅ`i = n`i q

`
i given by the re-

sponse function (12) applies as well for the invaded system,
with N` =

∑s`
i=1 n`i + n and n being the population density of the

invader. Therefore, once the equilibrium is reached after the in-
vasion, the density of the invader will equal p` (the density of
the remaining species in that level), which can be obtained by
solving (15) with an occupancy s` + 1 in the `-th level. More-
over, the global stability condition applies as well to the invaded
dynamics. So we just need to check the viability of the resulting
equilibria in order to determine whether the invader is accepted.

If the invasion takes place at level L + 1, the equation for the
invader is simply

ṅ
n

= −α + γ+sLnL − n, (28)

which in fact is the last equation of the system (15) for a com-
munity of L + 1 levels with occupancies {s1, . . . , sL, 1}. Hence
the global stability condition still remains applicable and the
invader will be accepted if the resulting equilibrium is viable.

The complexity of the assembly dynamics comes from the
cases where some level in the invaded community falls below
the extinction threshold. The approach we used in Capitán et al.
(2009) to determine the sequence in which species go extinct
until leading to a final viable ecosystem was the following: for
the levels that fell below the extinction threshold once the equi-
librium had been reached, we went back in their trajectory to the
point where the population of some species crossed the extinc-
tion level nc for the first time, we eliminated one species from
that level and restarted the dynamics from that point. In this
paper we will propose an alternative way to determine that se-
quence based on several criteria and analytical approximations
that we will discuss below.

5.1. Invasion criteria
Consider the general dynamical system ẋi/xi = qi(x, xI),

ẋI/xI = qI(x, xI) for an arbitrary community with S species,
where x are the densities of the species in the resident commu-
nity and xI is the density of the invader. The establishment of a
colonizer in systems of this kind depends crucially on the initial
per-capita growth rate of the invader (Law and Morton, 1996).
In fact, the condition that must be satisfied for a new species to
increase when rare is

lim
T→∞

1
T

∫ T

0
qI(x̂(t), xI = 0)dt > 0, (29)

i.e., the time average of the per-capita rate of increase of the
invader is positive when the species of the resident commu-
nity remain under certain attractor x̂(t) of the dynamics. In our
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model, the only attractor is the interior rest point, so the con-
dition reduces to qI(p, 0) > 0, where p is the rest point of the
resident community. Strictly speaking, our model has a non-
zero extinction threshold, so this condition has to be replaced
by qI(p, nc) > 0. Since we start from a resident community
initially at equilibrium and the invader initial density is nc, this
condition reduces to the initial per-capita growth rate of the in-
vader.

The condition qI(p, nc) > 0 can be used to obtain criteria for
the invasibility at each level. For example, consider the initial
growth rate of the invader when the invasion takes place at the
level L + 1 [Eq. (28)]. The condition for this rate to be positive
is

pL >
α + nc

γ+sL
. (30)

If this condition does not hold, the invader is the first species
to go extinct because it starts at the extinction level and with
a negative initial rate. In the end states, the populations of the
resident community are close to (but above) nc (Capitán et al.,
2009), so the former condition provides the approximate bound

sL ≥
α + nc

γ+nc
. (31)

Even if the initial growth rate of the invader is positive, asymp-
totically the level L + 1 may not be viable. If this happens,
during the time when the population of the invader is above
nc, extinctions may occur at lower levels. This situation ex-
plains the accumulation of recurrent states that we observed in
Capitán et al. (2009) when we varied the resource saturation
(see Section 6).

Invasions at levels ` ≤ L are subject to similar conditions.
For the initial growth rate of the invader to be positive

p` >
nc

1 − ρ
(32)

must hold. In general, an initially positive growth rate could
lead to potential extinctions in the remaining levels while the
equilibrium density of the invader is above the threshold. But
it could happen as well that the invader extinguishes at equilib-
rium with some initial transient time above the extinction. To
estimate a condition for this to happen, let us assume that den-
sities and occupancies are inversely proportional (see (26) and
Figure 1). Then the equilibrium abundance of the invader is
s`p`/(s` + 1), therefore if

p` < nc

(
1 +

1
s`

)
(33)

the invader goes extinct. This condition, together with (32),
leads to

s` <
1
ρ
− 1 (34)

so below this bound, the invader initially grows but becomes
extinct at equilibrium. We will use this condition to explain the
appearance of some recurrent subsets for certain values of R
(see Section 6).

It would be nice, however, to have a systematic way to pre-
dict the sequence of extinctions after an invasion has occurred.

Based on our approximations for the equilibrium densities, we
can propose a way to sequentially remove species for invasions
at lower levels. Within the end states of our model, abundances
are close to the extinction threshold. Then (23) implies that
communities are pyramidal, so lower levels are highly occu-
pied but higher levels contain a small number of species. Ac-
cordingly, the increase of one species in a lower level has no
significant effect in the equilibrium abundances of the commu-
nity. Therefore if a species goes extinct after an invasion in a
low level, it has to be the invader itself.

The extinction sequence for invasions in higher levels is not
so easy to predict. Nevertheless, changes in abundances upon
increasing s` are larger the higher the level (Figure 1) so, in case
that several levels fall below the threshold, we can make the
assumption that it is always the “highest” species the one that
goes extinct first. This procedure provides a certain sequence
of extinctions whose accuracy will be checked in Section 6.

The prediction of the sequence of extinctions can be com-
plicated when a top predator invades if the resource saturation
values do not allow for L + 1 levels. We have devised global
approximations to the dynamics in this case to predict the order
of extinctions without having to resort to the numerical integra-
tion of the system of differential equations, as we did in Capitán
et al. (2009).

5.2. Global approximations to the dynamics invaded by a top
predator

Our heuristic approximations to the time dynamics of the
system (15) when an invader arrives at level L + 1 are some-
how inspired in the matching technique used to obtain analytic
approximations to perturbed differential equations [see, for ex-
ample Bender and Orszag (1984)]. First we calculate the equi-
librium point {p`}L`=0 by either solving (13) or using the approx-
imations (26). Then we approximate nL+1(t) by the sum of its
long-term dependence nL+1

lt (t) (near equilibrium) plus a short-
term behavior nL+1

st (t). For the long term, a linear stability anal-
ysis shows that the solution exponentially decays towards the
equilibrium point, so we will set

nL+1
lt (t) = pL+1 + e−λt[d0 cos(ωt) + d1 sin(ωt)] (35)

where the eigenvalue of the linear stability matrix which is clos-
est to zero is −λ + iω (ω may be zero). The constants d0 and d1
remain undetermined for the moment.

For the short-term behavior we propose

nL+1
st (t) = C(t)e−ξt, (36)

where C(t) =
∑

j c jt j is a polynomial whose coefficients and
the exponent ξ need to be determined to capture the transient
time evolution. This way to express the short-term behavior is
inspired in the initial transient decay that can be observed in the
initial dynamics prior to getting close to the equilibrium point
(see Figures 2 and 3). The polynomial has been included so
as to properly capture the initial condition and the initial devia-
tions to the exponential decay. The technical details to calculate
the undetermined coefficients in (35) and (36) are deferred to
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Figure 2: Dashed lines show our approximation for the dynamics of a four-
level community determined by the occupancies s1 = 110, s2 = 50, s3 = 6 and
s4 = 5 when invaded by a top predator at level 5. For this case the eigenvalue
closest to zero of the linear stability matrix is complex. Full lines represent the
numerical integration of (12). Remaining parameters are the same as in Figure
1. The whole time evolution is accurately predicted. The extinction level nc = 1
is showed as a dotted line. We can see how the first extinction in the community
takes place at level 4.

Appendix C. Figures 2 and 3 illustrate the validity of this ap-
proximation in capturing the global trend of the time evolution.

To reproduce the ordering of the extinctions we need the ex-
tinction times for each level, and these times are approximated
with a higher accuracy than the dynamic trajectories themselves
(see Figure 3). In Figure 4 we illustrate, for a particular com-
munity, the extinction procedure compared to our analytical ap-
proximations. In this case, the first level falling below nc is the
fourth one (upper panel). Then we remove one species from
that level and restart the dynamics from the point of extinction,
and the fourth level falls again below nc (second panel). After
the removal of a new species, the fourth level ends up above nc

at equilibrium. Now the next level ending below nc is the sec-
ond one. We move to the point of extinction of this second level
and restart the dynamics after removing one species from ` = 2.
After that it is just the invader (` = 5) the only one that falls be-
low the threshold, so we remove it and the resulting community
becomes viable. Were it not, we would apply the same extinc-
tion procedure again and again until the final community is vi-
able. The sequence of extinctions is well reproduced with our
approximate solution, although slight differences that alter the
order of extinctions may occur when different levels fall below
nc roughly at the same time.

6. Application to community assembly

Our goal in this paper was to provide analytical support,
albeit approximate, to the results obtained in Capitán et al.
(2009). We want to check now whether our approximations
correctly predict the recurrent sets which are end states of the

500

600

700

n0

1.0

1.2

1.4

n1

0.8

1.0

1.2

n2

1.0

1.5

2.0

n3

0 1 2 3 4
t

0.6

0.8

1.0

n5

0 1 2 3 4
t

0.6

0.8

1.0

1.2

n4

Figure 3: Same as Figure 2, but with R = 1200 and occupancies s1 = 106,
s2 = 49, s3 = 6 and s4 = 4. For this case the eigenvalue closest to zero of
the linear stability matrix is real. Although there is some discrepancy in our
approximations, the global trend is captured and the extinction times after the
invasion are accurately predicted.

L Rrec/nc R∗rec/nc (±5)
1 25.80 30
2 75.88 80
3 323.93 325
4 973.56 975

L Rmin/nc R∗min/nc (±5)
2 35.80 40
3 131.88 135
4 457.53 470
5 1613.71 1630

Table 1: Estimation of the value of R/nc for the appearance of a recurrent set
with more than one community (left). Minimum values of R/nc that allow
a community with L levels, according to (24) (right). The interval of values
of R that correspond to the recurrent sets is approximately [Rrec,Rmin]. R∗rec
and R∗min are the corresponding values found using numerical analysis (Capitán
et al., 2009) mapping the whole range of R with a resolution ∆R = 5.

assembly process. With this aim, we have varied the parameter
R within the range from 10 to 1700 in steps ∆R = 5. The re-
maining parameters of the model will be set as in our previous
work: γ+ = 0.5, γ− = 5, ρ = 0.3, α = 1 and nc = 1.

Let us first fix the number of levels L. We can determine with
(24) the minimum value Rmin that allows L+1 levels. The results
are summarized in Table 1. Moreover, we can combine (23)
and (31) to give an estimation of the initial value of Rrec for the
appearance of a recurrent set with more than one community,

R
nc

+ µ(γ− + 1) ≥
(
γ−
γ+

)L [(
α + nc

γ+nc
+ µ

)
(aL + γ+aL−1)

+ µ(aL−1 + γ+aL−2)
]
.

(37)

The resulting values show a good agreement with those ob-
tained numerically in Capitán et al. (2009) (see Table 1).

Then, for a given R, we can read off from Table 1 the number
of levels for the communities within the recurrent set. Once we
know it, we determine with (23) an estimation for the maximum
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Figure 4: Extinctions sequence for the community with s1 = 110, s2 = 51,
s3 = 6 and s4 = 5 invaded at level 5 (parameter values are the same as in Figure
1, and nc = 1 is showed with a horizontal dotted line). We just show the time
evolution of the levels that go extinct or are close to extinction in equilibrium.
Dotted curves correspond to our analytical approximations. We show, with
vertical lines, the time of the first level that go extinct. The sequence of extinct
levels is 4, 4, 2, 5 until viability is recovered.

occupancies allowed. We round off the estimates to get an inte-
ger set of values {s`} and calculate the associated interior equi-
librium. It can happen that some of the p` fall below nc, so we
decrease the corresponding occupancies s` eliminating species
one by one until the equilibrium turns out to be viable. This
way we obtain a community very close to those of the recurrent
set (communities within this set are close to extinction), so we
can use it as the initial community to start the assembly process.
We then compute the set of viable communities connected to it,
which defines an assembly graph much smaller than those ob-
tained in Capitán et al. (2009) starting from the empty commu-
nity ∅. We analyze the graph to obtain its recurrent sets using
the algorithm of Xie and Beerel (1998) and we get one single
set. In Figures 5 and 6 we plot the number of communities in
each end state, showing a good agreement between the results
obtained with the analytical approximations reported here and
the numerical results reported in Capitán et al. (2009).

For every R we can always find a community which is un-
invadable at all its levels ` ≤ L. If R is such that (37) is not
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Figure 5: Number of communities in the recurrent sets obtained with the analyt-
ical approximations (N, showed with crosses) and with a numerical integration
of the population dynamics (N0, circles). The inset contains the absolute dif-
ference |N − N0 |. The global picture is the same as that found in Capitán et al.
(2009), although differences of a few tens arise in some cases.

verified, then the invader at level L + 1 initially decreases and
goes extinct. This explains the intervals of R where only one ab-
sorbent state is found. However, if (31) holds (with our choice
of parameters this happens when sL ≥ 4), there is an initial time
interval where the population of the invader is above the thresh-
old. This can cause the extinction of lower level species, and
generate recurrent sets with more than one community.

Our analytical approximations thus provide results very close
to those obtained numerically. Besides its being more efficient
(the whole assembly needs not be generated), this method also
allows to predict what would happen for values of R larger than
1700, which are computationally prohibitive for the numerical
method. With our bounds (24) and (37) we can estimate the
next interval of R where more than one community in the end
state will appear, namely R ∈ [3844, 5114]. That is out of reach
of the numerical method, because the number of communities
in the whole assembly graph grows as fast as N ≈ eκ

√
R (Capitán

et al., 2010).
Two observations are on purpose. First, there are small inter-

vals of R where the graph constructed starting from the empty
community has L levels but there are viable communities with
L + 1 levels which cannot be assembled starting from ∅ [this
phenomenon is analogous to the existence of unreachable per-
sistent communities showed in Warren et al. (2003)]. We ob-
serve this for R = 460, 465, 1615, 1620 and 1625 (see Table 1).
We have checked that even in these cases the recurrent state is
exactly recovered using the analytical approximations.

Secondly, we can observe from Figures 5 and 6 that there are
small regions where recurrent sets with more than one commu-
nity are found out of the intervals predicted in Table 1 (around
R ≈ 200 for L = 3 and R ≈ 620 for L = 4). For those values, a
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Figure 6: Number N of communities in the recurrent sets obtained with the
analytical approximations (crosses in Figure 5). The global trend is the same as
found in our previous work [see Figure 3. in Capitán et al. (2009)]. The inset
shows the relative difference in the prediction of the number of communities in
the end states. Note that the discrepancies occur in a region where this number
is small. This explains the relatively large error found in some cases.

single absorbent community should be found. However, condi-
tion (34) for an invader at level L to initially grow and become
extinct at equilibrium renders sL ≤ 2 for our choice of ρ. We
have checked that this condition is satisfied by all these small
recurrent sets, thus explaining their appearance.

We have to assess the accuracy of the transitions predicted
in the graph of our recurrent sets. Note that a slight difference
in the ordering of extinctions can change the final community
after the invasion and this may change the observed graph and
therefore the asymptotic probability distribution of the associ-
ated Markov chain. In order to check the transition matrices we
obtain, we have calculated two averages. In Figure 7 we show
the variation of the average number of species in the recurrent
sets as a function of R. The behavior is almost indistinguishable
from that found in Capitán et al. (2009) (the inset of Figure 7
shows that the relative error is small).

We have also checked that the number of extinctions pre-
dicted with our approximations follows the same distribution
than the one calculated numerically. To this purpose we de-
fine the magnitude of an avalanche of extinctions as the relative
variation m = ∆S/S of the total number of species in a com-
munity after an invasion. In Figure 8 we show the cumulative
histogram for the distribution of these magnitudes. We can see
that the deviations between both distributions are small. Further
statistical results will be discussed in the second paper of this
suite.

7. Conclusions

In this paper we have presented a general model of trophic-
level structured food-web, where interactions between species

0 500 1000 1500
R

0

50

100

150

200

250

300

350

S

0 500 1000 1500
R

0

0.02

0.04

|S
-S

0|/S
0

L=4L=3L=2

Figure 7: Average number of species S av in the end states calculated analyti-
cally vs. R. In the inset we show the relative error between S and its corre-
sponding average S 0 for each graph calculated numerically.

are either feeding or competing. For the sake of simplicity,
feeding only takes place between contiguous levels. The pop-
ulation dynamics is modeled through Lotka-Volterra equations,
and a proof is given that a wide class of these models has a glob-
ally stable interior equilibrium. We have introduced this model
as an appropriate general framework to study the process of
successional invasions. In the invasion process, we consider a
mean-field version, in which species in the same level are troph-
ically equivalent and only intra- and interspecific competition is
distinguished. This species symmetry assumption has allowed
us to obtain analytical results, some of them exact and some
other approximate. Among them we have provided estimations
for the maximum number of species allowed per level, the max-
imum number of levels for a given value of the resource satu-
ration, and certain analytical approximations of the dependence
of the equilibrium abundances on the occupancies of each level.
We have combined these results with some criteria for the ac-
ceptance of an invader in our model communities, and with the
help of some global approximations of the invaded dynamics
we have been able to obtain, with high accuracy, the sequence
of extinctions occurring after an invasion. With this procedure
we have reproduced the same results that we found in a pre-
vious work (Capitán et al., 2009), this time without resorting
to an integration of the Lotka-Volterra equations and without
constructing the whole assembly graph. Among other things
this brings the opportunity of exploring the model for resources
which would otherwise be computationally prohibitive to ob-
tain.

Although the main results of this model are discussed at
length in the second paper of this suite (Capitán et al., 2010),
we have provided here a few of them which illustrate the global
assembly process and some of its main features. For instance,
we had reported already in Capitán et al. (2009) that, upon in-
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Figure 8: Cumulative probability function Π(m) for the distribution of the mag-
nitude m of avalanches of extinctions. The distributions follow an exponential
behavior. Crosses represent the results for our approximated transition ma-
trix. The number of recurrent states coincide for the analytical and numerical
method. The inset shows a case where the number of communities is underesti-
mated. This explains the absence of several points in the distribution estimated
analytically. The agreement is rather good even in this case.

creasing the resource saturation R, the number of levels, L, that
the system is able to sustain increases discontinuously. We pro-
vide here an estimate of the values of R at which this occurs,
and show that this values grow essentially as ∼ (γ+/γ−)L. Un-
der the assumption that populations are close to the extinction
level, we have shown that equilibrium communities are pyra-
mids —again in agreement with the results obtained in Capitán
et al. (2009). Close to the onset of appearance of a new level,
the number of communities in the end state increases. We have
identified that the requirement for this to happen is that the pop-
ulation of a top predator invading the community initially grows
only to go eventually extinct. From this knowledge we can es-
timate the value of R at which the end state starts to have more
than just one community.

We have tested the approximations we have made by calcu-
lating some observables. Among them we report on the average
species richness as a function of R, as well as the distribution of
the avalanche of extinctions produced by an invasion. In both
cases the agreement is very good. In the latter case, it is worth
mentioning that this distribution of avalanches decays exponen-
tially with the avalanche size, meaning that there is a character-
istic size of the avalanches. This size roughly grows with the
species richness of the community, as one could expect. In any
case, avalanches never get even close to destroy the community.

We also propose in this paper an analytical approximation to
the dynamics of a community invaded by a top predator. This
approximation has been built matching the initial behavior of
the solution (derived from the initial condition) and the asymp-
totic decay expected close to the equilibrium. We have found a a
rather good agreement with the solutions obtained by a numeri-

cal integration of the Lotka-Volterra equations, and has allowed
us to correctly predict (in most of the cases) the order of extinc-
tions eventually caused by the invasion of a top predator. These
approximations have been applied to reproduce the assembly
graphs for the recurrent sets, showing small discrepancies only
for certain values of R. This provides an alternative method to
analyze the system for other sets of parameter values, with a
negligible computational cost compared to the construction of
the whole assembly graph.

Our assembly model is based on several assumptions regard-
ing the invasion process. Two of the most important ones are
that newcomers invade at low population and the average time
between invasions is large compared to the time for the com-
munities to reach the equilibrium. If the invasion rate is too
high (Fukami, 2004; Bastolla et al., 2005b) or if the invasion
is not produced by rare species (Hewitt and Huxel, 2002), the
assembly process —and hence the resulting end states— can be
drastically altered. The reason is that communities that are not
accessible from the equilibrium state may be so from a tran-
sient or if there is a massive invasion. This changes the assem-
bly graph in ways that we can neither predict nor even check,
because these processes are out of reach of our model. For in-
stance, considering invading transients, one of the strong sim-
plifications we make use of is that of starting always from a
well-defined initial condition, namely the equilibrium state. If
the system can be invaded at any moment during a transient
there are infinitely many initial conditions to start off from,
something we cannot implement. So what happens if any of
those two hypotheses is violated remains an open question.
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Appendix A. Derivation of the reduced dynamical system

We will show in this appendix that our dynamical system
ṅ`i = q`i n

`
i , with the linear response function (12), can be re-

duced to the form (15) when all the initial species abundances
at a certain level are equal. The crucial point for this to be true
is the relation (14).

This result can be formulated in a simple way. Consider the
two-dimensional autonomous system

ẋ = f (x, y),
ẏ = g(x, y),

(A.1)

with the initial condition x(0) = y(0) and which satisfies
f (x, y) = g(y, x). We are going to show that the Taylor ex-
pansions centered at t = 0 of x and y are identical. In principle,
both expansions will have certain radii of convergence. Let t be
lower than the minimum of these radii. Then we just need to
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show that all the derivatives at t = 0 coincide. But this follows
by induction.

The first derivatives are shown to be equal easily. Let us
assume that x(k)(0) = y(k)(0) for all k = 1, . . . , n. Then the
(n + 1)-th derivative is

x(n+1)(0) =

n∑
j=0

(
n
j

)
∂n f

∂x j∂yn− j

∣∣∣∣∣
t=0

x( j)(0)y(n− j)(0). (A.2)

But, since f (x, y) = g(y, x), this is equivalent to write

x(n+1)(0) =

n∑
j=0

(
n
j

)
∂ng

∂y j∂xn− j

∣∣∣∣∣
t=0

y( j)(0)x(n− j)(0), (A.3)

and, relabelling the sum index,

x(n+1)(0) =

n∑
j=0

(
n

n − j

)
∂ng

∂x j∂yn− j

∣∣∣∣∣
t=0

x( j)(0)y(n− j)(0), (A.4)

which is equal to y(n+1)(0).
Therefore we have shown that the Taylor expansions of x(t)

and y(t) coincide. This means that x(t) = y(t) within the radius
of convergence of the series. For larger times, we can apply
the same argument by analytic continuation (we choose some
t0 in the interval or convergence as the centering point for a
new Taylor expansion, and repeat the argument). Hence we
conclude that x(t) = y(t) for all t.

Note that the same considerations apply to our system (12),
so we can reduce considerably the complexity of the system and
solve (15) instead.

Appendix B. Analytical approximation to the equilibrium
densities

This appendix is devoted to solve the linear system for the
equilibrium densities (25). The solution of this system can be
obtained through Cramer’s rule as

s`p` =
ΞL,`

∆L
(B.1)

for certain determinants ΞL,` and ∆L. Our approximation is
based in some recurrence equations that can be obtained for
these determinants.

Let us start with the (L + 1) × (L + 1) determinant

∆L =

−1 −γ− 0 · · · 0
γ+ −d1 −γ− · · · 0
0 γ+ −d2 · · · 0
...

...
...

...
0 0 0 · · · −dL

, (B.2)

where d` ≡ ρ +
1−ρ
s`

. Hence the densities depend on {s`}L`=1
only through the inverse of all the possible products si1 si2 · · · sik ,
for some combination (i1, i2, . . . , ik) of k elements of the set
{1, 2, . . . , L}. In the recurrent sets we get the highest occupancy
of species in each level allowed by the resource according to

(21)–(23), so we expect that a rather good approximation for
the equilibrium densities amounts to neglecting orders higher
than 1/s. Hence

∆L = DL − (1 − ρ)
L∑
`=1

BL,`

s`
+ O

(
1
s2

)
, (B.3)

where

DL =

−1 −γ− 0 · · · 0
γ+ −ρ −γ− · · · 0
0 γ+ −ρ · · · 0
...

...
...

...
0 0 0 · · · −ρ

(B.4)

has dimension (L + 1) × (L + 1) and BL,` is the determinant
obtained by substituting the `-th column of DL by the column
vector u` whose components are u`,i = δ`,i (for i = 0, 1, . . . L).

The determinant D` satisfies the recursion

D` = −ρD`−1 + γ+γ−D`−2, (B.5)

where ` = 1, 2, . . . L, D0 = −1 and D1 = ρ+γ+γ−. This relation
can be easily solved using a generating function. On the other
hand, it is easy to see that BL,` = D`−1EL−`−1, with E` the (` +

1) × (` + 1) determinant

E` =

−ρ −γ− 0 · · · 0
γ+ −ρ −γ− · · · 0
0 γ+ −ρ · · · 0
...

...
...

...
0 0 0 · · · −ρ

, (B.6)

which also satisfies recursion (B.5) with E0 = −ρ and E1 =

ρ2 + γ+γ−.
The generating function that results from (B.5) is

G(z) =

∞∑
`=0

D`z` =
D0 + (D1 + ρD0)z
γ+γ−z2 − ρz − 1

, (B.7)

and after the series expansion we get

D` = (−γ−)`−1 [
(D1 + ρD0)a`−1 − γ−E0a`

]
, (B.8)

with a` given by (18). Then the following compact expressions
result

D` = (−1)`+1γ`−
[
a` + γ+a`−1

]
, (B.9)

E` = (−1)`+1γ`+1
− a`+1. (B.10)

The explicit expression for ΞL,` is obtained from ∆L sub-
stituting its `-th column by the (L + 1) × 1 column vector
(−R, α, . . . , α)T. We can expand it up to leading order in powers
of 1/s to get

ΞL,` = TL,` − (1 − ρ)
L∑

j=1
j,`

Q j
L,`

s j
+ O

(
1
s2

)
. (B.11)
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where

TL,` =

−1 −γ− 0 · · · −R · · · 0
γ+ −ρ −γ− · · · α · · · 0
0 γ+ −ρ · · · α · · · 0
...

...
...

...
...

0 0 0 · · · α · · · −ρ

(B.12)

(0) (`) (L)

and Q j
L,` is the determinant that results when we substitute the

j-th column of TL,` by u j ( j , `).
Expanding TL,` along its first row we get

TL,` = −αAL,` + αγ+γ−AL−1,`−1 + (−1)`+1Rγ`+EL−`−1, (B.13)

where we define the new i × i determinants Ai, j as

Ai, j =

−ρ −γ− 0 · · · 1 · · · 0
γ+ −ρ −γ− · · · 1 · · · 0
0 γ+ −ρ · · · 1 · · · 0
...

...
...

...
...

0 0 0 · · · 1 · · · −ρ

(B.14)

(1) ( j) (i)

that satisfy the recurrence equation

An, j = −ρAn−1, j + γ+γ−An−2, j + γ
n− j
− E j−2, (B.15)

for j = 1, 2, . . . , n − 1 (with the boundary conditions A j, j+1 = 0
and A j,0 = 0), and

An,n = −γ+An−1,n−1 + En−2. (B.16)

These relations can be explicitly solved. On the one hand, by
definition A1,1 = 1, which amounts to choosing E−1 ≡ 1 for this
to be compatible with (B.16). Moreover, making use again of a
generating function, the solution of (B.16) is

A j, j =
(−1) j−1γ

j
−

γ− − γ+ + ρ

 ρ
γ−

a j−1 +
γ+ + ρ

γ−
a j−2 +

γ+

γ−
a j−3 −

(
γ+

γ−

) j ,
(B.17)

for j ≥ 2. On the other hand, the explicit solution of (B.15) is

A j+k, j = (−1)kγk+1
− ak+1A j, j

+
γk
−E j−2

γ− − γ+ + ρ

[
(−1)k+1(γ−ak − γ+ak−1) + γ−

]
,

(B.18)

for k ≥ 1. Therefore equations (B.17) and (B.18), together with
(B.13), provide an explicit solution for the determinants TL,`.

Fortunately, Q j
L,` can be written in terms of the previous de-

terminants since QL,` is a block-diagonal determinant with two
blocks that satisfies

Q j
L,` = D j−1AL−`,`− j, for k < j, (B.19)

Q j
L,` = EL− j−1T j−1,`, for k > j. (B.20)

This completes the analytical approximation of the equilibrium
densities of our dynamical model. We have derived explicit ex-
pressions for all the terms involved in (B.1), (B.3) and (B.11) up

to leading order in 1/s. Moreover, note that the same technique
applied to find this approximation can be extended to obtain the
exact dependence on {s`}L`=1 of the abundances. Higher-order
terms in powers of 1/s introduce in the corresponding deter-
minants several column vectors of the type of u` making each
determinant to be block-diagonal involving D`, E`, Ai, j or T j

`,k,
so that the general solution contains in each term a product of
a certain combination of these determinants. This explicit ex-
pression can in fact be written, but it is too cumbersome. The
approximations here obtained are both sufficiently simple and
accurate enough to capture the behavior of population densities
in the communities of the recurrent sets.

Appendix C. Technical details of the global approxima-
tions to the dynamics

In this appendix we will describe the calculation of the unde-
termined parameters of our ansatz (35)–(36) for the dynamics
of system invaded by a top predator. We impose that the initial
condition and the first k derivatives at t = 0 match the exact
values, which can be readily calculated. Indeed, our system has
the form ẋi = −αxi + xi fi(x), where fi(x) =

∑
j bi jx j is a linear

function. Therefore we can recursively calculate the s+1 initial
derivative as

x(s+1)
i (0) = −αx(s)

i (0) +

s∑
j=0

(
s
j

)
x(s− j)

i (0) fi(x( j)(0)). (C.1)

For a real eigenvalue (ω = 0), we choose C(t) [see (36)] to
be a polynomial of degree k− 2, and for a complex one (ω , 0)
we choose degree k − 3, in order to compensate for the extra
undetermined coefficient in the long-term behavior in this case.
Equating the approximate solution to the initial condition and
the first k − 1 derivatives of our ansatz to the exact values leads
to a linear system for the undetermined coefficients. The equa-
tion for the k-th derivative yields a polynomial equation for ξ,
namely

k−2∑
j=0

(
k − 2

j

)
H jξ

k− j−2 = (λ2 + ω2)pL+1, (C.2)

when ω = 0, where

H j = (λ2 + ω2)n( j)(0) + 2λn( j+1)(0) + n( j+2)(0) (C.3)

and n( j) stands for the j-th derivative of nL+1, which can be cal-
culated exactly using (C.1). For ω = 0 Eq. (C.2) gets replaced
by

k−1∑
j=0

(
k − 1

j

) [
λn( j)(0) + n( j+1)(0)

]
ξk− j−1 = λpL+1. (C.4)

Afterwards, we just need to calculate the coefficients c j and d0
(and d1, if ω , 0) by solving the linear system that they satisfy.

Once we have the approximate time behavior for nL+1 we cal-
culate analytically the remaining populations n` by direct sub-
stitution into the system (15), taking advantage of the recursive
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form of these equations, once nL+1 is known. Notice that, since
we have to calculate successive derivatives in order to get any
lower population, the accuracy of nL+1 at short times degrades
as we calculate lower level populations. Fortunately the model
produces communities with a small number of trophic levels
(Capitán et al., 2009). The choice k = 5 seems to be enough
to account for the dynamics of any community of up to L = 4
levels invaded by a top predator (see Figures 2 and 3). For the
description of the dynamics of communities with a higher num-
ber of levels we would need to choose polynomials of higher
degree in our ansatz.

A final caveat needs to be made with respect to the calcu-
lation of ξ. We need it to be positive, otherwise (36) would
be meaningless. Among all the roots of (C.2) we choose the
largest, positive, real solution, so that any possible initial oscil-
lation of the polynomial C(t) is damped by the exponential. In
the majority of the dynamics that we have approximated (see
Section 6), we are able to find a positive solution for ξ. How-
ever, in some cases there is no positive solution. In those cases
we just minimize the difference between the exact k-th deriva-
tive and the approximate one at t = 0. This also produces an ac-
ceptable solution. In all minimization procedures that we have
run, a positive exponent ξ is always found.
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