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Abstract

In the companion paper of this set (Capitán and Cuesta, 2010) we have developed a full analytical treatment of the model of
species assembly introduced in Capitán et al. (2009). This model is based on the construction of an assembly graph containing
all viable configurations of the community, and the definition of a Markov chain whose transitions are the transformations of
communities by new species invasions. In the present paper we provide an exhaustive numerical analysis of the model, describing
the average time to the recurrent state, the statistics of avalanches, and the dependence of the results on the amount of available
resource. Our results are based on the fact that the Markov chain provides an asymptotic probability distribution for the recurrent
states, which can be used to obtain averages of observables as well as the time variation of these magnitudes during succession,
in an exact manner. Since the absorption times into the recurrent set are found to be comparable to the size of the system, the
end state is quickly reached (in units of the invasion time). Thus, the final ecosystem can be regarded as a fluctuating complex
system where species are continually replaced by newcomers without ever leaving the set of recurrent patterns. The assembly graph
is dominated by pathways in which most invasions are accepted, triggering small extinction avalanches. Through the assembly
process, communities become less resilient (e.g., have a higher return time to equilibrium) but become more robust in terms of
resistance against new invasions.

Keywords: Community assembly, Markov chain, Ecological invasions

1. Introduction

Understanding the mechanisms leading to species assembly
in ecological communities is a challenging issue. In particular,
assembly models have been used to understand the observation
that natural communities are both complex and stable (McCann,
2000; Dunne, 2006).

Assembly models try to mimic the sequential arrival of rare
species (invaders) to which natural communities are subjected.
Standard assembly models (Drake, 1990; Law and Morton,
1993, 1996) use “species pools” as (finite) sets of potential in-
vaders. Pools are usually defined by labeling species accord-
ing to some niche variable (usually a species trait like body
size) and then drawing randomly their interactions from pre-
determined probability distributions (Law and Morton, 1996).
Sequential invaders of any given resident community are se-
lected from the pool at each invasion attempt, and the resulting
community after the invasion can be determined according to
some population dynamics. For models using Lotka-Volterra
equations, the permanence (Hofbauer and Sigmund, 1998) of
the invaded community is a suitable criterion which determines
the same final community as the numerical integration of the
equations (Morton et al., 1996).
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The most notable results of previous assembly models are: (i)
a final end state is eventually reached, which can be either a sin-
gle community or a cycle involving several communities (Mor-
ton and Law, 1997), (ii) average species richness (complexity)
increases with successional time (Post and Pimm, 1983; Drake,
1990; Law and Morton, 1996), and (iii) stability, understood
as resistance against invasions, also increases with time (Case,
1990; Law and Morton, 1996; Morton and Law, 1997). Thus
assembly models conform a well-founded theoretical frame-
work that provides a positive relationship between stability and
complexity in model communities.

In a previous paper (Capitán et al., 2009) we have provided a
picture of the assembly process of an ecosystem as a Markov
chain evolving in a certain configuration space. This space
is made of all viable communities for a given set of parame-
ters (resource saturation, interspecific competition, consump-
tion rates. . . ). The invasion process by a new species induces
transitions as a result of the perturbations created in the com-
munity by the newcomer. The process drives the community to
an end state resistant to invasions. For some parameter values
this end state is just a single uninvadable community. For the
remaining values, the end state is formed by a set of communi-
ties with equal number of trophic levels and similar number of
species per level, which transform into each other as a result of
new invasions. In this set, communities can always be invaded
but they never abandon the set. These complex end states are
a generalization of the end cycles found in previous assembly
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models (Morton and Law, 1997), and the fact that they had not
been observed so far is probably due to limitations in the pool
of invaders of these previous models. In the preceding paper
(Capitán and Cuesta, 2010) we have shown that the existence of
these complex end states is a result of a top predator attempting
to invade a community when its establishment is not allowed by
the parameters of the model.

Our model recovers the main findings of previous assembly
models (Post and Pimm, 1983; Drake, 1990; Case, 1990; Law
and Morton, 1993, 1996), such as the resistance of end states
against invasions, or the increase of complexity (biodiversity)
along the assembly (Capitán et al., 2009). Its main virtue is
therefore being sufficiently simple so as to allow mapping out
all assembly pathways, thus providing a global picture of the
assembly process.

Despite recovering the above similar results, there are impor-
tant differences between our work and early models. First, the
niche variable in our model is simply the trophic level (Capitán
et al., 2009), which renders our species pool infinite (in con-
trast to most previous models; but see Post and Pimm (1983) for
an exception). However, interactions in the pool are averaged
over each trophic level under a species symmetry assumption
(Capitán and Cuesta, 2010), which decreases substantially the
number of different assembly pathways. Second, in our model
the permanence of the final community is guaranteed because
we are able to show that equilibrium communities are globally
stable (Hofbauer and Sigmund, 1998) under the assumption of
neutrality within each trophic level. And third, in standard as-
sembly models magnitudes are averaged over a set of stochastic
realizations of the process of sequential invasions, where in-
vaders are randomly chosen from the species in the pool not yet
present in the community. Since we are able to map out all the
invasion pathways for this model, we do not need to resort to
average magnitudes over realizations but we can calculate them
exactly (Capitán et al., 2009). Even for our simple model, the
number of possible pathways is too high to be accounted by
through simulation [see details in Capitán et al. (2009)]. This is
one of the main advantages of our model with respect to former
ones, which in turn allows us to establish its independence on
history. The uniqueness of the end state for these kind of mod-
els was not proven until now, although it was already found that
most of the simulated assembly sequences led to a single set of
final communities (Morton and Law, 1997).

In the first paper of this suite (Capitán and Cuesta, 2010) we
have performed a detailed analysis of the analytical properties
of the Lotka-Volterra population dynamics underlying our as-
sembly model, as well as the stability properties of the interior
equilibria from the dynamic point of view. Our communities
represent a mean-field version of trophic networks: the feeding
relations are assumed to take place only between contiguous
trophic levels and the strength of each interaction is averaged
to a uniform value. This assumption of symmetry allowed us to
simplify the differential equations, showing that in our model
the set of species numbers at each level {s`}L`=1 is enough to
determine the equilibrium densities and the dynamics of a com-
munity with L trophic levels.

The present paper presents new results of the assembly pro-

cess ranging from structural properties of the building of stable
communities to dynamical properties of the stochastic invasion
process. The transition matrix associated to the chain allows
us to define a stationary distribution of probabilities over the
assembly graph. We will use that distribution to calculate aver-
ages of biologically relevant observables in the ecosystem, like
the average number of species, the total population density, etc.,
and even to obtain distributions of certain magnitudes like the
fraction of extinct species after a destructive invasion. But this
is not the only advantage of our approach. The transition ma-
trix also provides the time evolution of the probability, so the
dependence in time of any magnitude can be obtained exactly.
Due to its simplifications, the model reduces the number of pos-
sible communities to a finite graph. Once we have that graph,
the theory of finite Markov chains can be exploited to obtain the
dynamical properties of the assembly process.

The paper has been organized as follows. In Section 2 we
revisit the definition of the Markov chain associated to the as-
sembly process and show that all communities can be classified
into transient or recurrent. Section 3 is devoted to discuss the
main statistical results that can be obtained for our model, for
instance, the asymptotic distribution within the complex end
states (Section 3.1), the dependence of averages upon varia-
tion of the resource saturation (Section 3.2), the dependence of
the results upon variation of the parameters of the model (Sec-
tion 3.3), the average time to reach the end state (Section 3.4),
the statistics of avalanches of extinctions caused by invasions
(Section 3.5) or the variation of biologically relevant averages
with successional time (Section 3.6). We finally discuss our
findings and their implications in Section 4.

2. The assembly process as a Markov chain

Let us start with a detailed description of the Markov chain
associated to our assembly model In the first paper of this suite
(Capitán and Cuesta, 2010) we showed that, solving the linear
system that defines the interior equilibrium point of the Lotka-
Volterra equations (i.e., the system obtained by equating to zero
the per-capita population growth rates ṅi/ni, with i running over
the set of all species) we can determine all viable communities
(i.e., those whose population densities are above a certain ex-
tinction threshold nc > 0) that are compatible with a given set
of parameters. Although in principle the population model al-
lows for infinitely many species at each level, it turns out that
the set of viable communities is finite. This is a consequence of
the existence of the extinction threshold, that precludes the ap-
pearance of arbitrarily small populations (an unrealistic feature
of deterministic population dynamics models). There is another
limitation due to the finite amount of abiotic resource that main-
tains our model communities. In our previous work we modeled
this resource with a linear functional response with a saturation
value R (Capitán et al., 2009; Capitán and Cuesta, 2010). R
accounts for the amount of resource that would be reached in
the absence of consumers. On the one hand there is a maxi-
mum number of levels allowed for a given resource saturation
R (Capitán and Cuesta, 2010); on the other hand population
densities at each level approximately decrease as 1/s`, with s`
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Figure 1: (Color online) Assembly graph obtained for a value of the resource
saturation R = 80. It is made of 39 communities (nodes), each of them with
either one or two trophic levels. Transitions shown with a black arrow indicate
that the invasion is accepted, and those with a red arrow refer to a rearrangement
in the resulting community after the invasion. Transient nodes are filled in red,
and recurrent nodes are filled in dark blue. In this case, the final end state
of recurrent communities comprises 3 communities forming an end cycle like
those found by Morton and Law (1997). Labels of each node show the species
numbers {s1, s2} of each trophic level in the community. Remaining parameter
values are: γ+ = 0.5, γ− = 5, ρ = 0.3, α = 1 and nc = 1.

the number of species in that level (Capitán and Cuesta, 2010),
so we can have populations infinitely close to zero. There-
fore, the existence of the extinction threshold renders the set of
communities under consideration finite, and then the associated
Markov chain has a finite number of states. Besides this being
a more realistic description of an ecosystem, it also drastically
simplifies the analysis of the assembly process.

Thus for any choices of parameters there is a finite set of
viable communities —that we denote by F . There will be a
link from community i to community j of the setF provided the
former is transformed into the latter as a result of an invasion.
Invasions are assumed to occur at a uniform rate ξ. We assume
that the typical dynamical time is much smaller than ξ−1, the
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Figure 2: (Color online) Same as Figure 1 for R = 50. The total number of
communities in this graph is 16, and they have up to 2 trophic levels. An end
state with a single community (with occupancies {4, 2}) is reached in this case.
Remaining parameter values are the same as in Figure 1.

mean time between invasions, so that communities are always
at equilibrium when an invasion occurs [for the validity of this
assumption see the discussion in Capitán and Cuesta (2010)]
The population of the invader is assumed as small as possible,
i.e. equal to nc (Roughgarden, 1974; Turelli, 1981).

Consider a community i ∈ F , with L trophic levels, at
its equilibrium point. Potential invaders are species of level
` = 1, . . . , L + 1 (species of higher levels would not be able to
feed from the existing levels). We randomly choose ` and intro-
duce a new species at level ` of the community i. The extended
community will evolve to the interior equilibrium correspond-
ing to the new number of species s` + 1 at level ` (Capitán and
Cuesta, 2010). If this equilibrium is viable, then the invader is
accepted in the resident community. The new community j will
also be in F and a directed link will go from i to j. If the new
equilibrium is not viable then we apply the procedure discussed
in Capitán and Cuesta (2010) to determine what is the sequence
of extinctions until the community becomes viable. Two things
can happen: either the first level to fall below the extinction
threshold is the invaded one, or it is another one. In the former
case the invader is simply rejected and the community remains
unaltered; in the latter, the extinction sequence will lead to a
new community k ∈ F , and a link will go from i to k.

The assembly graph, G, is defined as the connected compo-
nent containing the empty community, ∅, of the directed graph
whose nodes are the elements of F and whose links are the
transitions obtained by the invasion process just described. Ob-
viously, the way to construct G is to start off from ∅, and pro-
ceed by attempting all possible invasions for every community
reached along the assembly process [see Figures 1 and 2 for a
graphic representation of simple assembly graphs, for a larger
value of R see Figure 1 in Capitán et al. (2009)]. The exhaustive
characterization of the set of nodes in G is a bit demanding. For
example, the storage of all the communities appearing along
the process has been carried out by using a binary tree (Knuth,
1997), by exploiting the mapping between any configuration
{s`}L`=1 and a binary number (we simply concatenate the binary
representations of each species number s` to form a branch of
the binary tree). Despite this, we have been able to analyze
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Figure 3: (Color online) Graphs of the recurrent subset for values of the resource saturation R = 990 (a) and R = 390 (b) (other parameters are set as in Figures 1
and 2). The first graph contains 10 communities with 4 trophic levels, whereas the second has 30 communities with 3 levels. For a graphical representation of a
recurrent subset more complex than these see Capitán et al. (2009). The diameter of the nodes is proportional to its asymptotic probability. Black arrows show
accepted invasions and yellow ones those causing a reconfiguration (the thickness of each line is proportional to the relative number of extinct species). Labels
indicate the number of species in each trophic level.

graphs with around 106 communities within.
The connection of the species assembly process with a

Markov chain on the graph G amounts to assigning certain tran-
sition probabilities to each link of the assembly graph. We de-
fine these probabilities in a simple way. Invaders arrive at each
community at a constant rate ξ, independent of the level of in-
vasion, and the stochastic process is updated in discrete time
(each time unit is the average time elapsed between consecu-
tive invasions). Thus, if i and j are two nodes of G connected
by a link, we assign it the transition probability

Pi j = δi j + ξQi j, (1)

where δi j = 1 if i = j and 0 otherwise. The matrix elements Qi j

are given by

Qi j =
ni j

L + 1
, i , j, Qii = −

∑
j,i

Qi j, (2)

where ni j is the number of different invasions of i that lead to j
and L + 1 is the number of different invasions of i, provided it
has L trophic levels. Therefore, the probability of the transition
i→ j between different communities is proportional to the rel-
ative frequency of the transition among all the possible transi-
tions starting from i, the invasion rate being the proportionality
constant. The diagonal of Q is chosen so that P = (Pi j) is a
stochastic matrix.

Since the diagonal elements of the transition matrix P are
non-zero, the Markov chain can not be periodic (Karlin and
Taylor, 1975). As the set of viable ecosystems F is finite, P de-
fines the transition matrix of a finite, aperiodic, Markov chain.
The states of one such chain are either transient or recurrent

(Karlin and Taylor, 1975). There can be one or several subsets
of recurrent states, the chain being ergodic in each of them. Ev-
ery recurrent subset is a different end state of the assembly pro-
cess. The end state of an ecosystem will be history-dependent
only if there are at least two such recurrent subsets. Ergodic-
ity implies that there is a stationary probability distribution on
the states of these subsets which determines the frequency with
which the process visits each of them. [For a full account on
Markov chains see e.g. Karlin and Taylor (1975)]. Our model
only exhibits a unique recurrent set for any given set of param-
eter values (Capitán et al., 2009).

This concludes the definition of the Markov model for the
assembly process. As we are able to compute the whole tran-
sition matrix P, we have a complete and exact characterization
of the assembly process. In particular, by selecting an initial
state for the Markov chain (in our case the process always starts
off from ∅), we can obtain the evolution of any magnitude —
numerically but exactly— without resorting to taking averages
over realizations of the process. In the following section we
will discuss in detail the results that can be obtained from the
analysis of the Markov chain [a brief account of which were
reported in Capitán et al. (2009)].

3. Results

3.1. Asymptotic distribution

To separate transient and recurrent states, we have applied
an algorithm provided by Xie and Beerel (1998). Notice that
the characterization of transient and recurrent states in a finite
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parameter value interpretation
R 10 ≤ R ≤ 1700 Saturation value, in the absence of predation, of the abiotic resource abundance
α 1 Average mortality rate of consumers
γ− 5 Average rate of decrease in preys population caused by their being predated
γ+ 0.5 Average rate of increase in predators population due to feeding
ρ 0 ≤ ρ ≤ 1 Relative magnitude between intra– and interspecific competition
nc 1 Extinction threshold

Table 1: Summary of parameters of the model and ecological meaning of each one of them.
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Figure 4: Distribution of asymptotic probabilities π within each recurrent set,
for several values of R. Communities are labelled in decreasing order of prob-
ability. The distributions look exponential with a cutoff.

chain depends only on the graph, not on the transition proba-
bilities. Only one subset of recurrent states was found for each
set of parameters. Let R denote the subgraph of G formed by
this ergodic set. Figure 3 shows two examples of these sub-
graphs. The particular transition probabilities assigned to each
link would determine the asymptotic probability distribution
within the recurrent set, but not the subset of nodes contained
in it.

In order to calculate the asymptotic probability πi for a com-
munity i ∈ G, we need to solve the linear system π = πP (Karlin
and Taylor, 1975), in other words, the vector π of probabilities
is the left eigenvector of the matrix P with eigenvalue 1. Since
our graphs are very sparse, standard numerical techniques for
solving sparse systems have been applied. The eigenvector is
normalized to satisfy the condition

∑
i∈R πi = 1. Obviously, we

only need to solve this system for the subgraph corresponding
to the recurrent set, since by definition the asymptotic proba-
bility πi = 0 for any transient state i. Note that our matrix of
transition probabilities (1) reduces the condition to be satisfied
by π to πQ = 0, i.e., π is a left eigenvector of Q with eigenvalue
0. It is worth noticing that neither the asymptotic distribution,
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Figure 5: (Color online) Total number of communities (black circles, below)
and transitions (red crosses, above) in the Markov chain as a function of the
resource saturation R.

nor the recurrent subset depends on the invasion rate.
We can thus obtain a probability distribution for each recur-

rent set. Having this probability distribution is therefore equiv-
alent to defining a statistical mechanics over the set of viable
communities, if we regard F as the phase space of our system.
In Figure 4 we have plotted the histogram of probabilities for
several values of the resource saturation R (for these values the
number of communities in each set is larger than 103). Com-
munities are labelled in decreasing order of probability. These
distributions are found to be roughly exponential over several
orders of magnitude, this meaning that only a small number
of communities (in general very similar to each other) occur
with high probability. These are the communities in which it
is more likely to find the ecosystem. Nonetheless ergodicity
implies that all communities in the end state are visited with
non-zero probability. The ecosystem is thus in a complex state,
with fluctuating species numbers in each level due to some in-
vasions being accepted and some others causing avalanches of
extinctions.

This distribution can be used to calculate the asymptotic aver-
age over R of any quantity of interest Mi defined for every com-
munity, like for instance the average number of species, the total
population, etc. We just need to evaluate 〈M〉R =

∑
i∈R πiMi.

3.2. Dependence with the resource saturation

All results presented here have been obtained with a death
rate α = 1, an extinction threshold nc = 1, an average rate of

5



0 100 200 300 400 500 600 700

R

1

10

100

1000

∆
N

0 200 400 600

R

0.00

0.05

0.10
∆

N
/N

G

L=2 L=3 L=4

Figure 6: Number of viable states that are not reachable trough invasions start-
ing from the empty community ∅, ∆N = NF − NG. Typically there is an accu-
mulation of these communities in the regions where R allows a top predator in
them. The inset represents the proportion ∆N/NG vs. R.

increase in predators population per predation event γ+ = 0.5,
and an average decrease in reproduction rate of preys per preda-
tion event γ− = 5 (see Capitán and Cuesta (2010) for details on
the way these parameters enter the population equations of the
model and Table 1 for a brief summary of them). The assump-
tion of γ+ � γ− is ecologically sound, because many preys
must be consumed to produce a new predator, while loosing one
prey requires a single predation event. A common choice for
the energy transfer between trophic levels is about 10% (Pimm,
1991). We have checked that the model is robust against varia-
tions of these parameters within reasonable bounds.

In most cases we have taken the ratio of direct inter- to in-
traspecific competition ρ = 0.3. However, we have explored
the effect of this parameter in detail in Section 3.3.

We have obtained all assembly graphs in a range of resource
saturations that goes from R = 10 up to R = 1700 with incre-
ments ∆R = 5. No viable community is found below R = 10.
The number of communities NG in these graphs goes from just
one (for R = 10) up to about 106. We have found empirically
that both this number and the total number of transitions in each
graph grow roughly as eκ

√
R, see Figure 5. The maximum num-

ber of trophic levels that are allowed up to R = 1700 is 5.
We have checked whether the set of communities in the as-

sembly graph is the whole set F . Given the estimation of the
resource values that allow a maximum number of levels Lmax
[see Capitán and Cuesta (2010)], we have checked the viability
of all possible combinations of species numbers {s`}

Lmax
`=1 with

Lmax + 1 levels up to a total number of species S max equal to
twice the maximum number of species allowed for that R value.
Since there is a huge number of these combinations when R in-
creases, we have checked this up to R = 700. Figure 6 shows
the difference ∆N = NF − NG. In nearly all cases the set of
communities in the assembly graph is F , but we have found
several instances —all of them near the values of R at which
new levels arise— in which F contains communities not reach-
able through the assembly process, just like in the experiment of
Warren et al. (2003). The largest difference is found at R = 470,
where NG = 4800 and ∆N = 375, so the highest relative differ-

0 500 1000 1500
R

0.0

0.2

0.4

0.6

0.8

fr
ac

ti
o

n

invader accepted

invader rejected

reconfigurations

L=3 L=4L=2

Figure 7: (Color online) Statistics of links corresponding to accepted invasions
(red squares), rejected invasions (blue crosses) and invasions that lead to a re-
configured community through an avalanche of extinctions (black circles). Dot-
ted lines correspond to the onsets of acceptance of a new trophic level, and
dashed lines to the beginning of the regions of complex end states.

ence reaches 8%.
For each R we determined the number of recurrent states of

the chain (see Figure 3 in Capitán et al. (2009) for a plot of this
number as a function of R). We always found a single connected
graph, which implies that the end state of the assembly process
does not depend on history for this model (Drake, 1990). This
is consistent with the results of Morton and Law (1997) as well
as the experiments of Warren et al. (2003). There are values
of R for which this set consists of a unique absorbing state (or
just a few, sometimes forming a cycle), but when R is reaching
the values at which a new trophic level appears, the size of this
set increases considerably (the largest set found contains around
1800 communities; a tiny fraction of the whole assembly graph,
anyway). After crossing these values the size of the recurrent
set drops again down to just one absorbing state. Morton and
Law (1997) also obtained complex end states in 6 out of the
80 pools they explored, with a number of communities ranging
from 6 to 138.

In Figure 7 we show the fractions of links in the assembly
graph corresponding to invasions that are accepted, rejected,
or cause a reconfiguration in the system through a sequence of
extinctions. The most frequent case is the acceptance of the
invader, although there are around 20% of rejections and recon-
figurations. We can see an increasing trend to reconfigurations
when R corresponds to a complex end state [see Figure 3 in
Capitán et al. (2009)]. The invasibility criterion discussed in
Capitán and Cuesta (2010) explains why we observe an increas-
ing number of rearranged communities in these regions.

As for the dynamic stability (resilience), we can measure the
return time, i.e., the mean time that a perturbed ecosystem needs
to restore equilibrium (Pimm and Lawton, 1977), averaged over
the probability distribution of the stationary state. It can be ob-
tained as Tr = −λ−1

max, where λmax is the largest real part of
the eigenvalues of the linear stability matrix —which is always
negative in our communities since they are globally stable. We
observe that this time is roughly independent on the end state,
being approximately constant as a function of the resource sat-
uration R (see Figure 8a).
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Figure 8: (a) Mean return time in the stationary state vs. resource saturation R.
The behavior is approximately constant, except for the region of low resources,
where the graphs contain less communities and there is more variability. (b)
Mean population density of the community vs. R.

For each end state, regardless on whether it is an absorbing
community or a recurrent set, we have calculated another aver-
age. In Figure 8b we show the dependence of the total popula-
tion of a community, B =

∑L
`=1 s`p`, averaged over the recur-

rent set R, as a function of the resource saturation R (p` denotes
the equilibrium density of the species at level `). The depen-
dence is practically linear, except for some dips near the onset
of emergence of a new level.

3.3. Dependence on the parameters

We have already mentioned that the model results are not
qualitatively influenced by variations of its parameters. For ex-
ample, we have studied the model dependence with respect to
direct competition (Figure 9). In the absence of interspecific
competition (ρ = 0) levels are filled up more easily, so the num-
ber of communities in the recurrent set increases with respect to
the results reported so far. The effect of increasing direct com-
petition is to reduce the number of ecosystems in these sets, and
to increase the resistance to the appearance of a new level in the
end state for the same values of resource saturation. Thus, the
global behavior of the number of communities as a function of
R turns out to be similar, up to scale factors, to that obtained in
Capitán et al. (2009), Figure 3.

The particular case ρ = 1 (interspecific competition equal to
intraspecific competition) is qualitatively different. Fixing ρ =

1 transforms the community into a trophic chain. All species
can be grouped into a single one with population N` = s`n`

[i.e. the Lotka-Volterra equations of this system (Capitán and
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Figure 9: Number of communities in the recurrent sets vs. the resource satura-
tion varying direct competition (upper panel, ρ = 0; middle panel = 0.3; lower
panel, ρ = 0.7). Observe the decrease in NR as competition increases, and the
increase of the values of R at which a new level arises.

Cuesta, 2010) are closed in the variables N`]. But the impli-
cations of this assumption are stronger. Even if the distinction
between species becomes meaningless, one can formally keep
the identities and treat them as different. But then it is easy to
show that any invasion attempted at a level already occupied by
at least one species will be unsuccessful because the population
of the invader ends up below nc. In fact, according to Eq. (12)
of Capitán and Cuesta (2010), the initial per capita growth rate
of an invader at level ` is −nc and the equations for level ` and
for the invader coincide. Hence Ṅ`/N` = ṅ/n, n being the abun-
dance of the invader. This asymptotically yields

p =
nc

N`(0)
P` (3)

since n(0) = nc (p and P` are the invader and the total `-level
densities at equilibrium after the invasion, respectively). Now,
the linear system (13) in Capitán and Cuesta (2010) for the in-
terior equilibrium point {N`(0)}L`=0 before the invasion is

α = γ+N`−1(0) − N`(0) − γ−N`+1(0),

R = N0(0) + γ−N1(0)
(4)

For the same reason, the equilibrium densities P` and p after
the invasion satisfy

α = γ+P`−1 − P` − p − γ−P`+1,

R = P0 + γ−P1.
(5)

Comparing these systems we deduce that P` + p = N`(0). This
fact, together with (3), yields p = ncN`(0)/[nc + N`(0)] < nc.
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Figure 10: (a) Mean absorption time τ∅ (in number of invasions) starting from the empty community ∅, and mean number of species S as a function of the resource
saturation R, showing a roughly linear growth for both of them. (b) Mean absorption time τ∅ vs. S .

Since the population of the invader initially decreases, accord-
ing to our extinction procedure (Capitán and Cuesta, 2010) the
invader goes extinct.

Thus the assembly graph G becomes trivial. Using the nota-
tion {s`}L`=1 for each community, G is simply

∅→ {1, 0, . . . , 0} → {1, 1, . . . , 0} → · · · → {1, 1, . . . , 1}. (6)

This never happens if ρ , 1. Things are thus very different
when this fully symmetric scenario is assumed.

It can be shown that in this fully symmetric scenario the
competitive exclusion principle applies. This principle states
that there can not coexist more populations than different re-
sources (or ecological niches) in the long term if these pop-
ulations depend linearly on the resources (Hofbauer and Sig-
mund, 1998). We can put this statement in mathematical terms.
For the sake of simplicity, let us assume that there is a single
trophic level with S species predating on the resource (at rates
γ+i, i = 1, . . . , S ) and let us set a non-uniform direct compe-
tition ρi j between pairs of species in that level. Let ni be the
population density of species i, ai its death rate in the absence
of consumption and n0 the amount of resource. The Lotka-
Volterra equations for this system are

ṅi

ni
= −ai + γ+in0 −

S∑
j=1

ρi jn j. (7)

If the competition matrix is singular, we can find a non-trivial
solution (c1, . . . , cS ) for the linear system

∑
i ciρi j = 0, j =

1, . . . , S (note that, in particular, the fully symmetric scenario
ρ = 1 renders the competition matrix singular). Multiplying
both sides of Eq. (7) by ci and summing over all species, we
obtain

S∑
i=1

ci(log ni)˙ =

S∑
i=1

ci(γ+in0 − ai) ≡ −a (8)

where we can assume that a is positive (otherwise change the
sign of the ci). Integrating from 0 to t we obtain

S∏
i=1

ni(t)ci = Ce−at. (9)

This means that one of the densities must vanish in the limit
t → ∞, which proves competitive exclusion.

There is a peculiarity of our model, though. If ρ = 1 the pop-
ulation of the invader at equilibrium will not be zero because
in our model all constants are uniform, so the equation to solve
for ci is

∑
i ci = 0. This yields a = 0 and spoils the argument.

However, we have shown that, with our procedure of species
extinction, the invader’s population ends up below nc hence not
being viable. This restores competitive exclusion, albeit in a
weaker sense. The result (6) is just a manifestation of this fact.

It is important to notice that, for a non-singular competition
matrix, the competitive exclusion principle is not guaranteed to
hold. In particular, if ρ < 1 the intra- and interspecific compe-
tition will have different magnitude, and the matrix of elements
ρii = 1 and ρi j = ρ (i , j) will be non-singular. The argu-
ment above does not apply anymore and, as a matter of fact, by
integrating the equations for population dynamics we actually
obtain more than one species coexisting with a single resource
in the system.

The interesting point brought about by the above discussion
is that interspecific competition induces de facto a niche sep-
aration for the species of the same level —which are therefore
competing for the same resources— that allows them to circum-
vent the competitive exclusion principle [for a more thorough
discussion of this point see Bastolla et al. (2005a,b)].

3.4. Absorption times
So far we have discussed properties of the recurrent set of

the Markov chain associated to the assembly process, but we
have not considered the possibility that the process may keep
trapped for a long time in transient states. In order to check
this point we have calculated the mean absorption time from
the empty community ∅ to the end state. This can be done
given the structure that the transition matrix P acquires after a
permutation that reorders recurrent and transient states. We can
thus write the matrix in a block form (Karlin and Taylor, 1975)

P =

(
U 0
W V

)
, (10)

where matrix U contains the transition probabilities within the
recurrent set, and V contains transition probabilities between
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Figure 11: (a) Probability Π(m) that an invasion causes the extinction of at least a fraction m of the species of the invaded community, for several values of the
resource saturation R. There is a characteristic magnitude β−1 around 1%. In order to have enough statistics, we have chosen values of R within the region where
the number of communities in the recurrent set is above 1000 [see Figure 3 in Capitán et al. (2009)]. Thus we have better statistics to compute the histograms than
for smaller R. (b) The same probability but for transient states, Πt(m), for two values of R. This distribution has been obtained by averaging magnitudes with the
average fraction of visits to each transient state starting from the empty community ∅. The characteristic size of avalanches here is about 2%.

transient states. The average time that it takes to go from the
transient state i, to state j of the recurrent set is the element ti j

of matrix T , where

T =

∞∑
n=1

nVn−1W = (I − V)−2W, (11)

I being the identity matrix. This expression counts as n the
absorption time when the process remains n − 1 time steps
within the transient subset and jumps to a recurrent state in
the n-th step. The mean absorption time for a process start-
ing from the transient state i will thus be τi =

∑
j∈R ti j = (Tu)i,

where u = (1, . . . , 1)T . Since P is stochastic,
∑

j(Vi j + Wi j) =

(Vu)i + (Wu)i = 1 for all i ∈ G − R, so Wu = (I − V)u or,
equivalently, (I − V)−1Wu = u. Together with (11) this implies
(I − V)τ = u, so solving this sparse linear system yields the
absorption times for any transient state. Note that these times
are proportional to ξ−1, because of the form (1) of our transition
matrix.

In Figure 10a we plot the mean absorption time τ∅ to reach
the recurrent set starting from the empty community, along with
the mean number of species S , which measures the size of the
system. Both of them grow almost linearly with R, hence τ∅ is
roughly linear with S as well (see Figure 10b). Since the num-
ber of states in each chain grows as eκ

√
R, the number of states

of the Markov chain is very large compared to ξτ∅. Therefore
the mean time to the end state is small compared to the system
size.

This result should be taken with a grain of salt, because it
strongly relies on our assignment of probabilities to transitions.
This, in turn, assumes that there is always availability of in-
vaders, which may not be true if invaders come from a finite

pool. The lack of potential invaders when the community is al-
most “full” would decrease the probability of a new invasion
and accordingly would increase the time that the process needs
to reach the end state. What the result of Figure 10a is actually
telling us is that the assembly graph is dominated by pathways
in which most invasions are accepted.

3.5. Extinctions distribution
As we have previously described, the assembly process can

be regarded as if the ecosystem self-organizes into a state re-
sistant to invasions. Either for transient or recurrent states, the
community is continuously undergoing avalanches of extinc-
tions caused by new colonizations. Figure 11a shows a statis-
tics of such avalanches in some recurrent sets. It represents the
probability Π(m) that an invasion causes an avalanche of mag-
nitude greater than m (understood as the fraction of species that
go extinct), averaged over the stationary state. We can see in the
figure that this probability shows an exponential decay, with a
typical avalanche size β−1 of about 1% of the community, β be-
ing the slope of the distributions in log-linear scale. Invasions
never cause big perturbations in the community.

We can calculate a similar distribution for the avalanches of
extinctions in the transient states. Now we have to weight the
magnitudes with the average fraction of visits to each transient
state. Let us denote as zi j the average number of visits to state j
starting from state i. The matrix Z = (zi j) is then given by

Z =

∞∑
n=0

Vn = (I − V)−1. (12)

Thus the number of visits to the transient j starting from ∅
is ζ j = (u∅Z) j, u∅ being the row vector δi∅ (with as many
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Figure 12: (a) Probability of invasion vs. mean number of invasions (ξt) for R = 430 (with a complex end state). Inset: probability of reconfiguration after invasion
vs. mean number of invasions. (b) The same as (a) but for R = 540 (the end state is a single community). (c) Probability of invasion (dashed lines) and average
number of species loss (full lines) vs. mean number of invasions, for two values of R with complex end states. At the time these two magnitudes coincide, a
stationary state (the recurrent set) is reached.

components as there are transient states). We can calculate ζ by
solving the linear system

ζ(I − V) = u∅. (13)

The resulting probability Πt(m) that an invasion causes the
extinction of at least a fraction m of the species of the invaded
transient community is showed in Figure 11b. We also find
an exponential behavior for the cumulative distribution, in this
case with a mean characteristic fraction of species loss of 2%
for transient avalanches. The species loss caused by invasions
in the transient part of the graph is always small.

3.6. Time averages
Computing the time evolution of averages is very simple,

given the transition matrix P and some initial probability distri-
bution (Karlin and Taylor, 1975) —which in our case is simply
the vector u∅, since the assembly process starts from the empty
community. We just need to calculate the power Pt to obtain
the transition probability matrix after t time steps. Thus we can
obtain the probability of rejecting the invader at discrete time t
as

Pr(t) =
∑

j

P j j(Pt) j∅, (14)

and that of accepting the invader as

Pi(t) =
∑

j

( ∑
|k− j|=1

P jk

)
(Pt) j∅, (15)

where the inner sum runs over transitions from j in which the
invader is accepted. Obviously, the probability that the com-
munity undergoes a reconfiguration because of the invasion is

obtained as Pa(t) = 1 − Pr(t) − Pi(t). Figures 12a and 12b
represent the dependence in time of the probabilities Pi and Pa
in two cases: one with a a complex end state (a), and another
with a single community as end state (b). Notice that all curves
collapse, for small ξ, when divided by ξ and plotted against ξt
(mean number of invasions).

In Figure 12c we show the probability of invasion Pi(t) and
the average species loss defined as

E(t) =
∑

j

(∑′

k

(∆S ) jkP jk

)
(Pt) j∅, (16)

where (∆S )i j is the species loss in the transition from j to k
and the prime denotes that we ignore in the sum transitions in
which the invader is accepted. When these two magnitudes are
equal there is an equilibrium between the average frequency of
invasions and the average number of species loss. This is a fin-
gerprint of the reaching of the stationary state. As expected, this
time is comparable to the absorption time shown in Figure 10a.

Another important quantity is biodiversity. Figure 13a repre-
sents the evolution of the average number of species for several
values of R. In all cases, this average number grows monotoni-
cally until reaching the stationary state, so biodiversity and re-
sistance to invasion are positively correlated, in agreement with
previous assembly models (Law and Morton, 1996; Morton and
Law, 1997).

Figure 13b represents the evolution of the total population
density B of each community. If we assume, for the sake of
simplicity, the same weight per individual for all species in our
model communities, then B can be regarded as the total biomass
in the community. Although there is a clear trend for biomass to
increase, it is not always at its optimum in the stationary state.
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Figure 13: Species richness (a) and total population (b) vs. mean number of invasions (ξt), for several values of the resource saturation R. At R = 470 (showed with
dash dotted lines) the ecosystem crosses over from 3 levels to 4 levels (this crossover corresponds to the non-monotonic behavior of the total population). (c) Mean
number of levels vs. mean number of invasions. At the onset of the fourth level, the ecosystem stays some time trapped in three-level communities. (d) Typical
variation of the average return time with ξt.

This is very clear in the figure for R = 470, a value at the onset
of the appearance of the fourth trophic level. This agrees with
the analysis performed by Virgo et al. (2006) on their assembly
model.

We have also studied the time dependence of the average
number of trophic levels during the assembly, which is shown
in Figure 13c. At R = 470 the process stays a certain time
trapped in three-level communities until the fourth level is fi-
nally accepted. This effect becomes lower upon increasing R,
until there is no trapping and the fourth level is reached straight
away.

Figure 13d shows a typical time evolution of the average re-
turn time along the assembly until reaching the stationary state.
Communities are less resilient (have larger return time to equi-
librium) as time increases. Thus, there is a trade-off between
robustness (resistance against invasions) of the ecosystem and
dynamic stability which is resolved by sacrificing the latter in
favor of the former.

4. Discussion

In this work we have provided a full account of results of
the model introduced in Capitán et al. (2009). The results pre-
sented here have been obtained from a direct analysis of the
Markov chain describing the assembly process. Among the
novel results here presented are the dependence of many bio-
logical observables on the amount of available resource (imple-

mented through parameter R), the average times that the process
needs to reach the recurrent set, the statistics of avalanches in
both transient and recurrent states, and the time evolution of any
observable.

Our model might be considered as a benchmark of the assem-
bly process that builds up ecological communities. As such, we
do not aim at providing a realistic description of an ecosystem
but at capturing, in a very simplified model, the essential mech-
anisms that do occur in the construction of real ecosystems. The
model rests on some oversimplistic features: communities are
strictly organized in levels, predation occurs only between con-
tiguous levels, species of a given level are trophically equiva-
lent, model parameters are chosen uniformly and the popula-
tion dynamics is ruled by simple Lotka-Volterra equations. In
spite of this, our model exhibits the same behavior as all other
assembly models reported in the literature. This indicates that
this behavior is very robust, and probably shared by real sys-
tems and simple models alike.

Thanks to these oversimplifications the model provides im-
portant advantages on previous assembly models. The main
one is that we can trace all pathways of the assembly process.
This allows us to compute exactly all the observables of a com-
munity and to characterize in a very precise manner the sta-
tionary state of the ecosystem. Our model also has a species
pool, as standard assembly models, but because we allow for
an arbitrary number of trophically equivalent species, the pool
is infinite and the model does not suffer from the problem of
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exhaustion of good invaders that may trap the community in a
transient state (Case, 1991; Levine and D’Antonio, 1999). This
has permitted us to build communities with hundreds of species
and explore the influence of different elements on the behavior
of the assembly process.

Therefore, we are not limited, as in standard assembly mod-
els, to compute averages over a set of realizations of the pro-
cess. As we pointed out in Capitán et al. (2009), the number
of shortest pathways leading from ∅ to the recurrent set can be
enormous. For instance, for R = 300 (a case with an absorb-
ing community of three trophic levels and 50 species), there are
∼ 1010 different minimum-length pathways. This number is far
from anything a simulation can come close to.

There is, of course, a concern about having trophically equiv-
alent —hence indistinguishable— species. The grouping of
trophically equivalent species is a common practice in study-
ing food webs, so it is tempting to do so in this model. If
we do it, the model becomes equivalent to a chain, for which
Lotka-Volterra dynamics is well characterized (Hofbauer and
Sigmund, 1998), and the invasion process seems to become
trivial. This is not true, though: if ρ , 1, i.e. if intra- and
interspecific competition are different in magnitude, intraspe-
cific competition in the equivalent chain explicitly depends on
s`, so invasions modify the parameters of the chain and the inva-
sion process becomes non trivial. Thus, it is because of the di-
rect interspecific competition ρ < 1 that this equivalence breaks
down and the model departs from triviality. We have explicitly
shown that choosing ρ = 1 brings about the competitive exclu-
sion principle, and indeed the model turns into a chain. But for
any ρ < 1 this does not longer hold. Interspecific competition
is thus an effective way of creating new niches.

Let us now summarize the main conclusions we can extract
from the present analysis of the model.

As our model ecosystems evolve we observe three trends:
biodiversity increases, resistance to invasion increases and all
species decrease their populations. In the steady state biodiver-
sity is at its maximum, all populations are close to the extinction
level and either invasions are rejected or they produce transi-
tions between a set of communities with a very similar struc-
ture. All three features are related. The increase in biodiver-
sity is unavoidable because of the constant flux of colonizers;
however, as the number of species increases, their populations
necessarily decrease because all share the same resource. The
invasion process guarantees that this is done in the most effi-
cient way, because inefficient invasions cause extinctions in the
community and force a more equilibrated rearrangement of the
populations. This, in turn, justifies the increasing resistance to
new invasions. At the end, all populations are so close to ex-
tinction that either no new invasions are possible, or they just
cause small rearrangements that leave the community in a sim-
ilar state.

Final communities have typically three or four trophic levels
—only ecosystems with more than 200 species generate five
trophic levels. On the other hand, the number of species in each
level has a pyramidal structure. Both features are in qualita-
tive agreement with what is observed in real ecosystems (Cohen
et al., 1990) and we have discussed at length the properties of

the population dynamics equations that explain these features
in Capitán and Cuesta (2010).

As already advanced in Capitán et al. (2009) the end state
is always unique, and this is consistent with previous assembly
models (Morton and Law, 1997). However, there is a caveat
that should be made on this point related to the indistinguisha-
bility of species within the same trophic level: the end state
is unique as long as we consider only the number of species
at each level. Whether two communities with the same num-
bers have the same or different species is meaningless for this
model, so the conclusion is not definitive. In fact, some rel-
atively recent experiments on aquatic microbial communities
establish that productivity-biodiversity relationships depend on
the history of assembly (Fukami and Morin, 2003), and it is
our guess that the independence on history resulting from this
model might be an artifact of the indistinguishability of species.
Refined versions of this model may clarify this issue.

As for the robustness of the above results, we have tried other
values of the direct competition parameter, namely ρ = 0 and
ρ = 0.7, to test its influence. No qualitative difference with the
behavior reported here is found. Nonetheless, there are three
quantitative effects that we have observed as ρ increases: resis-
tance to invasion increases, appearance of new trophic levels is
hindered and the number of communities in complex end states
decreases. Varying γ− has similar effects; in fact, the product
γ+γ− = 0.1γ2

− provides a quantitative estimate of indirect com-
petition.

It can be argued that parameters should depend on the trophic
level rather than being uniform for all species. It is very easy
to show that this does not change the dynamic stability patterns
because in that case one can also construct a Lyapunov function
[see Capitán and Cuesta (2010)]. We have not attempted any
test in this respect, but it is hard to believe that such a variant
of the model will produce any qualitative difference. The as-
sembly graphs will be similar to the ones found for the present
model. Something more can be said about the invasion rate. We
have presently assumed that the invasion probability is the same
for all trophic levels, but notice that the assembly graph is ut-
terly independent on this choice, so certainly choosing a differ-
ent invasion probability will change the numerical value of the
nonzero entries of the transition matrix P, but only them. The
graph, as well as the structure of transient and recurrent states
of a finite Markov chain, only depends on which elements of
P are zero (Karlin and Taylor, 1975), so not just the graph but
the set of communities in the end state will be exactly the same
as those reported here (the probability distribution in the steady
state will, of course, be different).

Perhaps the most important limitation of this model is the
choice of the Lotka-Volterra equations. The choice of popula-
tion dynamics has been reported to have a strong influence in
the final shape of ecological communities (Drossel et al., 2004;
Lewis and Law, 2007). Introducing non-linear equations leads
to more complex stability patterns than simply rest points. How
to account for them is not yet clear to us, but neither is whether
this will really affect the qualitative behavior of the assembly
process. Thus, this remains an important open question that
deserves further analysis.
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There are further open questions such as the application of
this model to metacommunities. The resulting ecosystems can
be readily altered when migration takes place among spatially
distributed patches. With a simple model like ours, it might
be possible to build up an assembly graph between different
communities in different patches. The interplay between com-
munities in different patches could lead to an outcome different
from the one we obtain with a single patch. On the other hand, a
simple model like this can provide us with basic understanding
of complex processes such as, for instance, the rebuilding of a
natural community after its degradation. Very little is known
about the processes that helps to reconstruct damaged commu-
nities, and a simple framework like ours could provide some
hints about how to tackle this problem from a theoretical point
of view.

The final take-home message from this work is this: we
should not be afraid of oversimplifications in complex systems.
Complexity normally arises as a consequence of a collective
behavior of many entities, not as a result of the complexity
of interactions. The key point is whether we are retaining the
basic ingredients yielding the desired output. We have shown
that there is no qualitative difference between the results of this
oversimplified model and previous, more sophisticated assem-
bly models. And there is a lot to gain from the wider view that
this model provides of the process and the much higher control
we have on the parameters. Many questions that are hard (or
even impossible) to answer in previous model have a clear-cut
answer here. And even if they may be too simplistic, they can
still guide our intuition when dealing with real ecosystems.
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