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Abstract

We analyze the influence of the update dynamics on symmetric 2-player

evolutionary games, which are among the most used tools to study the emer-

gence of cooperation in populations of interacting agents. A synchronous

dynamics means that, at each time step, all the agents of the population

update their strategies simultaneously. An extreme case of asynchronism is

sequential dynamics, in which only one agent is updated each time. We first

show that these two opposite update dynamics can lead to very different

outcomes and that sequential dynamics is detrimental to the emergence of

cooperation only when the probability of imitating the most successful neigh-

bors is high. In this sense, we can say that, when the update dynamics has

some influence, in general asynchronism is beneficial to the emergence of co-

operation. We then explore the consequences of using intermediate levels of

asynchronism, where only a fraction of the agents update their behavior each

time. In general, the level of cooperation changes smoothly and monotoni-
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cally as we gradually go from synchronous to sequential dynamics. However,

there are some exceptions that should be taken into account. In addition, the

results show that the possibility of agents taking irrational decisions has a

key role in the sensitivity of these models to changes in the update dynamics.

Explanations for the observed behaviors are advanced.

Key words: Evolutionary game theory, Evolutionary games, Structured

populations, Asynchronism, Artificial life

1. Introduction

The identification of mechanisms that promote emergence and mainte-

nance of cooperative behaviors is of major relevance in a variety of scien-

tific disciplines such as biology, sociology, economics and computer science

(Nowak, 2006). Evolutionary game theory (Weibull, 1997) has been one of

the main frameworks used to study this issue. In an evolutionary game the

agents inside a population interact during several time steps through a given

game which is used as a metaphor for the type of interaction that is being

studied. The underlying structure that defines who interacts with whom is

called the network of contacts or simply network. After each interaction ses-

sion, some or all of the agents, depending on the update dynamics used, may

update their strategies. If a synchronous dynamics is used, all the agents

in the population update their strategies simultaneously at each time step.

This models a strong correlation of the moments at which agents are up-

dated. Such is not the case with asynchronous dynamics where only some

agents, possibly just one, update their strategies at each time step. The

strategy update process is modeled using a transition rule, which takes into
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account the payoffs collected by the agents during the interaction stage and

emulates the fact that they tend to adapt their behavior to the context in

which they live by imitating the most successful agents they know. It can

also be interpreted as the selection step of an evolutionary process in which

the least successful strategies tend to be replaced by the most successful ones.

Note that, while the update dynamics defines the temporal relation between

agents’ update moments, thus modeling dynamics at a global level, the tran-

sition rule models local or individual dynamics. In this paper we study the

effects of using different update dynamics on evolutionary games.

Perfect synchronism is an abstraction that presupposes the existence of

a global clock by which the elements time their actions. In nature, this role

can be played, for example, by year seasons or by the sun. In a variety

of scientific disciplines, including the ones mentioned above, this has been

the most common way of modeling the update dynamics of real systems.

This practice has been widely questioned, the argument being that perfect

synchronism is absent from the real world, even in systems where synchro-

nization processes exist. For example, it is well known that populations of

Pteroptyx malaccae fire-flies are able to synchronize so that they flash approx-

imately at the same time (Winfree, 2001). However, actions being strongly

correlated doesn’t means that they are perfectly simultaneous. Furthermore,

it has been shown that the dynamics and the patterns generated, for exam-

ple, in cellular automata, of which evolutionary games are a special case, can

be significantly affected if an asynchronous updating is used (Ingerson and

Buvel, 1984; Bersini and Detours, 1994; Lumer and Nicolis, 1994; Fatès and

Morvan, 2005). The most common alternative to synchronous updating is
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sequential updating, which is a special case of asynchronism: at each time

step, exactly one element is updated. It has been shown that the order in

which the elements are updated may also influence the dynamics and the

final outcome of the system (Schönfisch and de Roos, 1999). Synchronous

and sequential updating are seemingly opposite ways of modeling the update

dynamics of a dynamical system. However, real systems, and biological ones

in particular, seem to lie somewhere between these two extremes. Moreover,

different systems may have distinct synchrony rates. Thus, in this paper we

also investigate the consequences on evolutionary games of using an update

method that allows the exploration of intermediate levels of asynchronism.

In Section 2, we review previous work on evolutionary games where this

subject was studied. In sections 3 and 4, we present results using synchronous

and sequential dynamics in order to show how the influence of the update dy-

namics varies when different conditions are used, namely different networks

and transition rules which allow varying degrees of noise. We conclude that

asynchronism is detrimental to cooperation for small noise values only. In

Section 5 we explore intermediate levels of asynchronism in order to verify

how much we can rely on the results obtained with synchronous and sequen-

tial dynamics and we discuss explanations for the way the update dynamics

influences the emergence of cooperation. Finally, in Section 6 some conclu-

sions are drawn and future work is advanced.
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2. Previous Work

Symmetric 2-player games are among the most studied games in evolu-

tionary game theory. These games can be described by the payoff matrix


C D

C R S

D T P

 (1)

where C (cooperate) and D (defect) are the possible actions for each player.

Each element of the matrix represents the payoff received by the row-player

when it plays the game against the column-player. Let us consider R = 1

and P = 0, and restrict S and T to the intervals −1 < S < 1, 0 < T < 2

(Hauert, 2002; Roca et al., 2009a). The S > 0, T < 1 region corresponds to

the Harmony game where the rational action for both players is to play C

in a one shot game. The famous Prisoner’s Dilemma game (Axelrod, 1984)

corresponds to the region S < 0, T > 1. In this game there is a strong

temptation to play D, which is the rational choice. However, if both players

play D, they receive a smaller payoff than if they both play C, hence the

dilemma. In the Snowdrift game, S > 0, T > 1, the best action depends on

the opponent’s decision: it is better to play C if the other player plays D and

vice-versa. Finally, the region S < 0, T < 1 corresponds to the Stag-Hunt

game. In this game there is a dilemma between playing the potentially more

profitable but risky action C and the less profitable but less risky action D.

In the classical approach of evolutionary game theory, agents are placed

in a well-mixed infinite population where each agent may interact with any

other and the proportion of cooperator and defector agents in the popula-

tion evolves according to the replicator dynamics (Hofbauer and Sigmund,
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1998). In this setting, the asymptotic proportion of cooperator agents in the

population, ρ∗, is 0 for the Prisoner’s Dilemma game and 1 for the Harmony

game. For the Snowdrift game we have ρ∗ = ρe, where ρe = S/(S + T − 1).

For the Stag-Hunt game, ρ∗ = 0 if ρ0 < ρe and ρ∗ = 1 if ρ0 > ρe, where ρ0 is

the initial proportion of cooperators.

The work on evolutionary game theory has progressed over the years

towards more realistic assumptions in the models used. One of the most

important steps in this direction was taken by Nowak and May (1992), who

showed that cooperation can be maintained when the Prisoner’s Dilemma,

with R = 1, T = b > 1, S = P = 0, is played on a two-dimensional grid in

which memoryless agents can only interact with their immediate neighbors.

Regular grids reflect the fact that interactions in nature are conditioned by

spatial distance. Spatial structure allows the formation of cooperator clus-

ters. This way, cooperators interact mainly with each other while diminish-

ing the contact and predation by defectors. However, regular grids do not

account for the fact that, specially among humans, long range connections

exist, which strongly reduce the distance between individuals otherwise far

apart from each other in the grid. Small-world networks (Watts and Stro-

gatz, 1998) model this property and the fact that real social networks have

a strong local structure in the sense that two individuals with a common

acquaintance probably also know each other. In real systems, it is also com-

mon that the number of connections varies greatly among the individuals of a

population. The scale-free networks model (Barabási and Albert, 1999) was

proposed to account for this property. While small-world networks are also

known to support cooperative behaviors (Abramson and Kuperman, 2001;
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Tomassini et al., 2006; Vukov et al., 2008), it has been extensively reported

that scale-free networks strongly enhance the survival of cooperation (San-

tos and Pacheco, 2005; Santos et al., 2005, 2006; Gómez-Gardeñes et al.,

2007, 2008). Different aspects related to social structure have been studied

such as, for example, clustering (Assenza et al., 2008), robustness to suppres-

sion of nodes (Perc, 2009), the existence of distinct interaction and updating

neighborhoods (Ohtsuki et al., 2007), as well as the interplay between social

structure and other aspects such as diversity of reproduction rates (Szol-

noki et al., 2008c) and payoff normalization (Tomassini et al., 2007; Szolnoki

et al., 2008b). Besides features related to social structure, as spatial distance

and heterogeneity in the number of connections, it is commonly accepted

that relatedness of individuals, reputation and repeated interactions, allied

to memory and recognition capacities, are also mechanisms that promote

cooperative behaviors (Axelrod, 1984).

The discussion about using synchronous or asynchronous dynamics on

evolutionary games started with a paper by Huberman and Glance (1993),

who contested the results achieved by Nowak and May (1992) due to the

synchronous dynamics used. Huberman and Glance also presented results,

apparently for a single payoff matrix, where cooperation was no longer sus-

tainable when an asynchronous dynamics were used. Since then, this paper

has become one of the most cited examples concerning the study of the

consequences of asynchronous dynamics. These two studies used the best-

takes-over transition rule, which dictates that each agent x always imitates

its most successful neighbor y, provided y’s payoff is larger than x’s payoff.

After this, Nowak et al. (1994) tested their model under several conditions,
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including synchronous and sequential (asynchronous) dynamics, and showed

that cooperation can be maintained for many different conditions, includ-

ing asynchronism. They used a mathematical equivalent of what we call

the Generalized Proportional (GP) transition rule: let Gx be the aggregated

payoff earned by agent x in the present time-step; let N∗x = Nx ∪ x, where

Nx is the set of x’s neighbors, with kx = |Nx|; according to this rule, the

probability that an agent x, with strategy sx, imitates agent y, with strategy

sy, is given by

p(sx → sy) =
(Gy −Ψ)

1
K∑

i(Gi −Ψ)
1
K

, y, i ∈ N∗x , (2)

where K > 0 represents the noise present in the strategy update process.

We can also interpret 1/K as the selection intensity of the update process.

K → 0 corresponds to the best-takes-over rule described above. As K grows,

the probability that agents adopt strategies other than the one used by their

most successful neighbor increases, as well as does the probability that they

imitate agents less successful than themselves. For K = 1 we have a lin-

ear proportional rule, also known as Moran rule. Finally, for K → +∞,

payoffs play no role in the update process. The constant Ψ is subtracted

from the aggregated payoff because payoffs in the Stag-Hunt and the Pris-

oner’s Dilemma games can be negative. If Gx is set to the accumulated

payoffs obtained by agent x in the games played in the present time step,

Ψ = maxi∈N∗
x
(ki)min(0, S). If the average of the payoffs obtained in the

present time step is considered instead, then Ψ = min(0, S).

Nowak et al. (1994) reported that, when K → 0, sequential dynamics

supports less cooperators than synchronous dynamics. On the other hand,

when K = 1, “cooperators seem to do better in the continuous [sequential]
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time simulations than in the discrete [synchronous] time simulations” (page

37). Recently, Newth and Cornforth (2009) studied the same model for the

best-takes-over rule (K → 0) and confirmed the results reported by Nowak

et al. (1994). They explored different types of asynchronous dynamics and

found that they lead to different dynamical features as, for example, random

walking gliders, not observed in the synchronous case.

The effect of the update dynamics on the Snowdrift game was also stud-

ied when it is played on regular (Hauert and Doebeli, 2004, see also the

supplementary material) and small-world networks (Tomassini et al., 2006),

with payoffs equivalent to R = 1, S = 1 − r, T = 1 + r and P = 0, where

0 ≤ r ≤ 1 represents the cost-to-benefit ratio of mutual cooperation. The

results for the best-takes-over and Moran rules are qualitatively similar to

the ones described above for the Prisoner’s Dilemma game. However, there is

a less intense influence of the update dynamics in the Snowdrift game. Both

these studies used also, as transition rule, the replicator rule, which is the

replicator dynamics version for finite populations and discrete time (Helbing,

1992; Schlag, 1998) described below. They found that, with this rule, the

level of cooperation is not affected by the update dynamics that is used and

the same was reported for both the Prisoner’s Dilemma and Snowdrift games

played on scale-free networks (Santos et al., 2005).

In the replicator rule, the probability that an agent x imitates a randomly

chosen neighbor y is given by p(sx → sy) = (Gy − Gx)/Φ, provided that

Gy − Gx > 0. The constant Φ assures p(sx → sy) ∈ [0, 1]. If accumulated

payoffs are used, then Φ = max(kx, ky)[max(1, T − min(0, S))]. If average

payoffs are considered, then Φ = max[1, T − min(0, S)]. We note that in
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this rule agents do not imitate neighbors with lower payoffs. Rules with this

property are called payoff monotone (Szabó and Fáth, 2007).

Finally, in a recent paper, Roca et al. (2009a) studied the influence of the

update dynamics in the ST -plane, covering the four games described in the

beginning of this section, using regular and small-world networks and differ-

ent transitions rules, among which, the best-takes-over, Moran and replicator

transition rules. The results are consistent with previous works but the au-

thors conclude that, in this more general setting, the influence of the update

dynamics is the exception rather than the rule, and that this influence is

very dependent on the transition rule used. More specifically, they found

that, for the replicator rule, the results obtained with synchronous and se-

quential dynamics are very similar and that the differences observed for the

best-takes-over and Moran rules are limited to a small part of the ST-plane.

In another paper, (Roca et al., 2009b), the same authors reported a large

difference between the proportion of cooperators obtained with synchronous

and sequential dynamics in the limit of small noise when scale-free networks

are used. In this case, sequential dynamics favors cooperation, which is con-

trary to previous results obtained on regular grids and small-world networks

with the best-takes-over rule.

We find thus that different results were obtained with distinct transition

rules and networks. This shows that there is not yet a full understanding of

the role played by the update dynamics on evolutionary games. For example,

given that the transition rules commonly used correspond to very different

levels of noise, we do not know if there is a general tendency for the way in

which the update dynamics influences the emergence of cooperation. Hence,
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we need to explore intermediate levels of noise in order to verify if a tendency

exists. This will be the subject of Section 4. As a first approach, in the next

section we present results using the usual transition rules.

3. Synchronous and Sequential Dynamics in the ST Plane

We use two types of networks: small-world networks (Watts and Stro-

gatz, 1998) and scale-free networks (Barabási and Albert, 1999). In order

to build small-world networks, first a toroidal regular 2D grid is built so

that each node is linked to its 8 surrounding neighbors by undirected links;

then, with probability φ, each link is replaced by another one linking two

randomly selected nodes. Self links, repeated links and disconnected graphs

are not allowed. These networks have the property that, even for very small

φ > 0 values, the average path length is much smaller than in a regular

network, maintaining a high clustering coefficient, which measures the aver-

age probability that the neighbors of a node are also connected. Both these

properties are very commonly observed in real social systems. As φ→ 1, we

get random networks with both small average path lengths and clustering co-

efficients. The values used in the experiments were φ = {0, 0.01, 0.05, 0.1, 1}.

Scale-free networks are built in the following way: the network is initialized

with m fully connected nodes. Then, new nodes are added, one at a time,

until the network has the desired size. Each added node is linked to m al-

ready existing nodes so that the probability of creating a link to some existing

node i is equal to ki/
∑

j kj, where ki is the degree of i, which is defined as

the number of nodes to which it is connected. This method of link creation

leads to a power law degree distribution P (k) ∼ k−γ that is very common in
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real social networks. All the networks for which results are presented have

average degree k = 8 (equivalent to m = 4 in scale-free networks).

In the synchronous model, at each time step all the agents play a one

round game with all their neighbors and they collect the payoffs resulting

from these games. After this, they all simultaneously update their strategies

using the transition rule. In the sequential system, at each time step, one

agent x is randomly selected; x and its neighbors play the game with their

neighbors and, after this, x updates its strategy. We used both accumulated

and average payoffs. For small-world networks, the results obtained with the

two approaches are similar since all the agents have approximately the same

k (k is the same for all agents when φ = 0). Major differences appear for

scale-free networks due to a large heterogeneity in k values. Average payoffs

are intended to model the fact that agents have limitations in the number of

interactions they can sustain simultaneously and also that relationships are

costly (Tomassini et al., 2007; Szolnoki et al., 2008b).

The charts presented were obtained with populations of n = 104 agents,

randomly initialized with ρ0 = 0.5. We let the system run during 104 time

steps for the synchronous model and 104 × n time steps for the sequential

model, which is enough for the system to converge to homogeneous popula-

tions of cooperators or defectors, or to stabilize around a ρ value. The steady

state ρ value is computed as the average proportion of cooperators in the last

103 time steps for the synchronous model and in the last 103 × n time steps

for the sequential model. Each point in the charts presented is an average of

50 independent simulations. For each simulation a new network is generated,

which is kept static during the evolutionary process.
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Fig. 1 shows results obtained with regular grids and the replicator, best-

takes-over and Moran transition rules, as in (Roca et al., 2009a). The results

confirm the ones of previous works: there are no relevant differences be-

tween synchronous and sequential dynamics for the replicator rule; sequen-

tial dynamics supports less cooperation for the best-takes-over rule, with

the exception of the Stag-Hunt game; sequential dynamics supports more

cooperation for the Moran rule. With the best-takes-over rule, the main dif-

ferences appear in the Snowdrift game, while there are no large differences

in the Stag-Hunt and Prisoner’s Dilemma games. The main differences ap-

pear for the Moran rule, especially in the Snowdrift and Stag-Hunt games.

The influence in the Prisoner’s Dilemma game is limited to a small region.

However, in this region, synchronous dynamics leads to uniform populations

of defectors, while sequential dynamics leads to populations strongly domi-

nated by cooperators or even states where ρ = 1. This is also the case of the

Stag-Hunt and Snowdrift games for a noticeable portion of the space. For

the Stag-Hunt this difference is a natural one, due to its bi-stable nature.

However, that is not the case with the Prisoner’s Dilemma and Snowdrift

games, which makes this influence more relevant.

The main differences between the results obtained with regular and small-

world networks exist for the best-takes-over rule: in the Snowdrift and Pris-

oner’s Dilemma games, sequential dynamics becomes progressively beneficial

to cooperation as φ is increased. For φ = 0.05, sequential dynamics already

supports more cooperation on average than synchronous dynamics when the

best-takes-over rule is used (Fig. 2).

When scale-free networks are used, there are no relevant differences be-
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Figure 1: Proportion of cooperators ρ in regular grids (φ = 0), with synchronous dynamics

(upper row) and sequential dynamics (lower row). The transition rules are the replicator

rule (left column), the best-takes-over rule (middle column) and the Moran rule (right col-

umn). The numbers, respectively, above the Harmony and Snowdrift games, and below the

Stag-Hunt and the Prisoner’s Dilemma games, are the average values of the corresponding

quadrant. The S and T parameters are varied in steps of 0.05. For the replicator rule,

there are no relevant differences between synchronous and sequential dynamics. Differ-

ences exist for the best-takes-over and Moran rules and there are many situations in which

the update dynamics makes the difference between steady states where only defectors exist

and states where cooperators and defectors coexist or even only cooperators survive.

tween sequential and synchronous dynamics when the replicator rule is used,

as in regular and small-world networks. However, there are relevant differ-

ences for the best-takes-over and Moran rules. The differences are larger for

accumulated payoffs (Fig. 3) than for average payoffs (Fig. 4). In the first
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Figure 2: Proportion of cooperators ρ on small-world networks (φ = 0.05) with the best-

takes-over rule. Left column: synchronous dynamics; Right column: sequential dynamics.

In the Snowdrift and Prisoner’s Dilemma games, sequential dynamics becomes progres-

sively beneficial to cooperation as φ is increased. For φ = 0.05, sequential dynamics

already supports more cooperation on average than synchronous dynamics when the best-

takes-over rule is used. Concerning the Moran rule (not shown), there are no significant

differences to regular grids.

case, and for the best-takes-over rule, cooperation completely dominates for

the whole quadrant corresponding to the Snowdrift game when sequential dy-

namics is used. For the Stag-Hunt and Prisoner’s Dilemma games, sequential

dynamics leads to a significant increment of cooperation in large portions of

the space. We note also that with these networks, when the update dynamics

has some influence over ρ, sequential updating is always beneficial to cooper-

ation when accumulated payoffs are used, with only a few exceptions to this

behavior when average payoffs are used.

These results suggest that asynchronous updating is beneficial to the

emergence of cooperation more often than it is detrimental. More specifi-

cally, they suggest that asynchronism is detrimental to cooperation only for

networks with a high degree of regularity and for low or no noise. In the next
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Figure 3: Proportion of cooperators ρ in scale-free networks (m = 4), with synchronous

dynamics (upper row) and sequential dynamics (lower row) using accumulated payoffs.

Left charts: best-takes-over rule; Right charts: Moran rule. With both rules, there are

relevant differences between synchronous and sequential dynamics. With these networks,

sequential dynamics never supports less cooperators than the synchronous counterpart.

section we explore intermediate levels of noise in order to verify this.

4. Intermediate Noise Levels

We use the GP transition rule (Equation 2), and the Fermi transition

rule (Szabó and Fáth, 2007) in order to model intermediate noise levels in

the strategy update process. The neighborhood monitoring degree is dif-

ferent in the two rules. While the GP rule takes into account the payoffs

of all the neighbors, the Fermi rule only evaluates the payoff of one neigh-
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Figure 4: As in Fig. 3 but with average payoffs. The differences are not as relevant as with

accumulated payoffs but we note that, in many situations, the update dynamics makes

the difference between the coexistence of the two strategies and uniform steady states. We

note also that, excepting a few cases for the best-takes-over rule, sequential dynamics is

not detrimental to cooperation.

bor. According to the Fermi rule, the probability that an agent x imitates a

randomly chosen neighbor y is equal to

p(sx → sy) =
1

1 + exp[−(Gy −Gx)/K]
, (3)

where K > 0 represents the noise present in the strategy update process.

As in the GP rule, as K grows, the probability that agents imitate less suc-

cessful neighbors increases. However, differently from the GP rule, K → 0

does not imply the imitation of the most successful neighbor since y is ran-

17



domly chosen. That is, K → 0 in the Fermi rule models a smaller se-

lection intensity than the GP rule with K → 0. For the GP rule, we use

K ∈ {0, 1/100, 1/10, 1/8, 1/6, 1/4, 1/2, 1}. We use K ∈ [0, 0.1] in steps of

0.01 for the Fermi rule with the Prisoner’s Dilemma and K ∈ [0, 1] in steps

of 0.1 with the Snowdrift game. We use a larger interval with the Snowdrift

game since it is less sensitive to noise than the Prisoner’s Dilemma game.

We used the typical one parameter versions of the Prisoner’s Dilemma

and Snowdrift games: R = 1, T = b ∈ [1, 2], S = P = 0 for the Prisoner’s

Dilemma game, and R = 1, S = 1− r, T = 1 + r, P = 0, with r ∈ [0, 1], for

the Snowdrift game. These versions were used since they allow for compar-

isons with previous works and because the conclusions that can be driven for

these subsets, with the transition rules used in the previous section, are rep-

resentative of the conclusions that can be driven for the respective game in

the ST -plane. Here, we concentrate on these two games because the results

obtained with the Stag-Hunt game show that it answers very coherently to

the modification from synchronous to sequential dynamics: when this change

has some significant influence, asynchronous dynamics benefits cooperation.

Let us consider the difference ∆ρ = ρseq − ρsync, where ρseq and ρsync are,

respectively, ρ values obtained with sequential and synchronous dynamics for

the same set of parameters (game, network and noise parameters). Positive

or negative ∆ρ values mean that sequential dynamics supports, respectively,

more or less cooperators than synchronous dynamics.

Fig. 5 shows results for the Prisoner’s Dilemma and Snowdrift games

played with the GP and the Fermi rules on regular networks, which is the

case in which ∆ρ < 0 occurs more often. For the GP rule, these situations

18



‐0.4 

‐0.2 

0.0 

0.2 

0.4 

0.6 

0.8 

1.0 

0  1/100  1/10  1/8  1/6  1/4  1/2  1 

Δ
ρ 

 

K 

b = 1 
b = 1.1 
b = 1.2 
b = 1.3 
b = 1.4 
b = 1.5 
b = 1.6 
b = 1.7 
b = 1.8 
b = 1.9 
b = 2 

‐0.3 

‐0.2 

‐0.1 

0.0 

0.1 

0.2 

0.3 

0  1/100  1/10  1/8  1/6  1/4  1/2  1 

Δ
ρ 

 

K 

r = 0.0 

r = 0.2 

r = 0.4 

r = 0.6 

r = 0.8 

r = 1.0 

‐0.1 

0.0 

0.1 

0.2 

0.3 

0.4 

0  0.01  0.02  0.03  0.04  0.05  0.06  0.07  0.08  0.09  0.1 

Δ
ρ 

 

K 

b = 1 
b = 1.1 
b = 1.2 
b = 1.3 
b = 1.4 
b = 1.5 
b = 1.6 
b = 1.7 
b = 1.8 
b = 1.9 
b = 2 

‐0.2 

‐0.1 

0.0 

0.1 

0.2 

0.3 

0  0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8  0.9  1 

Δ
ρ 

 

K 

r = 0.0 

r = 0.2 

r = 0.4 

r = 0.6 

r = 0.8 

r = 1.0 

Figure 5: ∆ρ values obtained with the GP rule (upper row) and the Fermi rule (lower

row), when the games are played on regular grids. Left charts: Prisoner’s Dilemma; Right

charts: Snowdrift. For the Snowdrift charts, only ∆ρ values for even r values are shown in

order to improve readability. Sequential dynamics is detrimental to cooperation (∆ρ < 0)

mainly when regular networks are used and only for small noise values. The Fermi rule is

less sensitive to the update dynamics than the GP rule and, for the Prisoner’s Dilemma

game, it also supports less cooperation: the most part of the ∆ρ values is equal to 0

because ρ = 0 for both synchronous and sequential dynamics. Notice the different scales.

occur for K ≤ 1/10 only and they diminish in quantity and intensity for both

games as the rewiring probability, φ, is increased. On scale-free networks,

∆ρ < 0 occurs only when average payoffs are used, and just for the extreme

cases of b = 1 (Prisoner’s Dilemma) and r = 0 (Snowdrift) with K → 0.
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The results for the Fermi rule are in line with the ones obtained with

the GP rule: ∆ρ < 0 occurs only for smaller K values and mainly for the

Snowdrift game. However, the Fermi rule is less sensitive to the update

dynamics. That is, |∆ρ| values are, in general, smaller for the Fermi rule.

We can also observe in Fig. 5 that, for some b and r values, ∆ρ diminishes

as K grows above some value. This happens for both rules and is related to

the direct influence of K over ρ. In these situations, as K grows, the value

of ρ approaches, and sometimes reaches, 0 or 1 for sequential or synchronous

dynamics (and, sometimes, for both). As a side effect, the influence of the

update dynamics diminishes for larger K values. However, we note that,

even in these situations, ∆ρ never becomes negative.

The results reported in this section show that ∆ρ < 0 occurs for small

noise values only and mainly for regular grids. This means that, in general,

when the update dynamics has some influence, sequential dynamics supports

more cooperators than synchronous dynamics. While the results shown are

completely coherent with the ones reported in previous studies, the conclu-

sion is different due to the exploration of different types of networks and

intermediate values of noise present in the strategy update process, modeled

with two different transition rules.

5. Intermediate Levels of Asynchronism

In order to model intermediate levels of asynchronism, we use a parame-

ter α, which represents the synchrony rate of the model (Fatès and Morvan,

2005). At each iteration, each agent is chosen with probability α. The cho-

sen agents and their neighbors play the game with their neighbors. Then,
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the chosen agents synchronously update their strategies using the transition

rule. This method allows us to cover all the space between synchronous and

sequential dynamics: α = 1 corresponds to synchronous dynamics; as α→ 1
n
,

where n is the population size, the model approaches random sequential dy-

namics. Experiments where α 6= 1 are setup so that the number of individual

updates is approximately the same as in the α = 1 case. More specifically,

each simulation is stopped after the first time step where the number of in-

dividual updates exceeds n ∗ 104, while the measurement of ρ starts in the

first time step where the number of individual updates exceeds n ∗ 9× 103.

5.1. Monotonicity and Local Sensitivity of ρ in relation to α

We first verified if ρ varies monotonically as we change α in one direction

(Grilo and Correia, 2009). When the Fermi rule is used, ρ always changes

monotonically with α, no matter the noise level or the network used. When

the GP rule is used instead, non-monotonicity arises for both games mainly

when regular grids and small noise values are used (Fig. 6) and it dimin-

ishes, and eventually disappears, as both the noise level K and the rewiring

probability φ grow. These results taken together, namely, the fact that non-

monotonicity occurs mainly for regular networks and the fact that selection

intensity is not as strong in the Fermi rule as in the GP rule when K → 0,

suggest that non-monotonicity of ρ in relation to α is mainly associated with

regular networks and high selection intensity. This means that, in general,

the results obtained with synchronous and sequential dynamics give us a fair

idea of the maximum influence the update dynamics can have on ρ.

However, if we use intermediate asynchronicity levels, we notice a com-

plex behavior, mainly when the difference between the ρ value obtained with
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Figure 6: ρ values obtained with the best-takes-over rule (GP rule with K → 0) when the

Prisoner’s Dilemma (left) and Snowdrift (right) games are played on regular grids. The

most intense situations of non-monotonicity occur for low noise values and regular grids.

sequential and synchronous dynamics is large: the variation of ρ as α is

changed from 1 to 1/n is not always smooth. Indeed, there are situations

where ρ is approximately the same for a large portion of the α domain,

changing abruptly at a certain point when α is changed by a small value

(threshold point). The most impressive examples occur when both games

are played on scale-free networks with the GP rule and accumulated payoffs.

As Fig. 7 shows, there are many situations of strong sensitivity when α is di-

minished by a small value, specially when it is changed from 1 (synchronous

dynamics) to 0.9. These situations occur for K ∈ [0, 1/2]. For K = 1, the

transitions become smoother. We verified also that, in these cases, the dy-

namics is different for K ≤ 1/100 and for K > 1/100. In the first case, the

system converges to fixed states or to cyclic dynamics. Decreasing the syn-

chrony rate α prevents the population from becoming trapped in low ρ fixed

states/cyclic dynamics. For larger K values, we observed that the propor-
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tion of cooperators oscilates during the evolutionary process, with constant

and fast transitions between states where cooperators strongly dominate and

states where they are in clear minority. Eventually, the population converges

to uniform states of cooperators (all-C) or defectors (all-D). Given this be-

havior, it is impressive that decreasing α by a small value frequently makes

the difference between systematic convergence to all-C or systematic con-

vergence to all-D. This may prefigure the occurrence of second-order phase

transitions (Fatès, 2009).

5.2. Payoff Monotonicity

In this section we focus on the features of the transition rules that may

influence the sensitivity of evolutionary games to the update dynamics. We

start by recalling that these games are completely insensitive to the update

dynamics when the replicator rule is used (see Section 3). This rule is payoff

monotonous, i.e., it does not allow the imitation of less successful neighbors.

It models also a lower selection intensity than both the GP and Fermi rules

with K → 0: in this regime, these rules, being also payoff monotone, are

nevertheless sensitive to the update dynamics. This suggests that insensitiv-

ity to the update dynamics is associated with both payoff monotonicity and

low selection intensity.

In order to verify this, we modified the GP rule so that agent y, chosen

with Equation 2, is imitated by focal agent x only if it has a larger aggre-

gated payoff than x. Fig. 8 exemplifies the differences between the original

and the modified GP rule when K = 1 for both games played on small-world

networks with φ = 0.1. It shows that for such a low selection intensity, both

games become less sensitive when the modified GP rule is used. This con-
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Figure 7: ρ values obtained with the Prisoner’s Dilemma (left column) and Snowdrift

(right column) played on scale-free-networks with the GP rule and accumulated payoffs.

Upper row: best-takes-over rule (GP rule with K → 0); Lower row: GP rule with K = 1/2.

Only some lines are shown in the upper row charts in order to improve readability. Both

games are strongly sensitive to small α changes, mainly for larger b (Prisoner’s Dilemma)

and r (Snowdrift) values and specially in the transition from α = 1 to α = 0.9.

firms that payoff monotonicity associated with low selection intensity is a key

property concerning the insensitivity of these games to the synchrony rate α.

The fact that the Fermi rule is less sensitive than the GP rule (see Section

4), suggests that the neighborhood monitoring degree is also an important

feature concerning sensitivity to the update dynamics. However, the results
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Figure 8: ρ values obtained for the original and the modified GP rule with K = 1 when the

Prisoner’s Dilemma (left column) and Snowdrift (right column) are played on small-world

networks with φ = 0.1. Upper row: original GP rule; lower row: modified GP rule. Both

games become less sensitive to the synchrony rate when payoff monotonicity is introduced.

presented in (Roca et al., 2009a) for the multiple replicator rule, which is

a version of the replicator rule that models a complete neighborhood moni-

toring, show that it is also insensitive to the update dynamics. This means

that, while payoff monotonicity associated with low selection intensity is suf-

ficient to turn both games insensitive to the update dynamics, a complete

neighborhood monitoring is not sufficient to turn them sensitive.
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5.3. Strategy Exchanges and (A)synchronism

In order to understand why smaller synchrony rates lead to more cooper-

ation when agents are allowed to take irrational choices, we depart from an

idea from Tomassini et al. (2006) stated for the Snowdrift game. They noted

that, when the Moran rule is used (GP rule with K = 1), more cooperators

survive with sequential dynamics than with the synchronous counterpart.

Their intuitive explanation is the following: With sequential dynamics, if a

defector imitates a cooperator neighbor, the proportion of cooperators in-

creases and, furthermore, the next time one of them is evaluated for an up-

date, it will take advantage of the other’s presence to increase its payoff. On

the other hand, if a cooperator imitates a defector neighbor, the two agents

will negatively influence each other’s payoff. According to the authors, the

same reasoning can not be applied to synchronous dynamics because coop-

erator and defector neighbors can exchange their strategies at the same time

step, thus preventing the new cooperator to take advantage of its neighbor’s

presence.

In order to verify this idea, we first measured the average number of

strategy exchanges, as a function of α. Two neighbor agents x and y ex-

change their strategies at time step t if conditions sx = SA ∧ sy = SB and

sx = SB ∧ sy = SA, with SA 6= SB hold before and after the strategy update

process, respectively. The average number of strategy exchanges is taken

over periods of 1
α

time steps so that the number of individual updates con-

sidered is approximately the same as for the synchronous case (α = 1). Thus,

strategy exchanges are, measured for α ∈ {1, 0.5, 0.2, 0.1, 1/n} only.

The observed result is a decrease in the number of strategy exchanges as
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α decreases (see Fig. 9 for the GP rule). An exception to this behavior occurs

when the population converges to a state where only defectors survive or only

a very small fraction of cooperators survive for some α value. This happens

mainly in the Prisoner’s Dilemma game for larger K values. For example,

in Fig. 9 (c) we can see that for b = 1.2, the number of strategy exchanges

is 0 for α = 1 due to the extinction of cooperators (see the upper left chart

of Fig. 8). Apart from these situations, the number of strategy exchanges

always increases with α. Fig. 9 also shows that the number of strategy

exchanges is larger for K = 1 than for K → 0, except for the situation

already mentioned. This increase occurs for all networks in conjunction with

average payoffs. When scale-free networks are used with accumulated payoffs,

the number of strategy exchanges is always very low, independent of the noise

values. In this case, payoffs can vary substantially from agent to agent, which

makes strategy exchanges less probable. Thus, the results described in the

remaining of this section and in the following one do not apply to this case.

The results for the Fermi rule are qualitatively similar to the ones obtained

with the GP rule. However, the differences between the number of strategy

exchanges obtained with different K values are smaller, which is consistent

with the smaller sensitivity of the Fermi rule. Concerning the replicator rule,

the number of strategy exchanges is always very small for both games, never

exceeding 16 exchanges per 1
α

period, no matter the α value used. These

results combined with the beneficial effect of asynchronism, verified when

noise is present in the GP and the Fermi rules, as well as the insensitivity of

the replicator rule, suggest indeed a close relationship between the number

of strategy exchanges and the way ρ reacts to α changes. However, this does
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Figure 9: Number of strategy exchanges as a function of α, when the Prisoner’s Dilemma

(left column) and Snowdrift (right column) are played on small-world networks (φ = 0.1)

using the GP rule. Upper row: K → 0 (best-takes-over rule); Lower row: K = 1 (Moran

rule). Strategy exchanges diminish as α is decreased and are larger for K = 1 than for

K → 0.

not allow us to establish a cause-effect relationship between the number of

strategy exchanges and ρ since they are both dependent variables.

5.4. Effects of Strategy Exchanges

In order to verify if there is a cause-effect relationship between the num-

ber of strategy exchanges and the value of ρ, we modified the model so that,

at each time step, either a randomly chosen agent is updated with probabil-

ity 1 − p using the transition rule or two randomly chosen neighbor agents
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exchange their strategies with probability p. We note that no strategy ex-

changes can occur as a result of the application of the transition rule since

only one agent is selected. That is, when p = 0, this is a sequential model.

Fig. 10 exemplifies the effect of strategy exchanges on the value of ρ when

both games are played on regular networks with the GP and the replicator

rules. It shows that ρ decreases as p increases, except for the Snowdrift game

played on small-world networks with the replicator rule.

The difference between situations where the games are sensitive to p and

situations where they are not can be understood if we look at the spatial

patterns formed by the agents during the evolutionary process. Figs. 11 and

12 show examples, respectively for the Prisoner’s Dilemma and Snowdrift

games, of spatial patterns formed with the GP and replicator rules, for p = 0

and p 6= 0. With the exception of the Snowdrift played under the replicator

rule (Figs. 12 C and 12 D), cooperators organize into more compact clusters

when no strategy exchanges are allowed (p = 0). This is a well known phe-

nomena: structured populations allow cooperators to form clusters so that

they interact mainly with each other, thus protecting themselves from explo-

ration by defectors. This is important to understand how strategy exchanges

influence the level of cooperation. A strategy exchange between a cooper-

ator and a defector in the fringe of a cluster pushes the cooperator away

from the other ones. At the same time, it introduces a defector inside the

cluster or, at least, it contributes to more irregular cluster frontiers, which

is also detrimental to cooperators (Nowak et al., 1994). This can be seen

in Fig. 11 for the Prisoner’s Dilemma game and in Figs. 12 A and 12 B for

the Snowdrift game played under the GP rule. When strategy exchanges
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Figure 10: ρ as a function of p when the Prisoner’s Dilemma (left column) and Snowdrift

(right column) are played on regular networks (φ = 0). Upper row: Moran rule (GP rule

with K = 1); Lower row: replicator rule. Results for p = 1 in the Snowdrift game are not

shown because in this regime the transition rule is never applied and, hence, payoffs do

not influence the dynamics.

are introduced in the Prisoner’s Dilemma game, cooperator clusters can not

grow as they grow when no strategy exchanges occur. In the Snowdrift game

played under the GP rule with K = 1, cooperators scatter when strategy

exchanges are introduced (Fig. 12 B). The situation is different when this

game is played with the replicator rule (Figs. 12 C and 12 D). In this case,

agents do not organize into compact clusters even when there are no strat-
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Figure 11: Typical steady state patterns when the Prisoner’s Dilemma game is played on

regular networks (φ = 0). Upper row: Moran rule (GP rule with K = 1) and b = 1.2;

Lower row: replicator rule and b = 1.1. Left images: p = 0; Right images: p = 0.05 in

panel B and p = 0.005 in panel D. Colors: black for cooperators and white for defectors.

egy exchanges (Fig. 12 C). This means that, when strategy exchanges are

introduced (Fig. 12 D), there are no compact clusters to destroy and that is

the reason why both the spatial patterns and ρ are not affected.

This section shows that strategy exchanges prevent the growth of com-

pact clusters of cooperators. Furthermore, the preceding section has shown

that strategy exchanges are more frequent for larger synchrony rates, spe-

cially when noise is present in the strategy update process. This is a strong

evidence that they are of major relevance concerning the beneficial effect of

asynchronism in the presence of noise.

31



Figure 12: Typical steady state patterns when the Snowdrift game is played on regular

networks (φ = 0). Upper row: Moran rule (GP rule with K = 1) and r = 0.6; Lower row:

replicator rule and r = 0.4. The left images were taken for p = 0 and the right ones for

p = 0.9. Colors: black for cooperators and white for defectors.

6. Conclusion and Future Work

This paper is a contribution to the understanding of the effects of the

update dynamics on symmetric 2-player evolutionary games. It covers a

broad number of conditions, allowing more general results to be achieved

and provides a better picture of how and why they vary with the input

conditions. The results show that, in general, asynchronism supports more

cooperation. This is not valid only for very small noise values. Noise allows

agents to make irrational choices, by imitating less successful neighbors. The

replicator transition rule, which never allows agents to make such choices,
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is strongly insensitive to changes in the synchrony rate. Using a modified

version of the Generalized Proportional transition rule, which prevents agents

from making irrational choices, we have shown that this feature is a key

property in the sensitivity to the update dynamics. This means that the

influence of the update dynamics is strongly dependent on the noise level

present in the update process and reinforces the conclusion concerning the

beneficial effect of asynchronism on cooperation. It means also that, in order

to build less sensitive artificial societies, special care should be taken in the

design of strategy update processes and agents’ perception skills, so that the

imitation of less successful agents can be avoided or, at least, reduced. On

the other hand, in systems where some noise is present, cooperation can be

promoted through the maintenance of small synchrony rates by avoiding, for

example, coupling mechanisms between agents or simply by refraining from

forcing agents to update all at the same specific moments.

One of the side effects of the presence of noise in the update process is that

direct strategy exchanges between agents become possible. The results show

that, for larger noise values, there is a relationship between the occurrence of

strategy exchanges, which decreases with the synchrony rate, and the way the

update dynamics influences the emergence of cooperation. This is valid when

games are played on small-world networks or on scale-free networks using

average payoffs. In fact, we have found that there is a cause-effect relationship

between strategy exchanges and the proportion of cooperators. An analysis of

the spatial patterns formed by cooperator agents allows us to understand why

this is so. Strategy exchanges are detrimental to the emergence of cooperation

because they destroy compact clusters of agents when these exist, which is
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disadvantageous for cooperators. We have found also that there are situations

where both the Prisoner’s Dilemma and Snowdrift games are very sensitive

to small changes in the synchrony rate, specially when we change from a

synchronous dynamics to an almost synchronous dynamics. These situations

occur mainly on scale-free networks using accumulated payoffs.

The work presented here focused mainly on the role of the transition rule

on the influence of the update dynamics. However, the results show that the

underlying network plays also an important role. The network models we

used, while being among the most studied ones, do not allow us to identify the

network properties that determine how the update dynamics influences the

emergence of cooperation. This is because they are not sufficiently diversified

concerning the properties by which networks are characterized. For example,

the degree distribution of regular networks has a single peak while it follows

a power law for scale-free networks. Furthermore, the regular networks used

here have a large clustering coefficient while the Barabási and Albert scale-

free networks present a very low one. This means that we do not know if the

different results observed with regular and scale-free networks are due to the

differences in degree distribution, clustering coefficient, both, or even other

properties. In order to verify this, we need to study both regular networks

with low or zero clustering coefficient and scale-free networks having larger

clustering coefficients (Holme and Kim, 2002).

It has been shown that cooperation can be sustained when, besides strate-

gies, the network of contacts also evolves. This has been shown analytically,

considering that different types of agents seek new contacts and break exist-

ing ones at different rates (Pacheco et al., 2006a,b, 2008), as well as experi-
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mentally, when the influence that agents have on their neighbors may evolve

(Szolnoki and Perc, 2008) or when the network topology may also evolve,

both from scratch (Poncela et al., 2008) or from an initial network configura-

tion (Zimmermann and Egúıluz, 2004; Szolnoki et al., 2008a). These works

open new perspectives for the study of the influence of the update dynamics

on the emergence of cooperation and, therefore, future developments of this

work will consider coevolutionary games (Perc and Szolnoki, 2009). Other

extensions will consider agents with memory (Lindgren and Nordahl, 1994;

Kirchkamp, 2000) and multi-player games such as the Public-Goods game.
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Szolnoki, A., Perc, M., Szabó, G., 2008c. Diversity of reproduction rate sup-

ports cooperation in the prisoner’s dilemma game on complex networks.

Eur. Phys. J. B 61, 505–509.

39



Tomassini, M., Luthi, L., Giacobini, M., 2006. Hawks and doves on small-

world networks. Phys. Rev. E 73, 016132.

Tomassini, M., Luthi, L., Pestelacci, E., 2007. Social dilemmas and cooper-

ation in complex networks. Int. J. Mod. Phys. C 18, 1173–1185.

Vukov, J., Szabó, G., Szolnoki, A., 2008. Evolutionary prisoner’s dilemma

game on Newman-Watts networks. Phys. Rev. E 77, 026109.

Watts, D., Strogatz, S. H., 1998. Collective dynamics of small-world net-

works. Nature 393, 440–442.

Weibull, J. W., 1997. Evolutionary Game Theory. MIT Press.

Winfree, A., 2001. The Geometry of Biological Time. Springer-Verlag.
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