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BIJECTIONS AND SYMMETRIES FOR THE

FACTORIZATIONS OF THE LONG CYCLE

OLIVIER BERNARDI AND ALEJANDRO H. MORALES

Abstract. We study the factorizations of the permutation (1, 2, . . . , n)
into k factors of given cycle types. Using representation theory, Jackson
obtained for each k an elegant formula for counting these factorizations
according to the number of cycles of each factor. In the cases k = 2, 3
Schaeffer and Vassilieva gave a combinatorial proof of Jackson’s formula,
and Morales and Vassilieva obtained more refined formulas exhibiting a
surprising symmetry property. These counting results are indicative of a
rich combinatorial theory which has remained elusive to this point, and
it is the goal of this article to establish a series of bijections which unveil
some of the combinatorial properties of the factorizations of (1, 2, . . . , n)
into k factors for all k. We thereby obtain refinements of Jackson’s
formulas which extend the cases k = 2, 3 treated by Morales and Vas-
silieva. Our bijections are described in terms of “constellations”, which
are graphs embedded in surfaces encoding the transitive factorizations
of permutations.

1. Introduction

We consider the problem of enumerating the factorizations of the per-
mutation (1, 2, . . . , n) into k factors according to the cycle type of each
factor. In [5] Jackson established a remarkable counting formula (analogous
to the Harer-Zagier formula [4]) characterizing the generating function of
the factorizations of the long cycle according to the number of cycles of each
factor. A combinatorial proof was subsequently given for the cases k = 2, 3
by Schaeffer and Vassilieva [12, 11]. Building on these bijections, Morales
and Vassilieva also established for k = 2, 3 a formula for the generating
function of factorizations of (1, 2, . . . , n) counted according to the cycle type
of each factor. This formula displays a surprising symmetry property which
has remained unexplained so far.

In this article we explore the combinatorics of the factorizations of the
permutation (1, 2, . . . , n) through a series of bijections. All our bijections
are described in terms of maps and constellations which are graphs embed-
ded in surfaces encoding the transitive factorizations in the symmetric group
(see Section 2 for definitions). A summary of our bijections is illustrated
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Figure 1. Summary of the bijections presented in this arti-
cle. We start with the classical encoding of the factorizations
of (1, 2, . . . , n) by cacti (here k = n = 3). We then establish
a bijection Φ between vertex-colored cacti and tree-rooted
constellations (Section 3). We then characterize the dual of
tree-rooted constellations and obtain a correspondence with
nebulas (Section 5). Lastly we establish a bijection Ψ be-
tween nebulas and valid biddings.

in Figure 1. Our first bijection gives an encoding of the factorizations of
the permutation (1, 2, . . . , n) into tree-rooted k-constellations. This encod-
ing allows one to easily prove the case k = 2 of Jackson’s counting formula,
as well as to establish the symmetry property for all k ≥ 2. However for
k ≥ 3, the tree-rooted k-constellations are still uneasy to count and we give
further bijections. Eventually, we show bijectively that proving Jackson’s
counting formula reduces to proving an intriguing probabilistic statement
(see Theorem 1.6). In Section 7 we prove this probabilistic statement in
the cases k = 2, 3, 4 (thereby proving Jackson’s counting formula for these
cases) but the cases k > 4 shall be treated (along with similar probabilistic
statements) in a separate paper [3]. Before describing our results further we
need to review the literature.

Enumerative results about the factorizations of the long cycle.

Given k partitions λ(1), . . . , λ(k) of n, it is a classical problem to determine
the number κ(λ(1), . . . , λ(k)) of factorizations π1 ◦π2 ◦ · · · ◦πk = (1, 2, . . . , n)

such that the permutation πt has cycle type λ(t) for all t ∈ {1, . . . , k}.
By the general theory of group representations, the connection coefficients
κ(λ(1), . . . , λ(k)) can be expressed in terms of the characters of the symmetric
group, but this expression is not really explicit even for k = 2. However,
Jackson established in [5] a remarkable formula for the generating function
of factorizations counted according to the number of cycles of the factors,
namely,

(1.1)
∑

π1◦···◦πk=(1,2,...,n)

k∏

i=1

x
ℓ(πi)
i =

∑

1≤p1,...,pk≤n

k∏

i=1

(
xi
pi

)
n!k−1Mn−1

p1−1,...,pk−1

where ℓ(π) is the number of cycles of the permutation π, and Mn
p1,...,pk

is the

coefficient of xp11 · · · xpkk in the polynomial (
∏k

i=1(1 + xi)−
∏k

i=1 xi)
n.
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Jackson’s formula can equivalently be stated in terms of colored factor-
izations.

Definition 1.1. Given positives integers p1, . . . , pk, a (p1, . . . , pk)-colored
factorization of (1, 2, . . . , n) is a tuple (π1, . . . , πk, φ1, . . . , φk), where π1, . . . , πk
are permutations of [n] := {1, . . . , n} such that π1 ◦ · · · ◦ πk = (1, 2, . . . , n)
and for all t ∈ [k], φt is a surjective mapping from [n] to [pt] such that
φt(a) = φt(b) if a, b are in the same cycle of πt. In other words, the map-
ping φt can be seen as a coloring of the cycles of the permutation πt with
colors in [pt] and we want all the colors to be used.

It is easy to see that (1.1) is equivalent to the following theorem.

Theorem 1.2 (Jackson’s counting formula [5]). The number Cn
p1,...,pk

of
(p1, . . . , pk)-colored factorizations of the permutation (1, 2, . . . , n) is equal to

(1.2) n!k−1Mn−1
p1−1,...,pk−1,

where Mn
p1,...,pk

= [xp11 · · · xpkk ](
∏k

i=1(1 + xi)−
∏k

i=1 xi)
n is the cardinality of

the set Mn
p1,...,pk

of n-tuples (R1, . . . , Rn) of strict subsets Rt of [k] such that
each integer t ∈ [k] appears in exactly pt of the subsets R1, . . . , Rn.

The original proof of Theorem 1.2 in [5] is based on the representation
theory of the symmetric group. Bijections explaining the cases k = 2, 3 were
subsequently given by Schaeffer and Vassilieva [12, 11]. In Section 3 we shall
give a bijection which extends the results in [12, 11] to arbitrary k. (however,
for a general k, this bijection does not directly imply Theorem 1.2).

We now consider a refined enumeration problem. Let γ(1), . . . , γ(k) be

compositions of n, where γ(t) = (γ
(t)
1 , γ

(t)
2 , . . . , γ

(t)
pt ). We say that a (p1, . . . , pk)-

colored factorization (π1, . . . , πk, φ1, . . . , φk) has color-compositions (γ(1), . . . , γ(k))

if the permutation πt has γ
(t)
i elements colored i (i.e. γ

(t)
i = |φ−1

t (i)|) for

all t ∈ [k] and all i ∈ [pt]. Let c(γ(1), . . . , γ(k)) be the number of colored

factorizations of color-compositions (γ(1), . . . , γ(k)). In Section 4 we shall
prove bijectively the following surprising symmetry property.

Theorem 1.3 (Symmetry property). Let γ(1), δ(1), . . . , γ(k), δ(k) be compo-

sitions of n. If for every t ∈ [k] the length of the compositions γ(t) and δ(t)

are equal, then c(γ(1), . . . , γ(k)) = c(δ(1), . . . , δ(k)).

Given that there are
(
n−1
ℓ−1

)
compositions of n with ℓ parts, the symmetry

property together with Theorem 1.2 gives the following refined formula.

Corollary 1.4. For any compositions γ(1), . . . , γ(k) of n, the number of
colored factorizations of color-compositions (γ(1), . . . , γ(k)) is

(1.3) c(γ(1), . . . , γ(k)) =
n!k−1Mn−1

p1−1,...,pk−1∏k
t=1

(
n−1

ℓ(γ(t))−1

) ,
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Equation (1.3) is precisely the result established by Morales and Vassilieva
for the cases k = 2, 3 in [9, 10]. These refined results can actually be obtained
by a representation theory approach but we have not found them explicitly
in the literature for k > 3.

As a final remark, observe that connection coefficients κ(λ(1), . . . , λ(k)) are

determined by the numbers c(λ(1), . . . , λ(k)) of colored factorizations through
a change of basis for symmetric functions:

∑

λ(1),λ(2),...,λ(k)

κ(λ(1), . . . , λ(k))
k∏

t=1

pλ(t)(xt,1, xt,2, . . .)

=
∑

λ(1),λ(2),...,λ(k)

c(λ(1), . . . , λ(k))

k∏

t=1

mλ(t)(xt,1, xt,2, . . .),

where the sums are over k-tuples of partitions of n and pλ, mλ denote re-
spectively the power sum and monomial symmetric functions.

A probabilistic puzzle. We now describe a probabilistic puzzle associated
to the set Mn

p1,...,pk
appearing in Theorem 1.2.

Definition 1.5. For an integer t in [k] and a subset R ( [k] we define the
integer α(t, R) ∈ [k] by setting

• α(t, R) = t− 1 modulo k if t ∈ R,
• α(t) = t+ r modulo k if t /∈ R, t+1, . . . , t+ r ∈ R and t+ r+1 /∈ R.

Furthermore, for integers i1, . . . , ik−1 in [n] (repetitions allowed) and subsets
R1, . . . , Rn ( [k], we define α((i1, . . . , ik−1), (R1, . . . , Rn)) to be the graph
with vertex set [k] and edge set E = {e1, . . . , ek−1}, where et is the edge
{t, α(t, Rit)}.

In Section (6) we shall prove bijectively that Jackson’s Theorem 1.2 is
equivalent to the following probabilistic statement.

Theorem 1.6. Fix an integer k ≥ 2 and positive integers n, p1, . . . , pk and
consider the uniform distribution on pairs B = ((i1, . . . , ik−1), (R1, . . . , Rn))
such that i1, . . . , ik−1 are integers in [n] (repetitions allowed) and (R1, . . . , Rn) ∈
Mn

p1,...,pk
. Then the probability that the graph α(B) is a tree is equal to the

probability that the subset R1 has cardinality k − 1.

In Section 7, we shall give a direct proof of Theorem 1.6 for the cases
k = 2, 3, 4 (thereby establishing Theorem 1.2 for these cases), and indicate
how to handle a few more cases using a computer. In the forthcoming paper
[3], we shall give a direct proof of Theorem 1.6 valid for all k ≥ 2, and
establish several other results of a similar flavor.

Constellations, or the drawings of factorizations. Our bijections are
described in terms of k-constellations which are certain maps (embeddings
of graphs in surfaces considered up to homeomorphism) with k types of
vertices and with faces colored white and black (black faces are also called
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Figure 2. Two hyperedge-labelled 3-constellations of size 5
(the shaded triangles represent the hyperedges). The 3-
constellation on the left (which is embedded in the sphere)
encodes the triple (π1, π2, π3), where π1 = (1, 2, 5)(3, 4),
π2 = (1, 3)(2)(4)(5), π3 = (1, 4)(2)(3)(5), so that π1π2π3 =
(1, 3, 2, 5)(4). The 3-cactus on the right (which is embed-
ded in the torus) encodes the triple (π1, π2, π3), where π1 =
(1, 3, 5)(2, 4), π2 = (1, 4)(2, 3)(5), π3 = (1)(2, 4)(3)(5), so
that π1π2π3 = (1, 2, 3, 4, 5).

hyperedges and are colored in gray in our figures). We refer the reader to
Section 2 for precise definitions, and to Figure 2 for some examples. To
a k-constellation with its hyperedges labelled 1, . . . , n, one associates the
permutations π1, . . . , πk of [n] where the cycles of the permutation πt are
in correspondence with the vertices of type t: the cycle associated to a
vertex v is given by the counterclockwise order of the black faces incident
to v; see Figure 2. Actually, any tuple of permutations π1, . . . , πk of [n]
acting transitively on [n] is associated to a unique k-constellation, thus k-
constellations give a canonical way of “drawing” such tuples. Moreover,
the number of cycles of the product π1 ◦ π2 · · · πk corresponds to the num-
ber of white faces of the associated constellation. In particular, the tuples
(π1, . . . , πk) of permutations of [n] such that the product π1 ◦ π2 · · · πk is an
n-cycle (a permutation with 1 cycle) correspond bijectively to constellations
with a single white face (because the transitivity condition is automatically
satisfied in this case). Constellations with a single white face are called cacti.

Outline. In Section 2, we gather our definitions about maps, constellations
and cacti. Theorems 1.2 and 1.3 can then be stated in terms of vertex-
colored cacti.

In Section 3, we establish a bijection Φ between colored cacti and tree-
rooted constellations which are constellations with a marked spanning tree.
Through this bijection the number of colors of the vertices of type t in the
cacti correspond to the number of vertices of type t in the corresponding
tree-rooted constellation. This bijection is similar to the one used in [1] to
prove the Harer-Zagier formula [4].

In Section 4, we establish a symmetry property for tree-rooted constella-
tions which implies Theorem 1.3.
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In Section 5, we decompose the dual of tree rooted maps and obtain
certain decorated one-face maps that we call nebulas. Proving Jackson’s
counting formula then reduces to counting nebulas.

In Section 6 we give a bijection Ψ between nebulas and valid biddings,
where the definition of bidding is closely related to the set Mn

p1,...,pk
whose

cardinality appears in Jackson’s formula. We then prove that Jackson’s
formula is equivalent to the probabilistic statement given in Theorem 1.6.

Lastly, in Section 7 we prove the cases k = 2, 3, 4 of Theorem 1.6, thereby
establishing Theorem 1.2 for these cases.

2. Definitions

For a positive integer n, we denote by [n] the set {1, 2, . . . , n}. A compo-
sition of n is a sequence of positive integers α = (α1, α2, . . . , αℓ) such that
α1 + α2 + · · · + αℓ = n. The integers α1, . . . , αℓ are the parts of α and the
integer ℓ is the length of α. A partition is a composition α = (α1, α2, . . . , αℓ)
such that α1 ≥ α2 ≥ · · · ≥ αℓ.

Graphs and maps. Our graphs are undirected and can have loops and
multiple edges. A digraph, or directed graph, is a graph where every edge
is oriented; oriented edges are called arcs. An Eulerian tour of a directed
graph is a directed path starting and ending at the same vertex and taking
every arc exactly once. An edge e of a graph defines two half-edges each
of them incident to an endpoint of e. A rotation system for a graph G is
an assignment for each vertex v of G of a cyclic ordering for the half-edges
incident to v.

We now review the connection between rotation systems and embeddings
of graphs in surfaces. We call surface a compact, connected, orientable, 2-
dimensional manifold without boundary (such a surface is characterized by
its genus g ≥ 0). A map is a cellular embedding of a connected graph in an
oriented surface considered up to orientation preserving homeomorphism1.
By cellular we mean that the faces (connected components of the comple-
ment of the graph) are simply connected. For a map, the angular section
between two consecutive half-edges around a vertex is called a corner. The
degree of a vertex or a face is the number of incident corners. A map M nat-
urally defines a rotation system ρ(M) of the underlying graph G by taking
the cyclic order of the half-edges incident to a vertex v to be the clockwise
order of these half-edges around v. The following classical result (see e.g.
[8]) states the relation between maps and graphs with rotation systems.

Lemma 2.1. For any connected graph G, the function ρ is a bijection be-
tween the set of maps having underlying graph G and the set of rotation
systems of G.

1Maps can be considered on non-orientable surfaces but we will not consider such
surfaces here.
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Constellations and cacti. A k-constellation, or constellation for short,
is a map with two types of faces black and white, and k types of vertices
1, 2, . . . , k, such that:

(i) each edge separates a black face and a white face,
(ii) each black face has degree k and is incident to vertices of type

1, 2, . . . , k in this order clockwise around the face.
Two constellations are shown in Figure 2. The black faces are also called
hyperedges. The size of a constellation is the number of hyperedges. A
constellation of size n is labelled if its hyperedges receive distinct labels
in [n].

We now recall the link between constellations and products of permuta-
tions. We call k-hypergraph a pair G = (V,E) where V is a set of vertices,
each of them having a type in [k], and E is a set of hyperedges which are sub-
sets of V containing exactly one vertex of each type. A rotation-system for
the hypergraph G is an assignment for each vertex v of a cyclic order of the
hyperedges incident to v (i.e., containing v). Clearly each k-constellation
defines a connected k-hypergraph together with a rotation system (the clock-
wise order of the hyperedges around each vertex). In fact Lemma 2.1 readily
implies the following result.

Lemma 2.2. For any connected k-hypergraph G, there is a bijection between
k-constellations of underlying k-hypergraph G and the rotation systems of G.

Now given a hyperedge-labelled k-constellation C of size n, we define
some permutations π1, . . . , pk as follows: for each t ∈ [k] we define the cycles
of the permutation πt to be the counterclockwise order of the hyperedges
around the vertices of type t. Examples are given in Figure 2. We then say
that the hyperedge-labelled k-constellation C represents the tuple ̺(C) =
(π1, . . . , πk). From Lemma 2.2 it is easy to establish the following classical
result (see e.g. [6]).

Lemma 2.3. The representation mapping ̺ is a bijection between hyperedge-
labelled k-constellations of size n and tuples of permutations (π1, . . . , πk) of
[n] acting transitively on [n]. Moreover the number of white faces of the
constellation is equal to the number of cycles of the product π1π2 · · · πk.

An edge of a constellation has type t ∈ [k] if its endpoints have types t
and t + 1 (the types of the vertices and edges are considered modulo k).
A k-constellation has type (p1, . . . , pk) if it has pt vertices of type t for all
t ∈ [k]. The hyperdegree of a vertex is the number of incident hyperedges.
A constellation of type (p1, . . . , pk) is vertex-labelled if for each t ∈ [k] the pt
vertices of type t have distinct labels in [pt]. We say that such a constellation

has vertex-compositions (γ(1), . . . , γ(k)) if for all t ∈ [k], γ(t) is a composition
of size n and length pt whose ith part is the hyperdegree of the vertex of
type t labelled i.

A k-constellation is rooted if one of its hyperedges is distinguished as the
root hyperedge. The vertex of type k incident to the root hyperedge is called
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root vertex. There are n! distinct ways of labelling a rooted constellation of
size n (because a rooted constellation has no symmetry preserving the root
hyperedge). Hence, there is a 1-to-(n − 1)! correspondence between rooted
constellations of size n and hyperedge-labelled constellations of size n.

A k-cactus is a k-constellation with a single white face. By Lemma 2.3
the hyperedge-labelled k-cacti correspond bijectively to the factorizations of
one of the (n−1)! long cycles into k factors (transitivity is redundant in this
case), while rooted cacti correspond bijectively to the factorizations of the
permutation (1, 2, . . . , n). Since Jackson’s counting formula is about colored
factorizations of (1, 2, . . . , n) (see Definition 1.1), we now consider vertex-
colored cacti. Given some positive integers q1, . . . , qk, a (q1, . . . , qk)-colored
cacti is a k-cacti together with an assignment of colors to vertices, such that
for every t ∈ [k] the vertices of type t are colored using every color in [qt].
A (2, 1, 3)-colored cacti is represented in Figure 3. The color-compositions

of a (q1, . . . , qk)-colored cacti of size n is the tuple (γ(1), . . . , γ(k)), where

for all t ∈ [k], γ(t) is a composition of size n and length qt whose ith part
is the number of hyperedges incident to vertices of type t colored i. It
is clear from the representation mapping ̺, that (q1, . . . , qk)-colored cacti

of color-compositions (γ(1), . . . , γ(k)) are in bijection with the (q1, . . . , qk)-
colored factorizations of (1, 2, . . . , n) with color-compositions (γ(1), . . . , γ(k)).

1

5 2 3

4

Type 2 (colors

Type 3 (colors

Type 1 (colors

)

)

)

Figure 3. A (2, 1, 3)-colored cacti (embedded in the sphere)

with color-compositions (γ(1), γ(2), γ(3)), where γ(1) = (1, 4),

γ(2) = (5) and γ(3) = (2, 1, 2).

From now on, all our results and proofs are stated in terms of constella-
tions and cacti.

3. From cacti to tree-rooted constellations

In this section we establish a bijection between vertex-colored cacti and
certain constellations with a distinguished spanning tree. Let C be a k-
constellation and let v0 be a vertex. We call v0-arborescence of C a spanning
tree A such that every vertex v 6= v0 of type t is incident to exactly one edge
of type t in A (equivalently, the spanning tree A is oriented from the leaves
toward v0 by orienting every edge of A of type t ∈ [k] from its endpoint of
type t toward its endpoint of type t+1). A tree-rooted constellation is a pair
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(C,A) made of a rooted constellation C together with a v0-arborescence A,
where v0 is the root vertex of C. An example of tree-rooted constellation is
given in Figure 4 (bottom right).

Theorem 3.1. Let p1, . . . , pk be positive integers. There is a bijection
Φ between the set Cn

p1,...,pk
of (p1, . . . , pk)-colored rooted k-cacti of size n

(these encode the (p1, . . . , pk)-colored factorizations of (1, 2, . . . , n)), and the
set T n

p1,...,pk
of vertex-labelled tree-rooted k-constellations of size n and type

(p1, . . . , pk).
Moreover, the bijection has the following degree preserving property: for

any vertex-colored cactus C, the number of edges joining vertices of type t
and color i to vertices of type t+1 and color j in C is equal to the number of
edges joining the vertex of type t labelled i to the vertex of type t+1 labelled
j in the tree-rooted constellation Φ(C).

Remark. The degree preserving property of Theorem 3.1 implies that for
any tuple of compositions (γ(1), . . . , γ(k)), the mapping Φ establishes a bi-

jection between cacti of color-compositions (γ(1), . . . , γ(k)) and tree-rooted

constellations of vertex-compositions (γ(1), . . . , γ(k)).

Remark. In the case k = 2 the tree-rooted k-constellations can be identi-
fied with rooted bipartite maps with a distinguished spanning tree (simply
by considering the hyperedges as edges). These objects are easy to count
(see [1]), so that the case k = 2 of Theorem 1.2 follows easily from Theo-
rem 3.1 in this case.

The remaining of this section is devoted to the proof of Theorem 3.1. Our
strategy parallels the one developed in [1] (building on some ideas of Lass
[7]) in order to prove extensions of the Harer-Zagier formula. This proof
is illustrated in Figure 4. We shall recombine the information given by a
vertex-colored cactus into the information given by a tree-rooted constella-
tion through the BEST Theorem (see Lemma 3.3 below).

We call k-digraph a directed graph with k types of vertices 1, . . . , k, such
that every vertex has as many ingoing and outgoing arcs, and every arc goes
from a vertex of type t to a vertex of type t+1 for some t ∈ [k] (as usual the
types of vertices are considered modulo k). An arc going from a vertex of
type t to a vertex of type t+1 is said to have type t. Note that a k-digraph
has as many arcs of each type, and we say that it has size n if it has n
arcs of each type. An arc-labelling of a k-digraph of size n is an assignment
of distinct labels in [n] to the n arcs of type t, in such a way that for any
(t, i) ∈ [k]× [n] the end of the arc of type t and label i is the origin of the arc
of type t+1 and label i. Observe that arc-labelled k-digraphs easily identify
with hyperedge-labelled k-hypergraphs. A k-digraph has type (p1, . . . , pk)
if for each t ∈ [k] there are pt vertices of type t. It is vertex-labelled by
assigning distinct labels in [pt] to its pt vertices of type t for all t ∈ [k].
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Ξ

Figure 4. From a vertex-colored cactus to a tree-rooted
constellation via the BEST Theorem.

Lemma 3.2. There is a bijection Ξ between the set of hyperedge-labelled
rooted (p1, . . . , pk)-colored cacti of size n, and the set of pairs (G, η) where
G is a arc-labelled vertex-labelled k-digraph of type (p1, . . . , pk) and η is an
Eulerian tour of G starting and ending at a vertex of type k.

Lemma 3.2 is illustrated in the top part of Figure 4.

Proof. We call black k-gon a polygon with k vertices of type 1, 2, . . . , k in
clockwise order, and white kn-gon a polygon with kn vertices, such that the
type of vertices increases by one (modulo k) along each edge in counterclock-
wise order (modulo k). A white kn-gon is rooted if a corner incident to a
vertex of type k is distinguished as the root-corner ; it is (p1, . . . , pk)-colored
if for all t ∈ [k] the vertices of type t are colored using every color in [pt].

Observe that the n hyperedges of a k-cactus of size n are black k-gons,
while its white face is a white kn-gon (since faces of cactus are simply con-
nected). Moreover the k-cactus is completely determined (up to homeo-
morphism) by specifying the gluing of the black k-gons with the white kn-
gon (that is specifying the pair of edges to be identified). Thus, a rooted
hyperedge-labelled (p1, . . . , pk)-colored cactus is obtained by taking a rooted
(p1, . . . , pk)-colored white kn-gon, and gluing its edges to the edges of n la-
belled black k-gon so as to respect the color and type of the vertices (certain
vertices of the white kn-gon are identified by the gluing). Now, a rooted

(p1, . . . , pk)-colored white kn-gon is bijectively encoded by a pair (G̃, η),

where G̃ is a vertex-labelled k-digraph of type (p1, . . . , pk) and η is an Euler-

ian tour of G̃ (the Eulerian tour gives the order of the colors around the white
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kn-gon in counterclockwise direction starting from the root-corner). More-
over, the gluings of the n labelled black k-gons (respecting the type and

coloring) are in bijection with the arc-labellings of G̃. This establishes the
claimed bijection. �

We now recall the BEST Theorem for Eulerian tours2. Let G be a di-
rected graph and let v0 be a vertex. We call v0-Eulerian tour an Eulerian-
tour starting and ending at vertex v0. Observe that a v0-Eulerian tour is
completely characterized by its local-order, that is, the assignment for each
vertex v of the order in which the outgoing edges incident to v are used.
Note however that not every local order corresponds to an Eulerian tour.
We call v0-arborescence a spanning tree A of G oriented from the leaves
toward v0 (i.e., every vertex v 6= v0 has exactly one outgoing arc in A).

Lemma 3.3 (BEST Theorem). Let G be an arc-labelled directed graph where
every vertex has as many ingoing arcs as outgoing ones, and let v0 be a vertex
of G. A local order corresponds to a v0-Eulerian tour if and only if the set
of last outgoing arcs out of the vertices v 6= v0 form a v0-arborescence.
Consequently, there is a bijection between the set of v0-Eulerian tours of
G and the set of pairs (A, τ), where A is a v0-arborescence, and τ is an
assignment for each vertex v of a total order of the incident outgoing arcs
not in A.

We now complete the proof of Theorem 3.1. By combining Lemma 3.2 and
the BEST Theorem, one gets a bijection between rooted hyperedge-labelled
(p1, . . . , pk)-colored cacti and triples (G,A, θ) where G is an arc-labelled
vertex-labelled k-digraph of type (p1, . . . , pk), A is a v0-arborescence of G
for a vertex v0 of type k, and τ is an assignment for each vertex v of a
total order of the arcs not in A going out of v. Observe that τ encodes the
same information as a pair (a0, τ

′), where a0 is an arc going out of v0 and
τ ′ is an assignment for each vertex v of a cyclic order of the arcs going out
of v. Now the arc-labelled vertex-labelled k-digraph G encodes the same
information as a hyperedge-labelled vertex-labelled k-hypergraph G′, and τ ′

can be seen as a rotation system for G′. Thus, by Lemma 2.2 the pair (G, τ)
encodes the same information as a rooted hyperedge-labelled vertex-labelled
k-constellation C of type (p1, . . . , pk) (note that the hypergraph G′ is clearly
connected since it has an arborescence A). Lastly, the v0-arborescence A of
G clearly encodes a v0-arborescence of the constellation C, where v0 is the
root vertex of C.

We thus have obtained a bijection between rooted hyperedge-labelled
(p1, . . . , pk)-colored cacti and the hyperedge-labelled vertex-labelled tree-
rooted constellations. The labelling of the hyperedges can actually be disre-
garded since there are n! distinct ways of labelling the hyperedges of a rooted
constellation of size n. This gives the bijection announced in Theorem 3.1.

2This Theorem is due to de Bruijn, van Aardenne-Ehrenfest, Smith and Tutte. See
[13, Theorem 5.6.2] for a proof.
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Moreover it is easy to check that it has the claimed degree preserving prop-
erty. �

4. Symmetries for tree-rooted constellations

In this section we prove that for vertex-labelled tree-rooted constellations
of a given type (p1, . . . , pk), every vertex-compositions is equally likely. This
together with Theorem 3.1 proves the symmetry property stated in Theo-
rem 1.3.

We denote by Tγ(1),...,γ(k) the set of vertex-labelled tree-rooted constella-

tions of vertex-compositions (γ(1), . . . , γ(k)).

Theorem 4.1. If γ(1), . . . , γ(k), δ(1), . . . , δ(k) are compositions of n such that
ℓ(γ(t)) = ℓ(δ(t)) for all t ∈ [k], then the sets Tγ(1),...,γ(k) and Tδ(1),...,δ(k) are in
bijection.

Remark. Theorem 4.1 gives the hope of counting tree-rooted constellations
of given type, by looking at the simplest possible vertex-compositions. For
instance, one can try to enumerate the set Tγ(1),...,γ(k) where γ(t) = (n− pt+

1, 1, 1, . . . , 1) for all t ∈ [k] (similar ideas lead to a very easy way of counting
k-cacti embedded in the sphere [2]). However, our efforts in this direction
only led to a restatement of Jackson counting formula as a probabilistic
puzzle similar to Theorem 1.6 which we could not easily solve for k ≥ 3.

Proof. Let t ∈ [k] and i, j ∈ [pt]. In order to prove Theorem 4.1 it suffices to

exhibit a bijection ϕt,i,j between Tγ(1),...,γ(k) and Tδ(1),...,δ(k) when γ(s) = δ(s)

for all s 6= t, γ
(t)
x = δ

(t)
x for all x 6= i, j, γ

(t)
i − 1 = δ

(t)
i and γ

(t)
j + 1 = δ

(t)
j .

In other words, we want to construct a bijection ϕt,i,j which decreases by
one the hyperdegree of the vertex of type t labelled i and increases by one
the hyperdegree of the vertex of type t labelled j. Recall from Lemma 2.2
that a k-constellation is defined by a (connected) k-hypergraph together
with a rotation system (clockwise order of hyperedges around the vertices);
therefore it is well defined to unglue a hyperedge from a vertex of type t and
reglue it in a specified corner of another vertex of type t. We will use these
operations to define the mapping ϕt,i,j below; see Figure 5.

Let Tt,i be the set of vertex-labelled tree-rooted constellations of type
(p1, . . . , pk) such that the vertex of type t labelled i has hyperdegree at least
two. Let T be a tree-rooted constellation in Tt,i, let ui and uj be the vertices
of type t labelled i and j respectively, let r be the root vertex, and let A be
the marked r-arborescence. If ui 6= r we denote by hi be hyperedge incident
to the edge joining ui to its parent in A, while if ui = r we denote by hi
the the root hyperedge. We define hj similarly. Let h′i be the hyperedge
preceding hi in clockwise order around ui and let ei be the edge of type t−1
incident to h′i. Observe that hi 6= h′i since the hyperdegree of ui is at least
two.

In order to define the mapping ϕt,i,j we need to consider two cases which
are illustrated in Figure 5. We first define a partition Tt,i = T ′

t,i,j ∪ T ′′
t,i,j by
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ui

r

hi

h′
i

hjuj

T ∈ T ′
t,i,j

ϕt,i,j

(a) (b)

ui

r

hi

h′
i

hj

uj

T ∈ T ′′
t,i,j

uj

ui

ϕt,i,j

ui

r

hi

h′
i

hjuj

T ∈ T ′
t,i,j

ei ei

r

Figure 5. The bijection ϕt,i,j applied to a tree-rooted con-
stellation in T ′

t,i,j (left), or in T ′′
t,i,j (right). The tree-rooted

k-constellations are represented as k-hypergraphs together
with a rotation system (so the overlappings of the hyper-
edges in this figure are irrelevant).

declaring that T is in T ′
t,i,j if the edge ei is not on the path from uj to the root

vertex r in the arborescence A, and that T is in T ′′
t,i,j otherwise. Suppose first

that T is in T ′
t,i,j. In this case we define ϕt,i,j(T ) as the constellation (with

marked edges) obtained from the tree-rooted constellation T (with marked
edges corresponding to the arborescence A) by ungluing the hyperedge h′i
from ui and gluing it to uj in the corner preceding the hyperedge hj in
clockwise order around uj ; see Figure 5(a). Observe that ϕt,i,j(T ) is a tree-
rooted constellation (in particular the marked edges form an r-arborescence
A′ of ϕt,i,j(T )). Moreover ϕt,i,j(T ) is in Tt,j and more precisely in T ′

t,j,i. It

is also easy to see that ϕt,j,i(ϕt,i,j(T )) = T . Suppose now that T is in T ′′
t,i,j.

In this case we define ϕt,i,j(T ) as the constellation (with marked edges)
obtained from T (with marked edges corresponding to the arborescence A)
as follows: we unglue all the hyperedges incident to ui except hi and h′i, we
unglue all the hyperedges incident to uj except hj , we reglue the hyperedges
unglued from uj to ui in the corner preceding h′i in clockwise order around ui
(without changing their clockwise order), we reglue the hyperedges unglued
from ui to uj (in the unique possible corner), and lastly we exchange the
labels i and j of the vertices ui and uj ; see Figure 5(b). It is easy to see
that ϕt,i,j(T ) is a tree-rooted constellation (in particular the marked edges
form an r-arborescence of ϕt,i,j(T )). Moreover ϕt,i,j(T ) is in Tt,j and more
precisely in T ′′

t,j,i. It is also easy to see that ϕt,j,i(ϕt,i,j(T )) = T .
We have shown that ϕt,i,j is a mapping from Tt,i to Tt,j. Moreover ϕt,j,i ◦

ϕt,i,j = Id for all i, j, thus ϕt,i,j = ϕ−1
t,j,i is a bijection. Lastly, the bijection

ϕt,i,j decreases by one the hyperdegree of the vertex of type t labelled i and
increases by one the degree of the vertex of type t labelled j. Thus ϕt,i,j has
all the claimed properties. �
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5. From tree-rooted constellations to nebulas

In Section 3 we obtained a bijection between vertex-colored cacti and
tree-rooted constellations. In this section we take another look at tree-
rooted constellations by characterizing their duals. We eventually obtain a
bijection between a class of tree-rooted constellations and certain decorated
maps with a single face called nebulas.

We call tree-pointed k-constellation a pair (C,A), where C is a rooted
k-constellation and A is a v0-arborescence for some vertex v0 which can
be distinct from the the root-vertex of C. If the constellation C has type
(p1, . . . , pk) and v0 has type t, then the tree-pointed k-constellation (C,A)
is said to have reduced type (p′1, . . . , p

′
k), where p′t = pt − 1 and p′s = ps for

s 6= t. Observe that the arborescence A has p′t edges of type t for all t ∈ [k]
(because for every vertex v 6= v0 of type t the edge of A joining v to its
parent has type t).

Lemma 5.1. There is a 1-to-
∏k

i=1 pi! correspondence between tree-pointed
k-constellations of reduced type (p1, . . . , pk), and the union T n

p1+1,p2,...,pk
∪

T n
p1,p2+1,...,pk

∪ · · · ∪ T n
p1,p2,...,pk+1 of vertex-labelled tree-rooted constellations.

Proof. We first claim that for any constellation C and any vertices u, v,
there are as many u-arborescences as v-arborescences. Indeed, if one orients
the edges of type t of C toward their endpoint of type t + 1, one gets a
Eulerian digraph (oriented graph with as many ingoing and outgoing edges
at each vertex). Moreover it is an easy corollary of the BEST Theorem that
Eulerian digraphs have the same number arborescences directed toward each
vertex (see [13, Cor 5.6.3]). Thus, the tree-pointed constellations of reduced
type (p1, . . . , pk) such that the root vertex of the arborescence has type
t are equinumerous to the tree-rooted constellations of type (p1, . . . , pt +
1, . . . , pk) with a distinguished vertex of type t. Since there are (pt + 1)
ways of distinguishing a vertex of type t in such a tree-rooted constellation

versus (pt + 1)
∏k

i=1 pi! ways of labelling its vertices, one gets the claimed
correspondence. �

We now consider the dual of constellations. Recall that the dual of a map
M is the map M∗ obtained by placing a vertex of M∗ in each face of M and
drawing an edge of M∗ across each edge of M . Duality is a genus preserving
involution on maps such that the vertices, edges and faces of M correspond
respectively to the faces, edges and vertices of M∗. We now describe the
dual of k-constellations. Observe that k-constellations can be characterized
as the maps with black and white faces, and k types of edges 1, 2, . . . , k such
that

(i) each edge separates a black and a white face,
(ii) each black face has degree k,
(iii) in clockwise order around a hyperedge (resp. white face) the type

of the edges increases (resp. decreases) by one from one edge to the
next.
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Indeed, with the preceding conditions, for each vertex v there exists t ∈ [k]
such that the edges incident to v are alternatingly of type t − 1 and t for
some t in [k] (and we can thus say that v has type t in this case). With the
previous characterization, it is clear that duality gives a bijection between
k-constellations and the dual-constellations, which are defined as the maps
with black and white vertices, and k types of edges 1, 2, . . . , k such that

(i) each edge joins a black and a white vertex
(ii) each black vertex has degree k,
(iii) in clockwise order around a black vertex (resp. white vertex) the

type of the edges increases (resp. decreases) by one from one edge
to the next.

We will now describe a class of maps closely related to the dual of tree-
rooted constellations. A bud is a dangling half-edge, that is, a half-edge
which is not part of a complete edge. We define a k-nebula, or nebula for
short, as a map having a single face with black and white vertices, k types
of edges 1, . . . , k, and k types of buds 1, . . . , k such that

(i) each edge joins a black and a white vertex,
(ii) each black vertex has degree k,
(iii) in clockwise order around a black vertex (resp. white vertex) the

type of the edges or buds increases (resp. decreases) by one from
one half-edge to the next,

(iv) for all t ∈ [k] the number of buds of type t incident to black vertices
is equal to the number of buds of type t incident to white vertices.

A 3-nebula is shown in Figure 6 (right). A nebula is rooted if one of the
black vertices is distinguished as the root vertex. We call black buds and
white buds respectively the buds incident to black and to white vertices. A
k-nebula is said to have size n and type (p1, . . . , pk) if it has n black vertices
and pt black buds of type t for all t ∈ [k].

Consider a k-constellation C and a spanning tree A. We call dual-opening
of (C,A) the map with buds N obtained from the dual-constellation C∗ by
cutting in two halves the edges of C∗ which are crossing the edges of the
tree A (the edges of C∗ of type t crossing A gives two buds of type t). We
call root vertex of N the dual of the root hyperedge of C . The dual-opening
of a tree-pointed constellation (C,A) is represented in Figure 6.

We now state the main result of this section.

Theorem 5.2. The dual-opening gives a bijection between tree-pointed con-
stellations of reduced type (p1, . . . , pk) and rooted nebulas of type (p1, . . . , pk).

Theorems 3.1, 5.2 and Lemma 5.1 immediately imply the following result.

Corollary 5.3. The nebulas of size n and type (p1, . . . , pk) are in 1-to-∏k
i=1 pi! correspondence with the disjoint union Cn

p1+1,p2,...,pk
∪Cn

p1,p2+1,...,pk
∪

· · · ∪ Cn
p1,p2,...,pk+1 of colored cacti.
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Type 1

Type 2

Type 3

Figure 6. Dual-opening of a tree-pointed constellation.
Here the tree-constellation is embedded in the sphere (hence
so is its dual opening). The types of edges are indicated by
their thicknesses. The root-hyperedge is indicated in darker
shade, and the corresponding root-vertex of the nebula is
represented in gray.

Remark. By definition, tree-rooted constellations are tree-pointed constel-
lations such that the marked arborescence is directed toward the root-vertex
of the map. One can check that tree-rooted constellations actually corre-
spond to nebulas such that the sequence of black buds and white buds around
N form a parenthesis system, that is, the number of black buds never ex-
ceeds the number of white buds when turning in clockwise direction around
the face of N starting at the corner preceding the edge of type 1 around the
root vertex. Our reason for considering tree-pointed constellations is to get
get rid of the parenthesis system condition (which is hard to control).

The rest of this section is devoted to the proof of Theorem 5.2.

Lemma 5.4. Let C be a k-constellation and let A be a spanning tree (not
necessarily an arborescence) having pt edges of type t ∈ [k]. Then the dual-
opening of (C,A) is a nebula of type (p1, . . . , pk).

Proof. Let N be the dual opening of (C,A). Since the spanning tree A
connects all the vertices of the constellation C, the faces of C∗ are all merged
into a single face of N by cutting the edges of C∗ crossed by A. Moreover,
this face of N is simply connected because A is simply connected (i.e., has
no cycle). Hence N is indeed a map with a single face. The other properties
of nebulas are easily seen to hold. �

Lemma 5.4 proves that the dual opening of a tree-pointed constellation
is a nebula. We now define the closure of nebulas. Let N be a nebula. We
call turning clockwise around N the process of walking around the face of
N by following its edges, with the edges on the right side of the walker (see
Figure 8(a)). We say that a white bud w matches a black bud b if there is
no bud between w and b when turning clockwise around N starting from w.
We call closure of the nebula N , the result of recursively forming edges by
gluing together pairs of matching buds (thus, at a later step of this recursive
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process, we say that a white bud w matches a black bud b, if there is no
bud between w and b when turning clockwise around the face containing the
buds). This process is illustrated in Figure 7. It is clear that the closure can
be done without creating any edge-crossings, that it will exhaust all buds,
and that the result is uniquely defined.

Lemma 5.5. The pairs of buds glued together during the closure of a nebula
have the same type. Consequently, the closure of a nebula gives a dual-
constellation.

Proof. It is easy to see that if a map satisfies Condition (iii) of nebulas, then
matching pairs of buds (w, b) have the same type. Moreover, in this case,
Condition (iii) is preserved by forming an edge out of the buds w, b. This
shows the first claim by induction on the number of buds. The second claim
is clear. �

Type 1

Type 2

Type 3

Type 2

Type 3

Type 1

Type 2

Type 3Duality. . .

N

D (C,A)

Figure 7. The closure of a nebulaN (hereN is embedded in
the sphere) obtained by recursively gluing pairs of matching
edges gives a dual-constellation D (with dashed bud-edges).
Taking its dual gives a tree-rooted constellation (C,A).

Let N be a nebula, let D be its closure (which is a dual-constellation) and
let C be the corresponding constellation. Let A be the set of edges of the
constellation C which are dual to the edges of D which have been created
during the closure of N (by joining two buds). The pair (C,A) is called the
dual-closure of the nebula N .

Lemma 5.6. The dual-closure of a nebula is a tree-pointed constellation.

Proof. Let N be a nebula, let D be its closure, and let (C,A) be its dual-
closure. By Lemma 5.5 we know that C is a constellation, so we only need
to show that A is an arborescence of C. We call bud-edges the edges of D
created during the closure and we view them as oriented from the white bud
to the black bud (so that we can distinguish the face on their left and the
face on their right). Let f0 be the face of the nebula N . During the closure
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of N , each time a matching pair of buds are glued into a bud-edge e, we
consider the face at the right of e as a “new face”, while we consider the
face the left of e as the “original face” f0. Hence, at any time during the
closure, the original face f0 is at the left of every incident bud-edge, while
any face f 6= f0 is at the right of exactly one bud-edge which we call the
closing edge of f . Observe that for any face f 6= f0 of D, one can reach the
face f0 of D by starting inside f and repeatedly crossing the closing edge of
the current face.

Let v0 be the vertex of the constellation C dual to the face f0 of D, and
for any vertex v 6= v0 let the parent edge of v be the dual of the closing edge
of f , where f is the face of D dual to the vertex v. By definition, A is the
set of parent edges and we will show that it is a v0 arborescence. First of
all, the above observation implies that starting from a vertex v 6= v0 and
repeatedly following the parent edges one eventually reaches the vertex v0.
Thus A connects all the vertices of C and since there is one more vertex in
C than edges in A, we can conclude that A is a spanning tree of C. It now
suffices to check that the tree A is oriented toward v0, or equivalently that
the parent edge of a vertex of type t has type t. This is true because of the
orientation convention for closing edges and the fact that the type increases
in clockwise order around the black vertices of the dual-constellations D. �

We now conclude the proof of Theorem 5.2. Let Λ and ∆ denote re-
spectively the dual-opening and dual-closure mappings. By Lemma 5.6, the
closure ∆(N) of any nebula N is a tree-pointed constellation. Moreover, it
is clear that Λ ◦∆(N) = N .

We now consider a tree-pointed constellation (C,A), where A denotes the
marked v0-arborescence. By Lemma 5.4, N := Λ(C,A) is a nebula. We
want to prove that the dual-closure of N is the tree-pointed constellation
(C,A). For this, we consider the white bud w and black bud b obtained
by cutting in two halves an edge e∗ of the dual-constellation C∗ crossing A,
and want to prove that the buds w and b will be glued together during the
closure of N . We consider the set of buds encountered between w and b
when turning clockwise around N starting from the bud w. Note that when
N and A are superimposed, turning around the face of N is the same as
turning (counterclockwise) around the arborescence A. Let e be the edge of
A crossing the edge e∗, and let A′ be the subtree of A− {e} not containing
the vertex v0. The buds between w and b around N are the buds cut by
the subtree A′ (since the tree A is oriented toward v0). We now reason by
induction on the number of edges in A′ to show that w and b will be glued
together during the closure of N . First observe that if A′ has no edge, then
w and b are matching buds, hence they will indeed be glued together during
the closure of N . Now if A′ has some edges, we know by induction that all
the buds between w and b will be glued in pairs during the closure, therefore
w and b will eventually be matching, hence will be glued together during the
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closure of N . Thus, the dual-closure of N is the tree-pointed constellation
(C,A). In other words, ∆ ◦ Λ(C,A) = (C,A).

We have proved that Λ and ∆ are inverse mappings, so the dual-opening
Λ is a bijection. This completes the proof of Theorem 5.2. �

6. From nebulas to biddings

In this section we draw a connection between nebulas and the setMn
p1,...,pk

whose cardinality appears in Theorem 1.2. More precisely we will encode
nebulas by biddings, where a bidding of size n and type (p1, . . . , pk) is a pair
((ω1, . . . , ωk), (R1, . . . , Rn)), where ω1, . . . , ωk are permutations of [n], and
(R1, . . . , Rn) belongs to Mn

p1,...,pk
. This will lead to the probabilistic puzzle

stated in Theorem 1.6.
A nebula of size n and type (p1, . . . , pk) is said to be labelled if its n

black vertices are given distinct labels in [n], and the pt white buds of type
t are given distinct labels in Lt, where Lt is the set of labels of the pt black
vertices incident to the black buds of type t. Clearly there are n!

∏
t pt! ways

of labelling a nebula of size n and type (p1, . . . , pk). We also define the label
of any edge of the nebula to be the label of the incident black vertex, so that
for every pair (t, i) ∈ [k]× [n] there is either an edge or a white bud of type
t and label i. We denote by c(t, i) the corner preceding either the edge or
white bud of type t labelled i in clockwise order around the incident white
vertex.

Let N be a labelled rooted k-nebula of size n. We will now consider the
sequence of white corners (corners incident to white vertices) encountered
when turning around the nebula N . Recall that turning clockwise around N
means walking around the face of N by following the edges of N , with the
edges on the right-side of the walker (the buds are just crossed). A clockwise
tour of a nebula is indicated in Figure 8. By turning clockwise around N
each of the white corners {c(t, i), t ∈ [k], i ∈ [n]} are visited, and this defines
a cyclic order on [k]× [n]. This cyclic order then gives a total order on the
set [k] × [n] by choosing (k, ℓ0) to be the greatest element, where ℓ0 is the
label of the (black) root vertex of N . We call this total order the appearance
order on [k]× [n] and we denote it by ≺N ,

Definition 6.1. For a rooted nebula N , we denote by Ψ(N) the bidding
((ω1, . . . , ωk), (R1, . . . , Rn)) defined as follows:

(i) for all i ∈ [n], Ri ( [k] is the set of types of the buds incident to the
black vertex labelled i,

(ii) for all t ∈ [k], ωt is the permutation of n giving the appearance
order of the edges or white buds of type t, that is, (t, ωt(1)) ≺N

(t, ωt(2)) ≺N · · · ≺N (t, ωt(n)).

The mapping Ψ is indicated in Figure 8. Recall now Definition 1.5 of the
mapping α. We say that a bidding ((ω1, . . . , ωk), (R1, . . . , Rn)) is valid if
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4 4

3

2

(t, i)

(2,4)
(1,1)
(2,2)
(1,4)
(3,4)
(2,1)
(1,3)
(3,1)
(3,3)
(2,3)
(1,2)
(3,2)

bud of type t

edge or bud of type t−1

Case 1: Crossing a bud

edge of type t

Case 2: Following an edge

bud of type t+1 bud of type t+r

(a) (b)

i

w

v edge or bud

of type t+r+1

Figure 8. (a) The clockwise tour of a nebulaN . Here k = 3,
n = 4 and the root vertex has label ℓ0 = 2. The appearance
order on [k]× [n] is indicated vertically (from top to bottom).
The bidding Ψ(N) = ((ω1, ω2, ω3), (R1, R2, R3, R4)) is given
by R1 = {2}, R2 = {2, 3}, R3 = {1, 2}, R4 = {2, 3} and
ω1 = 1432, ω2 = 3214, ω3 = 4132 (the permutations are
indicated in one-line notation here). (b) From a white corner
to the next during the clockwise tour of a nebula.

the graph α((ω1(n), . . . , ωk−1(n)), (R1, . . . , Rn)) is a tree. We now state the
main result of this section.

Theorem 6.2. The mapping Ψ is a bijection between labelled rooted neb-
ulas of size n and type (p1, . . . , pk) and valid biddings of size n and type
(p1, . . . , pk).

Corollary 6.3. The valid biddings of size n and type (p1, . . . , pk) are in n!-
to-1 correspondence with the disjoint union Cn

p1+1,p2,...,pk
∪ · · · ∪ Cn

p1,p2,...,pk+1

of colored cacti. Consequently, Jackson’s counting formula (Theorem 1.2) is
equivalent to Theorem 1.6.

Proof of Corollary 6.3. Recall that there are n!
∏

t pt! ways of labelling a
rooted nebulas of size n and type (p1, . . . , pk). Hence, by Corollary 5.3,
labelled rooted nebulas of size n and type (p1, . . . , pk) are in n!-to-1 corre-
spondence with the union Cn

p1+1,p2,...,pk
∪ · · · ∪ Cn

p1,p2,...,pk+1 of colored cacti.
Thus the first statement of Corollary 6.3 is a direct consequence of Theo-
rem 6.2.

We now prove the second statement of Corollary 6.3. First observe that

Theorem 1.2 implies that the set C̃n
p1,p2,...,pk

:= Cn
p1+1,p2,...,pk

∪· · ·∪Cn
p1,p2,...,pk+1

has cardinality

|C̃n
p1,p2,...,pk

| = n!k−1
(
Mn−1

p1,p2−1,...,pk−1 + · · · +Mn−1
p1−1,...,pk−1−1,pk

)
.

Conversely it is easy to see that this equation implies Theorem 1.2 (that is,

|Cn
p1,p2,...,pk

| = n!k−1Mn−1
p1−1,p2−1,...,pk−1) by induction on p1 starting with the
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base case

(6.1) |Cn
1,p2,...,pk

| = n!k−1
k∏

t=2

(
n− 1

pt − 1

)
= n!k−1Mn−1

0,p2−1,...,pk−1.

This base case can be checked as follows. The first equality in (6.1) holds

because there are n!
(
n−1
p−1

)
permutations with cycles colored using every color

in [p], and for any permutations π2, . . . , πk there is a unique permutation
π1 such that π1 ◦ π2 ◦ · · · ◦ πk = (1, 2, . . . , n) and a unique coloring of the
cycles of this permutation π1 with 1 color. The second equality in (6.1) holds
because Mn−1

0,p2−1,...,pk−1 is the set of (n−1)-tuples of subsets of {2, . . . , k} for

which every t ∈ {2, . . . , k} appears in exactly pt − 1 subsets (so that there

are
(
n−1
pt−1

)
ways of choosing in which subsets t appears).

Observe now that Mn−1
p1,p2−1,...,pk−1 + · · · + Mn−1

p1−1,...,pk−1−1,pk
can be in-

terpreted as the cardinality of the set M̃n
p1,p2,...,pk

of tuples (R1, . . . , Rn)

in Mn
p1,p2,...,pk

such that R1 has cardinality k − 1 (indeed Mn−1
p1,p2−1,...,pk−1

counts the tuples (R1, . . . , Rn) in Mn
p1,p2,...,pk

such that R1 = {2, 3, . . . , k}
etc.). Therefore the preceding discussion shows that Theorem 1.2 is equiv-
alent to

n! |C̃n
p1,p2,...,pk

| = n!k |M̃n
p1,p2,...,pk

|.(6.2)

Now, by Theorem 6.2, the left-hand side of (6.2) is the number of valid bid-
dings of size n and type (p1, . . . , pk), while the right-hand side is the number
of biddings of size n and type (p1, . . . , pk) such that R1 has cardinality k−1.
This shows that Theorem 1.2 is equivalent to Theorem 1.6. �

The remaining of this section is devoted to the proof of Theorem 6.2.
In order to analyze the mapping Ψ we introduce an intermediate class of
objects called prebidding and define a mapping ϑ between labelled nebulas
and prebiddings, and then a mapping σ between prebiddings and biddings
such that Ψ = σ ◦ ϑ.

A prebidding is a pair (≺, (R1, . . . , Rn)) where ≺ is a linear order on
[k]× [n] and R1, . . . , Rn are strict subsets of [k]. We say that a prebidding
is valid if the greatest element is of the form (k, ℓ0) for some ℓ0 ∈ [n] and
if, whenever (t, i) and (t′, i′) are consecutive pairs in the order ≺, or when
(t, i) = (k, ℓ0) and (t′, i′) is the least element, one has t′ = α(t, Ri) (that
is, t′ = t − 1 if t ∈ Ri and t′ = t + r if t /∈ Ri, t + 1, . . . , t + r ∈ Ri and
t+ r + 1 /∈ Ri).

We now consider the mapping ϑ which associates to a labelled rooted
k-nebula N the prebidding ϑ(N) = (≺N , (R1, . . . , Rn)), where ≺N is the
appearance order on [k] × [n] and Ri ( [k] is the set of types of the buds
incident to the black vertex labelled i.

Lemma 6.4. The mapping ϑ is a bijection between labelled rooted nebulas
and valid prebiddings.
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Proof. Let N be a nebula. We first prove that the prebidding ϑ(N) = (≺N

, (R1, . . . , Rn)) is valid. It is clear from the definition of the appearance
order ≺N that the greatest element is of the form (k, ℓ0) for some ℓ0 ∈ [n].
We now consider pairs (t, i) and (t′, i′) which are either consecutive in the
appearance order or such that (t, i) = (k, ℓ0) and (t′, i′) is the least element
of the appearance order. By definition, if t ∈ Ri the pair (t, i) corresponds
to a white bud of N and if t /∈ Ri it corresponds to an edge of N . We first
suppose that t ∈ Ri. Since t ∈ Ri, the white corner c(t, i) precedes the white
bud b of type t labelled i, so that after visiting the corner c(t, i) the clockwise
tour of N crosses the bud b and arrives at a white corner preceding either a
bud or an edge of type t−1 (see Figure 8(b)). Thus t′ = t−1. Suppose now
that t /∈ Ri. In this case the pair (t, i) corresponds to an edge e incident to
the black vertex v labelled i and to a white vertex w. After passing through
the white corner c(t, i) preceding e around w, the clockwise tour follows e,
crosses the buds of type t+1, . . . , t+ r ∈ Ri around the black vertex v, then
follows an edge of type t+r+1 /∈ Ri and arrives at a white corner preceding
either an edge or a bud of type t+ r (see Figure 8(b)). Thus t′ = t+ r. This
completes the proof that the prebidding ϑ(N) is valid.

We now prove the injectivity of the mapping ϑ. Observe that from the
prebidding ϑ(N) one can deduce the complete list of edges followed and
buds crossed during the clockwise tour of the nebula N . This determines a
polygon with black and white vertices, and with buds drawn on the inside
region. This is illustrated in Figure 9. Moreover the edges come in pairs
having the same types and labels so that one knows how to glue the edges
of the polygon in pairs in order to recover the nebula N . Lastly the root
vertex of N is identified as the black vertex of label ℓ0, where (k, ℓ0) is the
greatest element of ≺N .

In order to prove the surjectivity of ϑ we consider a valid prebidding P =
(≺, (R1, . . . , Rn)) and want to check that one can apply the above mentioned
procedure to get a nebula (see Figure 9). From the prebidding P one can
construct a polygon with black and white vertices, and with buds drawn
on the inside region such that edges and buds have types which increase
clockwise around white vertices and decrease clockwise around white vertices
(the polygon is constructed in such a way that its clockwise tour is described
by the prebidding P ). Now it is easy to check that for each type t and label
i either there is both a white bud and a black bud of type t labelled i (this
happens if t ∈ Ri) or there are two edges of type t labelled i one going from a
black vertex to a white vertex, and one going the opposite way when turning
clockwise around the polygon (this happens if t /∈ Ri). Thus one can glue
together the pairs of edges of the same types and labels, and thereby obtain
a map N with a single face such that its clockwise tour is described by the
prebidding P . In the map N the black vertices have degree k since for every
i ∈ [n] the black vertex labelled i is incident exactly to the edges and black
buds labelled i. Thus N is a nebula. Lastly it is clear that ϑ(N) = P . This
proves the surjectivity and hence the bijectivity of ϑ. �
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Creating a polygon
gluing pairs of edges
of same type and label

Figure 9. From valid prebiddings to nebulas (the appear-
ance order is indicated from top to bottom).

We now define a mapping σ on valid prebiddings by setting

σ(≺, (R1, . . . , Rn)) = ((ω1, . . . , ωk), (R1, . . . , Rn)),

where ωt is the permutation of [n] defined by (t, ωt(1)) ≺ (t, ωt(2)) ≺ · · · ≺
(t, ωt(n)). Observe that Ψ = σ ◦ ϑ. The proof of the following lemma is
based on the BEST Theorem.

Lemma 6.5. The mapping σ is a bijection between valid prebiddings and
valid biddings.

Proof. Let (R1, . . . , Rn) be a fixed tuple of strict subsets of [k]. We consider
the directed graph G with vertex set [k] and arc set {at,i, (t, i) ∈ [k]× [n]},
where at,i is an arc from vertex t to vertex α(t, Ri). First observe that
every vertex t of the graph G has n outgoing arcs (the arcs at,i, i ∈ [n])
and n ingoing arcs (because for each i ∈ [n] there a unique t′ ∈ [k] such
that α(t′, Ri) = t). Now, to any Eulerian tour of G one can associate a
linear order ≺ on [k] × [n] defined by setting (t, i) ≺ (t′, i′) if the arc at,i is
taken before the arc at′,i′ during the Eulerian tour. It is easily seen that this
gives a bijection σ1 between the linear orders ≺ such that (≺, (R1, . . . , Rn))
is a valid prebidding and the Eulerian tours of G starting (and ending) at
vertex k. Moreover, by the BEST Theorem, the Eulerian tours of G starting
at vertex k are in bijection with the assignments for each vertex t ∈ [k] of
a linear order of the arcs going out of t (the order in which these arcs are
used during the Eulerian tour) such that the set of greatest arcs going out
of the vertices 1, 2, . . . , k − 1 form a spanning tree of G directed toward
k. Note that the linear order on the outgoing edges of a vertex t can be
represented by a permutation ωt defined by setting ωt(i) = j if at,j is the
arc going out of vertex t used at the ith exit of that vertex during the
Eulerian tour. Hence the BEST theorem gives a bijection σ2 between the
Eulerian tours of G and the tuples of permutations (ω1, . . . , ωk) such that
((ω1, . . . , ωk), (R1, . . . , Rn)) is a valid biding. This completes the proof since
σ(≺, (R1, . . . , Rn)) = (σ2 ◦ σ1(≺), (R1, . . . , Rn)). �

By definition Ψ = σ ◦ ϑ, so Theorem 6.2 is a direct consequence of Lem-
mas 6.4 and 6.5. �
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7. Cases k = 2, 3, 4 of Theorem 1.6.

We have shown (Corollary 6.3) that for each k ≥ 2 Jackson’s counting
formula is equivalent to Theorem 1.6. In this section we prove a few cases
of Theorem 1.6.

Case k = 2. Let B = ((i), (R1, . . . , Rn)), where i ∈ [n] and (R1, . . . , Rn) ∈
Mn

p1,p2
. The graph G = α(B) has vertex set {1, 2} and one arc a1 = (1, x)

where x = 2 if Ri = {1} or Ri = {2}, and x = 1 otherwise (if Ri is empty).
Thus, G is a tree if and only if Ri has cardinality 1. Clearly the probability
that Ri has cardinality 1 is the same as the probability that R1 has cardi-
nality 1, thus Theorem 1.6 is proved for k = 2.

Case k = 3. Let B = ((i, j), (R1 , . . . , Rn)), where i, j ∈ [n] and (R1, . . . , Rn) ∈
Mn

p1,p2,p3
. The graph G = α(B) has vertex set {1, 2, 3} and two arcs

a1 = (1, x), and a2 = (2, y). We want to evaluate the probability that
the graph G is a tree. There are three possible trees and they occur in the
events described by Figure 10. Using inclusion-exclusion one gets that the
probability that G is a tree is

P(tree) = P{1}×{2} + P{1}×{3} + P{2}×{3}

−P{1}×{2,3} − P{2}×{1,3} − P{3}×{1,2},(7.1)

+P{1,2}×{1,3} + P{1,2}×{2,3} + P{1,3}×{2,3},

where PA×B denotes the probability of the event {A ⊆ Ri and B ⊆ Rj} (all
these probabilities depend on n, p1, p2, p3). We then use the following easy
lemma.

Lemma 7.1 (Exchange Lemma for k = 3). For {a, b, c} = {1, 2, 3} one has

P{a,b}×∅ = P{a}×{b} − P{a,c}×{b} + P{a,b}×{a,c}.

Proof. We consider the events E1 = {a ∈ Ri, c /∈ Ri and b ∈ Rj} and
E2 = {a, b ∈ Ri, c /∈ Ri and Rj 6= {a, c}}. The probabilities of these event
are P(E1) = P{a}×{b} − P{a,c}×{b} and P(E2) = P{a,b}×∅ − P{a,b}×{a,c}. We
now define a bijection between the events E1 and E2 by exchanging the b
content of Ri and Rj, that is, by changing the sets Ri and Rj into R′

i and
R′

j respectively, where R′
i = Ri ∪ {b} if b ∈ Rj and R′

i = Ri \ {b} otherwise,

and similarly R′
j = Rj ∪ {b} if b ∈ Ri and R′

j = Rj \ {b} otherwise. Since
exchanging the b content creates a bijection between the events E1 and E2

(which preserves the fact that (R1, . . . , Rn) is in Mn
p1,p2,p3

) the probabilities
of the events E1 and E2 are equal. �

Using Lemma 7.1 (three times) in (7.1) gives

P(tree) = P{1,2}×∅ + P{1,3}×∅ + P{2,3}×∅.

Thus the probability that G = α(B) is a tree is equal to the probability that
Ri has cardinality 2. Theorem 1.6 follows.
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1 ∈ Ri or 2, 3 ∈ Ri 1, 2, 3 ∈ Rj

1

3

2
1, 2, 3 ∈ Ri

1, 2, 3 ∈ Rj

Figure 10. Events for which G = α(B) is a tree in the case
k = 3 of Theorem 1.6. The notation a ∈ R means a /∈ R.

Case k = 4 and greater. In the case k = 4 one considersB = ((i, j, ℓ), (R1 , . . . , Rn)),
where i, j, ℓ ∈ [n] and (R1, . . . , Rn) ∈ Mn

p1,p2,p3,p4
. One gets the following

analogue of (7.1):

P(tree) = P̃{1}×{2}×{3} − P̃{1}×{2}×{3,4} + P̃{1}×{2,3}×{3,4} − P̃{1}×{2,3,4}×{3}

−P̃{1,2}×{2,3}×{3,4} + P̃{1}×{4,1,2}×{2,3} + P̃{1}×{4,1,2}×{3,4} − P̃{1}×{4,1,2}×{2,3,4}

+P̃{1,2,3}×{3,4}×{4,1} − P̃{1,2}×{2,3,4}×{3,4,1} + P̃{1,2,3}×{3,4,1}×{4,1,2}

with P̃A,B,C =
∑4

t=1 Pt+A,t+B,t+C , where t + A is the cyclically shifted set
{t + a, a ∈ A} and PA,B,C is the probability of the event {A ⊆ Ri, B ⊆
Rj and C ⊆ Rℓ}. This expression can be obtained by direct inspection of
the 16 possible Cayley trees, or by using the matrix-tree theorem. Using the
later method we were able to compute analogues of (7.1) for all k ≤ 9.

In the case k = 4 we can use exchange lemmas similar to Lemma 7.1 to
prove Theorem 7.1 (one has to use six such lemmas, and the calculations
can be organized according to the order of magnitude of these probabilities
when n tends to infinity, with p1, p2, p3, p4 kept fixed). One can in fact
generalize the type of exchange lemmas used, and use Gröbner bases to
prove Theorem 1.6 (hence Theorem 1.2) up to k = 7. There is however
one extra difficulty starting with k = 4: the exchange operation as the one
used in the Proof of the lemma 7.1 become invalid unless one conditions on
the fact that the indices i, j, ℓ, . . . under consideration are distinct (otherwise
the exchange operation might affect one of the sets outside of the exchange).
Thus for k ≥ 4, the computer assisted proofs require to consider the different
subcases corresponding to having non-distinct indices among i, j, ℓ, . . .. In a
forthcoming paper [3] we shall give a general proof of Theorem 1.6 for all k
and prove other similar results.
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