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BIJECTIONS AND SYMMETRIES FOR THE
FACTORIZATIONS OF THE LONG CYCLE

OLIVIER BERNARDI AND ALEJANDRO H. MORALES

ABSTRACT. We study the factorizations of the permutation (1,2, ...,n)
into k factors of given cycle types. Using representation theory, Jackson
obtained for each k£ an elegant formula for counting these factorizations
according to the number of cycles of each factor. In the cases k = 2,3
Schaeffer and Vassilieva gave a combinatorial proof of Jackson’s formula,
and Morales and Vassilieva obtained more refined formulas exhibiting a
surprising symmetry property. These counting results are indicative of a
rich combinatorial theory which has remained elusive to this point, and
it is the goal of this article to establish a series of bijections which unveil
some of the combinatorial properties of the factorizations of (1,2,...,n)
into k factors for all k. We thereby obtain refinements of Jackson’s
formulas which extend the cases k = 2,3 treated by Morales and Vas-
silieva. Our bijections are described in terms of “constellations”, which
are graphs embedded in surfaces encoding the transitive factorizations
of permutations.

1. INTRODUCTION

We consider the problem of enumerating the factorizations of the per-
mutation (1,2,...,n) into k factors according to the cycle type of each
factor. In [5] Jackson established a remarkable counting formula (analogous
to the Harer-Zagier formula [4]) characterizing the generating function of
the factorizations of the long cycle according to the number of cycles of each
factor. A combinatorial proof was subsequently given for the cases k = 2,3
by Schaeffer and Vassilieva [12, [11]. Building on these bijections, Morales
and Vassilieva also established for k = 2,3 a formula for the generating
function of factorizations of (1,2,...,n) counted according to the cycle type
of each factor. This formula displays a surprising symmetry property which
has remained unexplained so far.

In this article we explore the combinatorics of the factorizations of the
permutation (1,2,...,n) through a series of bijections. All our bijections
are described in terms of maps and constellations which are graphs embed-
ded in surfaces encoding the transitive factorizations in the symmetric group
(see Section 2] for definitions). A summary of our bijections is illustrated
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2 OLIVIER BERNARDI AND ALEJANDRO H. MORALES

FIGURE 1. Summary of the bijections presented in this arti-
cle. We start with the classical encoding of the factorizations
of (1,2,...,n) by cacti (here k = n = 3). We then establish
a bijection ® between vertex-colored cacti and tree-rooted
constellations (Section ). We then characterize the dual of
tree-rooted constellations and obtain a correspondence with
nebulas (Section [). Lastly we establish a bijection ¥ be-
tween nebulas and valid biddings.

in Figure [l Our first bijection gives an encoding of the factorizations of
the permutation (1,2,...,n) into tree-rooted k-constellations. This encod-
ing allows one to easily prove the case k = 2 of Jackson’s counting formula,
as well as to establish the symmetry property for all £ > 2. However for
k > 3, the tree-rooted k-constellations are still uneasy to count and we give
further bijections. Eventually, we show bijectively that proving Jackson’s
counting formula reduces to proving an intriguing probabilistic statement
(see Theorem [LG). In Section [7l we prove this probabilistic statement in
the cases k = 2,3,4 (thereby proving Jackson’s counting formula for these
cases) but the cases k > 4 shall be treated (along with similar probabilistic
statements) in a separate paper [3]. Before describing our results further we
need to review the literature.

Enumerative results about the factorizations of the long cycle.
Given k partitions AV, ..., A¥) of n, it is a classical problem to determine
the number k(A ..., \#)) of factorizations 7y omgo---om, = (1,2,...,n)
such that the permutation 7, has cycle type A& for all ¢t ¢ {1,...,k}.
By the general theory of group representations, the connection coefficients
H()\(l), e )\(k)) can be expressed in terms of the characters of the symmetric
group, but this expression is not really explicit even for k = 2. However,
Jackson established in [5] a remarkable formula for the generating function
of factorizations counted according to the number of cycles of the factors,
namely,

(EIDS Hw Dy ()
mo-omp=(1,2,...,n 1<p1,...pp<n i=1

where /() is the number of cycles of the permutation 7, and M}, is the

coefficient of 24" - - - 2%* in the polynomial (Hle(l +x;) — Hle xi)".
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Jackson’s formula can equivalently be stated in terms of colored factor-
1zations.

Definition 1.1. Given positives integers p1,...,pg, a (p1,...,Dpx)-colored
factorization of (1,2,...,n) is a tuple (71, ..., Tk, P1,. .., ), where Ty, ..., 7k
are permutations of [n] := {1,...,n} such that myo---om, = (1,2,...,n)

and for all t € [k], ¢ is a surjective mapping from [n] to [ps] such that
oi(a) = ¢¢(b) if a,b are in the same cycle of my. In other words, the map-
ping ¢¢ can be seen as a coloring of the cycles of the permutation m with
colors in [p] and we want all the colors to be used.

It is easy to see that (L)) is equivalent to the following theorem.

Theorem 1.2 (Jackson’s counting formula [5]). The number C}\ . of
(p1,.-.,pk)-colored factorizations of the permutation (1,2,...,n) is equal to

k—1 1
(1-2) n! Mll?l 1,...p—1>

where M} = [2}" - mi’“](ni?:lﬂ +a;) — [1%, )" is the cardinality of
the set My, . of n-tuples (Ry,..., Ry) of strict subsets Ry of [k] such that
each integer t € [k| appears in exactly p; of the subsets Ry, ..., Ry,.

The original proof of Theorem [[.2] in [5] is based on the representation
theory of the symmetric group. Bijections explaining the cases k = 2,3 were
subsequently given by Schaeffer and Vassilieva [12], [11]. In Section Bl we shall
give a bijection which extends the results in [12] [I1] to arbitrary k. (however,
for a general k, this bijection does not directly imply Theorem [[.2]).

We now consider a refined enumeration problem. Let v ... %) be
compositions of n, where y(!) = (y; (¢ ),yét), . ,71(,?). We say that a (p1,...,pk)-
colored factorization (7, ..., g, <;51, ..., ®k) has color—composz’tz’ons (’y(l), . ,’y(k))

if the permutation 7; has %(t) elements colored i (i.e. % = |¢;(3)]) for
all t € [k] and all i € [ps]. Let ¢(yM,...,7*)) be the number of colored
factorizations of color-compositions (y(V),...,~®*)). In Section H we shall
prove bijectively the following surprising symmetry property.

Theorem 1.3 (Symmetry property). Let A 5 ~E) 5K be compo-
sitions of n. If for every t € [k] the length of the compositions v & and §®
are equal, then c(yV ... 4®)) = ¢(6M ... 5k,

Given that there are (’Z:ll) compositions of n with ¢ parts, the symmetry
property together with Theorem gives the following refined formula.

Corollary 1.4. For any compositions vV, ... . ~®) of n, the number of
colored factorizations of color-compositions (Y1), ... v*)) is

tk—1p n—1
(1.3) C(/}/(l)’ . 77(k)) — n Mp1 1...ps—1

[T 1(4@(0 ) 7
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Equation (I.3]) is precisely the result established by Morales and Vassilieva
for the cases k = 2,3 in [9,[10]. These refined results can actually be obtained
by a representation theory approach but we have not found them explicitly
in the literature for k£ > 3.

As a final remark, observe that connection coefficients k(A ..., \¥)) are
determined by the numbers c()\(l), cee )\(k)) of colored factorizations through
a change of basis for symmetric functions:

k
Z K/(/\(l), cee ,/\(k)) Hp)\(t) ($t,1, T2, - )
AW A@) | AF) t=1
k
= Z c()\(l),...,)\(k))HmA(t)(ajm,wt,g,...),
A A@) AR =1

where the sums are over k-tuples of partitions of n and py, m) denote re-
spectively the power sum and monomial symmetric functions.

A probabilistic puzzle. We now describe a probabilistic puzzle associated
to the set My appearing in Theorem

k

Definition 1.5. For an integer t in [k] and a subset R C [k] we define the
integer a(t, R) € [k] by setting

e a(t,R) =t —1 modulo k ift € R,

e a(t) =t+r modulo k ift¢ R, t+1,...,t+r € Randt+r+1¢ R.

Furthermore, for integers iy, ..., ix—1 in [n] (repetitions allowed) and subsets
Ry,...,R, € [k], we define a((i1,...,ik—1),(R1,...,Ry)) to be the graph
with vertex set [k] and edge set E = {ey,...,ex_1}, where e; is the edge

{t, Oé(t, th)}

In Section (@) we shall prove bijectively that Jackson’s Theorem [[2] is
equivalent to the following probabilistic statement.

Theorem 1.6. Fiz an integer k > 2 and positive integers n,p1,...,Ppr and
consider the uniform distribution on pairs B = ((i1,...,ig-1), (R1,..., Rn))
such that iy, ..., ix_1 areintegers in [n] (repetitions allowed) and (Ry,...,Ry) €

My, .- Then the probability that the graph o(B) is a tree is equal to the
probability that the subset Ry has cardinality k — 1.

In Section [7] we shall give a direct proof of Theorem for the cases
k = 2,3,4 (thereby establishing Theorem for these cases), and indicate
how to handle a few more cases using a computer. In the forthcoming paper
[3], we shall give a direct proof of Theorem valid for all k& > 2, and
establish several other results of a similar flavor.

Constellations, or the drawings of factorizations. Our bijections are
described in terms of k-constellations which are certain maps (embeddings
of graphs in surfaces considered up to homeomorphism) with & types of
vertices and with faces colored white and black (black faces are also called
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FIGURE 2. Two hyperedge-labelled 3-constellations of size 5
(the shaded triangles represent the hyperedges). The 3-
constellation on the left (which is embedded in the sphere)
encodes the triple (mq,me,m3), where m = (1,2,5)(3,4),
m2 = (1,3)(2)(4)(5), m3 = (1,4)(2)(3)(5), so that mmams =
(1,3,2,5)(4). The 3-cactus on the right (which is embed-
ded in the torus) encodes the triple (my, w2, w3), where m =
(1,3,5)(2,4), m = (1,4)(2,3)(5), m3 = (1)(2,4)(3)(5), so
that mymems = (1,2,3,4,5).

hyperedges and are colored in gray in our figures). We refer the reader to
Section ] for precise definitions, and to Figure Bl for some examples. To
a k-constellation with its hyperedges labelled 1,...,n, one associates the
permutations 7y, ..., of [n] where the cycles of the permutation m; are
in correspondence with the vertices of type t: the cycle associated to a
vertex v is given by the counterclockwise order of the black faces incident
to v; see Figure 2l Actually, any tuple of permutations 7y,..., 7 of [n]
acting transitively on [n] is associated to a unique k-constellation, thus k-
constellations give a canonical way of “drawing” such tuples. Moreover,
the number of cycles of the product 7wy o 7 - - - 7w corresponds to the num-
ber of white faces of the associated constellation. In particular, the tuples
(71, ...,7) of permutations of [n] such that the product m o mg - - 7y is an
n-cycle (a permutation with 1 cycle) correspond bijectively to constellations
with a single white face (because the transitivity condition is automatically
satisfied in this case). Constellations with a single white face are called cacti.

Outline. In Section 2] we gather our definitions about maps, constellations
and cacti. Theorems and [L.3] can then be stated in terms of vertex-
colored cacti.

In Section [B] we establish a bijection ® between colored cacti and tree-
rooted constellations which are constellations with a marked spanning tree.
Through this bijection the number of colors of the vertices of type ¢ in the
cacti correspond to the number of vertices of type t in the corresponding
tree-rooted constellation. This bijection is similar to the one used in [I] to
prove the Harer-Zagier formula [4].

In Section ] we establish a symmetry property for tree-rooted constella-
tions which implies Theorem [[.3]
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In Section [, we decompose the dual of tree rooted maps and obtain
certain decorated one-face maps that we call nebulas. Proving Jackson’s
counting formula then reduces to counting nebulas.

In Section [6] we give a bijection W between nebulas and wvalid biddings,
where the definition of bidding is closely related to the set M7 . whose
cardinality appears in Jackson’s formula. We then prove that Jackson’s
formula is equivalent to the probabilistic statement given in Theorem

Lastly, in Section [l we prove the cases k = 2, 3,4 of Theorem [I.6] thereby
establishing Theorem for these cases.

2. DEFINITIONS

For a positive integer n, we denote by [n] the set {1,2,...,n}. A compo-
sition of n is a sequence of positive integers o = (aq, ag,...,ay) such that
a1+ ag + -+ ap = n. The integers aq,...,ap are the parts of a and the
integer / is the length of a.. A partition is a composition o = (a1, e, ..., ap)

such that a; > ag > --+ > ay.

Graphs and maps. Our graphs are undirected and can have loops and
multiple edges. A digraph, or directed graph, is a graph where every edge
is oriented; oriented edges are called arcs. An FEulerian tour of a directed
graph is a directed path starting and ending at the same vertex and taking
every arc exactly once. An edge e of a graph defines two half-edges each
of them incident to an endpoint of e. A rotation system for a graph G is
an assignment for each vertex v of GG of a cyclic ordering for the half-edges
incident to v.

We now review the connection between rotation systems and embeddings
of graphs in surfaces. We call surface a compact, connected, orientable, 2-
dimensional manifold without boundary (such a surface is characterized by
its genus g > 0). A map is a cellular embedding of a connected graph in an
oriented surface considered up to orientation preserving homeomorphismil.
By cellular we mean that the faces (connected components of the comple-
ment of the graph) are simply connected. For a map, the angular section
between two consecutive half-edges around a vertex is called a corner. The
degree of a vertex or a face is the number of incident corners. A map M nat-
urally defines a rotation system p(M) of the underlying graph G by taking
the cyclic order of the half-edges incident to a vertex v to be the clockwise
order of these half-edges around v. The following classical result (see e.g.
[8]) states the relation between maps and graphs with rotation systems.

Lemma 2.1. For any connected graph G, the function p is a bijection be-
tween the set of maps having underlying graph G and the set of rotation
systems of G.

1Maps can be considered on non-orientable surfaces but we will not consider such
surfaces here.
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Constellations and cacti. A k-constellation, or constellation for short,
is a map with two types of faces black and white, and k types of vertices
1,2,...,k, such that:

(i) each edge separates a black face and a white face,

(ii) each black face has degree k and is incident to vertices of type

1,2,...,k in this order clockwise around the face.

Two constellations are shown in Figure 2l The black faces are also called
hyperedges. The size of a constellation is the number of hyperedges. A
constellation of size n is labelled if its hyperedges receive distinct labels
in [n].

We now recall the link between constellations and products of permuta-
tions. We call k-hypergraph a pair G = (V, E)) where V is a set of vertices,
each of them having a type in [k], and F is a set of hyperedges which are sub-
sets of V' containing exactly one vertex of each type. A rotation-system for
the hypergraph G is an assignment for each vertex v of a cyclic order of the
hyperedges incident to v (i.e., containing v). Clearly each k-constellation
defines a connected k-hypergraph together with a rotation system (the clock-
wise order of the hyperedges around each vertex). In fact Lemma[2 Tl readily
implies the following result.

Lemma 2.2. For any connected k-hypergraph G, there is a bijection between
k-constellations of underlying k-hypergraph G and the rotation systems of G.

Now given a hyperedge-labelled k-constellation C' of size n, we define
some permutations 7y, ..., pg as follows: for each ¢ € [k] we define the cycles
of the permutation m; to be the counterclockwise order of the hyperedges
around the vertices of type t. Examples are given in Figure 2l We then say
that the hyperedge-labelled k-constellation C' represents the tuple o(C) =
(m1,...,m). From Lemma it is easy to establish the following classical
result (see e.g. [0]).

Lemma 2.3. The representation mapping o is a bijection between hyperedge-
labelled k-constellations of size n and tuples of permutations (71, ...,7) of
[n] acting transitively on [n]. Moreover the number of white faces of the
constellation is equal to the number of cycles of the product mimg - - - w.

An edge of a constellation has type t € [k] if its endpoints have types t
and t + 1 (the types of the vertices and edges are considered modulo k).
A E-constellation has type (p1,...,pg) if it has p; vertices of type t for all
t € [k]. The hyperdegree of a vertex is the number of incident hyperedges.
A constellation of type (p1, ..., pk) is vertex-labelled if for each t € [k] the p;
vertices of type ¢ have distinct labels in [p;]. We say that such a constellation
has vertez-compositions (YU, ..., ~v®)) if for all t € [k], ¥ is a composition
of size n and length p; whose ith part is the hyperdegree of the vertex of
type t labelled 1.

A k-constellation is rooted if one of its hyperedges is distinguished as the
root hyperedge. The vertex of type k incident to the root hyperedge is called
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root vertex. There are n! distinct ways of labelling a rooted constellation of
size n (because a rooted constellation has no symmetry preserving the root
hyperedge). Hence, there is a 1-to-(n — 1)! correspondence between rooted
constellations of size n and hyperedge-labelled constellations of size n.

A k-cactus is a k-constellation with a single white face. By Lemma 2.3
the hyperedge-labelled k-cacti correspond bijectively to the factorizations of
one of the (n—1)! long cycles into k factors (transitivity is redundant in this
case), while rooted cacti correspond bijectively to the factorizations of the

permutation (1,2,...,n). Since Jackson’s counting formula is about colored
factorizations of (1,2,...,n) (see Definition [[T]), we now consider vertez-
colored cacti. Given some positive integers qi,...,qx, a (q1,...,qx)-colored

cacti is a k-cacti together with an assignment of colors to vertices, such that
for every t € [k] the vertices of type ¢ are colored using every color in [g].
A (2,1,3)-colored cacti is represented in Figure Bl The color-compositions
of a (q1,...,qx)-colored cacti of size n is the tuple (’y(l), .. ,’y(k)), where
for all t € [k], ’y(t) is a composition of size n and length ¢; whose ith part
is the number of hyperedges incident to vertices of type t colored 7. It

is clear from the representation mapping o, that (¢i,...,qx)-colored cacti
of color-compositions (’y(l), ... ,’y(k)) are in bijection with the (q1,...,qx)-
colored factorizations of (1,2, ..., n) with color-compositions (y(1), ..., ~#)).

O Type 1 (colors 00)

O Type 2 (colors O)

/\ Type 3 (colors A\ A)

FIGURE 3. A (2,1, 3)-colored cacti (embedded in the sphere)
with color-compositions (7(1)77(2)77(3))7 where v(1) = (1,4),
33 = (5) and 1 = (2,1,2).

From now on, all our results and proofs are stated in terms of constella-
tions and cacti.

3. FROM CACTI TO TREE-ROOTED CONSTELLATIONS

In this section we establish a bijection between vertex-colored cacti and
certain constellations with a distinguished spanning tree. Let C be a k-
constellation and let vy be a vertex. We call vy-arborescence of C' a spanning
tree A such that every vertex v # vg of type t is incident to exactly one edge
of type t in A (equivalently, the spanning tree A is oriented from the leaves
toward vy by orienting every edge of A of type t € [k] from its endpoint of
type t toward its endpoint of type t+1). A tree-rooted constellation is a pair
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(C, A) made of a rooted constellation C' together with a vg-arborescence A,
where v is the root vertex of C'. An example of tree-rooted constellation is
given in Figure [ (bottom right).

Theorem 3.1. Let pi,...,pr be positive integers. There is a bijection
® between the set Cp ., of (p1,...,px)-colored rooted k-cacti of size n
(these encode the (p1,...,pk)-colored factorizations of (1,2,...,n)), and the
set Ty ., of vertex-labelled tree-rooted k-constellations of size n and type
(P1s- - Pk)-

Moreover, the bijection has the following degree preserving property: for
any vertex-colored cactus C, the number of edges joining vertices of type t
and color i to vertices of type t+1 and color j in C is equal to the number of
edges joining the vertex of type t labelled i to the vertex of type t + 1 labelled
Jj in the tree-rooted constellation ®(C).

Remark. The degree preserving property of Theorem [B] implies that for
any tuple of compositions (7(1), . ,7(’“)), the mapping ® establishes a bi-
jection between cacti of color-compositions (7(1), e ,v(k)) and tree-rooted
constellations of vertex-compositions (71, ... %)),

Remark. In the case k = 2 the tree-rooted k-constellations can be identi-
fied with rooted bipartite maps with a distinguished spanning tree (simply
by considering the hyperedges as edges). These objects are easy to count
(see [1]), so that the case k = 2 of Theorem follows easily from Theo-
rem 3.1 in this case.

The remaining of this section is devoted to the proof of Theorem [B.Il Our
strategy parallels the one developed in [I] (building on some ideas of Lass
[7]) in order to prove extensions of the Harer-Zagier formula. This proof
is illustrated in Figure . We shall recombine the information given by a
vertex-colored cactus into the information given by a tree-rooted constella-
tion through the BEST Theorem (see Lemma [3.3] below).

We call k-digraph a directed graph with k types of vertices 1,...,k, such
that every vertex has as many ingoing and outgoing arcs, and every arc goes
from a vertex of type t to a vertex of type t+1 for some ¢ € [k] (as usual the
types of vertices are considered modulo k). An arc going from a vertex of
type t to a vertex of type ¢t + 1 is said to have type t. Note that a k-digraph
has as many arcs of each type, and we say that it has size n if it has n
arcs of each type. An arc-labelling of a k-digraph of size n is an assignment
of distinct labels in [n] to the n arcs of type t, in such a way that for any
(t,4) € [k] x [n] the end of the arc of type ¢t and label i is the origin of the arc
of type t+ 1 and label ¢. Observe that arc-labelled k-digraphs easily identify
with hyperedge-labelled k-hypergraphs. A k-digraph has type (p1,...,pk)
if for each t € [k] there are p; vertices of type t. It is vertez-labelled by
assigning distinct labels in [p;] to its p; vertices of type ¢t for all ¢ € [k].
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O Typel(colosQ @)

() Type 2 (colors ())
A Type 3 (colors /\ A)

BEST Theorem

FIGURE 4. From a vertex-colored cactus to a tree-rooted
constellation via the BEST Theorem.

Lemma 3.2. There is a bijection = between the set of hyperedge-labelled
rooted (p1,...,pg)-colored cacti of size n, and the set of pairs (G,n) where
G is a arc-labelled vertez-labelled k-digraph of type (p1,...,pr) and n is an
Eulerian tour of G starting and ending at a vertex of type k.

Lemma is illustrated in the top part of Figure [l

Proof. We call black k-gon a polygon with k vertices of type 1,2,...,k in
clockwise order, and white kn-gon a polygon with kn vertices, such that the
type of vertices increases by one (modulo k) along each edge in counterclock-
wise order (modulo k). A white kn-gon is rooted if a corner incident to a
vertex of type k is distinguished as the root-corner; it is (p1, ..., px)-colored
if for all t € [k] the vertices of type t are colored using every color in [p;].
Observe that the n hyperedges of a k-cactus of size n are black k-gons,
while its white face is a white kn-gon (since faces of cactus are simply con-
nected). Moreover the k-cactus is completely determined (up to homeo-
morphism) by specifying the gluing of the black k-gons with the white kn-
gon (that is specifying the pair of edges to be identified). Thus, a rooted
hyperedge-labelled (p1, ..., pg)-colored cactus is obtained by taking a rooted
(p1, ..., pk)-colored white kn-gon, and gluing its edges to the edges of n la-
belled black k-gon so as to respect the color and type of the vertices (certain
vertices of the white kn-gon are identified by the gluing). Now, a rooted
(p1, ..., pp)-colored white kn-gon is bijectively encoded by a pair (G,7),
where G is a vertex-labelled k-digraph of type (p1,...,pk) and n is an Euler-
ian tour of G (the Eulerian tour gives the order of the colors around the white
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kn-gon in counterclockwise direction starting from the root-corner). More-
over, the gluings of the n labelled black k-gons (respecting the type and
coloring) are in bijection with the arc-labellings of G. This establishes the
claimed bijection. O

We now recall the BEST Theorem for Eulerian tourdd. Let G be a di-
rected graph and let vg be a vertex. We call vg-Fulerian tour an Eulerian-
tour starting and ending at vertex vy. Observe that a vg-Eulerian tour is
completely characterized by its local-order, that is, the assignment for each
vertex v of the order in which the outgoing edges incident to v are used.
Note however that not every local order corresponds to an Eulerian tour.
We call vg-arborescence a spanning tree A of G oriented from the leaves
toward vy (i.e., every vertex v # vg has exactly one outgoing arc in A).

Lemma 3.3 (BEST Theorem). Let G be an arc-labelled directed graph where
every verter has as many ingoing arcs as outgoing ones, and let vy be a vertex
of G. A local order corresponds to a vg-Eulerian tour if and only if the set
of last outgoing arcs out of the wvertices v # vy form a vg-arborescence.
Consequently, there is a bijection between the set of vg-Fulerian tours of
G and the set of pairs (A,T), where A is a vg-arborescence, and T is an
assignment for each vertex v of a total order of the incident outgoing arcs
not in A.

We now complete the proof of Theorem[3.Il By combining Lemma[3.2]and
the BEST Theorem, one gets a bijection between rooted hyperedge-labelled
(p1,...,pk)-colored cacti and triples (G, A,0) where G is an arc-labelled
vertex-labelled k-digraph of type (p1,...,pr), A is a vg-arborescence of G
for a vertex vy of type k, and 7 is an assignment for each vertex v of a
total order of the arcs not in A going out of v. Observe that 7 encodes the
same information as a pair (ag,7’), where ag is an arc going out of vy and
7/ is an assignment for each vertex v of a cyclic order of the arcs going out
of v. Now the arc-labelled vertex-labelled k-digraph G encodes the same
information as a hyperedge-labelled vertex-labelled k-hypergraph G’, and 7/
can be seen as a rotation system for G’. Thus, by Lemma[2.2] the pair (G, 7)
encodes the same information as a rooted hyperedge-labelled vertex-labelled
k-constellation C' of type (p1, ..., px) (note that the hypergraph G’ is clearly
connected since it has an arborescence A). Lastly, the vg-arborescence A of
G clearly encodes a vg-arborescence of the constellation C, where v is the
root vertex of C.

We thus have obtained a bijection between rooted hyperedge-labelled
(p1,.-.,pk)-colored cacti and the hyperedge-labelled vertex-labelled tree-
rooted constellations. The labelling of the hyperedges can actually be disre-
garded since there are n! distinct ways of labelling the hyperedges of a rooted
constellation of size n. This gives the bijection announced in Theorem B.11

2This Theorem is due to de Bruijn, van Aardenne-Ehrenfest, Smith and Tutte. See
[13] Theorem 5.6.2] for a proof.



12 OLIVIER BERNARDI AND ALEJANDRO H. MORALES

Moreover it is easy to check that it has the claimed degree preserving prop-
erty. U

4. SYMMETRIES FOR TREE-ROOTED CONSTELLATIONS

In this section we prove that for vertex-labelled tree-rooted constellations
of a given type (p1,...,px), every vertex-compositions is equally likely. This
together with Theorem [B] proves the symmetry property stated in Theo-
rem [L31

We denote by T )

tions of vertex-compositions (’y(l), ... ,’y(k)).

Theorem 4.1. If v ... %) 50 50 gre compositions of n such that
0(y®) = (6O for all t € [k], then the sets T, A and Tsay sk are in
bijection.

y the set of vertex-labelled tree-rooted constella-

Remark. Theorem [4.1]gives the hope of counting tree-rooted constellations
of given type, by looking at the simplest possible vertex-compositions. For
instance, one can try to enumerate the set 7 ) &) where A = (n—p;+
1,1,1,...,1) for all t € [k] (similar ideas lead to a very easy way of counting
k-cacti embedded in the sphere [2]). However, our efforts in this direction
only led to a restatement of Jackson counting formula as a probabilistic
puzzle similar to Theorem which we could not easily solve for k > 3.

Proof. Let t € [k] and 4,j € [p]. In order to prove Theorem [4.1]it suffices to
exhibit a bijection ¢ ; j between 7. ) ., and Tsa) s when 7 = §6)

for all s # t, %(Et) = 59@ for all = # i, 7, yi(t) —-1= 5§t) and 7]@ +1= 5]@.
In other words, we want to construct a bijection ¢;;; which decreases by
one the hyperdegree of the vertex of type t labelled ¢ and increases by one
the hyperdegree of the vertex of type t labelled j. Recall from Lemma
that a k-constellation is defined by a (connected) k-hypergraph together
with a rotation system (clockwise order of hyperedges around the vertices);
therefore it is well defined to unglue a hyperedge from a vertex of type ¢t and
reglue it in a specified corner of another vertex of type t. We will use these
operations to define the mapping ¢y ; ; below; see Figure [Al

Let Ti; be the set of vertex-labelled tree-rooted comstellations of type
(p1,--.,pk) such that the vertex of type ¢ labelled i has hyperdegree at least
two. Let T' be a tree-rooted constellation in 7; ;, let u; and u; be the vertices
of type t labelled i and j respectively, let r be the root vertex, and let A be
the marked r-arborescence. If u; # r we denote by h; be hyperedge incident
to the edge joining wu; to its parent in A, while if u; = r we denote by h;
the the root hyperedge. We define h; similarly. Let h be the hyperedge
preceding h; in clockwise order around u; and let e; be the edge of type t — 1
incident to h;. Observe that h; # h) since the hyperdegree of u; is at least
two.

In order to define the mapping ¢y ; ; we need to consider two cases which
are illustrated in Figure [l We first define a partition 7;; = 7/, ; UT/"; ; by



BIJECTIONS FOR THE FACTORIZATIONS OF THE LONG CYCLE 13

FIGURE 5. The bijection ¢ ; ; applied to a tree-rooted con-
stellation in 7/, ; (left), or in 7, ; (right). The tree-rooted
k-constellations are represented as k-hypergraphs together
with a rotation system (so the overlappings of the hyper-
edges in this figure are irrelevant).

declaring that 7T is in 7;’” if the edge e; is not on the path from u; to the root
vertex r in the arborescence A, and that T is in tf ’Z ; otherwise. Suppose first
that 7" is in 7/, ;. In this case we define ¢;; ;(T') as the constellation (with
marked edges) obtained from the tree-rooted constellation 7' (with marked
edges corresponding to the arborescence A) by ungluing the hyperedge h/
from wu; and gluing it to u; in the corner preceding the hyperedge h; in
clockwise order around u;; see Figure [B(a). Observe that ¢, ;(7T") is a tree-
rooted constellation (in particular the marked edges form an r-arborescence
A" of ¢1,j(T)). Moreover ¢y ;(T) is in 7;; and more precisely in 7/, ;. It
is also easy to see that ¢y ;i(¢1,;(T)) = T. Suppose now that 7' is in 7, ;.
In this case we define ¢ ; ;(T) as the constellation (with marked edges)
obtained from T (with marked edges corresponding to the arborescence A)
as follows: we unglue all the hyperedges incident to u; except h; and h, we
unglue all the hyperedges incident to u; except h;, we reglue the hyperedges
unglued from wu; to u; in the corner preceding h/ in clockwise order around u;
(without changing their clockwise order), we reglue the hyperedges unglued
from u; to u; (in the unique possible corner), and lastly we exchange the
labels i and j of the vertices u; and u;; see Figure B(b). It is easy to see
that ¢ ; ;(T) is a tree-rooted constellation (in particular the marked edges
form an r-arborescence of ¢ ; ;(T')). Moreover ¢ ; ;j(T) is in T;; and more
precisely in 7;"; ;. It is also easy to see that ¢y j (1, ;(T)) =T

We have shown that ¢ ; ; is a mapping from 7;; to T; ;. Moreover ¢y ; ;o
¢1,i; = Id for all 4, j, thus ¢, ; = ‘PZjl,i is a bijection. Lastly, the bijection
¢1,i,; decreases by one the hyperdegree of the vertex of type ¢ labelled i and
increases by one the degree of the vertex of type t labelled j. Thus ¢y ; ; has
all the claimed properties. O
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5. FROM TREE-ROOTED CONSTELLATIONS TO NEBULAS

In Section [B] we obtained a bijection between vertex-colored cacti and
tree-rooted constellations. In this section we take another look at tree-
rooted constellations by characterizing their duals. We eventually obtain a
bijection between a class of tree-rooted constellations and certain decorated
maps with a single face called nebulas.

We call tree-pointed k-constellation a pair (C,A), where C' is a rooted
k-constellation and A is a vg-arborescence for some vertex vy which can
be distinct from the the root-vertex of C'. If the constellation C has type
(p1,...,pk) and vy has type t, then the tree-pointed k-constellation (C, A)
is said to have reduced type (p!,...,p}), where p; = p; — 1 and p, = p, for
s # t. Observe that the arborescence A has pj edges of type t for all ¢ € [k]
(because for every vertex v # wvg of type ¢ the edge of A joining v to its
parent has type t).

Lemma 5.1. There is a l—to—]_[f:1 p;! correspondence between tree-pointed

k-constellations of reduced type (pi1,...,pr), and the union 7;?+17p27---7pk U
Tor pottpp S U Tt oy o1 Of verte-labelled tree-rooted constellations.

Proof. We first claim that for any constellation C and any vertices u,v,
there are as many u-arborescences as v-arborescences. Indeed, if one orients
the edges of type t of C' toward their endpoint of type ¢t + 1, one gets a
Eulerian digraph (oriented graph with as many ingoing and outgoing edges
at each vertex). Moreover it is an easy corollary of the BEST Theorem that
Fulerian digraphs have the same number arborescences directed toward each
vertex (see [13, Cor 5.6.3]). Thus, the tree-pointed constellations of reduced
type (p1,...,pk) such that the root vertex of the arborescence has type
t are equinumerous to the tree-rooted constellations of type (p1,...,pt +
1,...,pr) with a distinguished vertex of type t. Since there are (p; + 1)
ways of distinguishing a vertex of type t in such a tree-rooted constellation
versus (p; + 1) Hle p;! ways of labelling its vertices, one gets the claimed
correspondence. O

We now consider the dual of constellations. Recall that the dual of a map
M is the map M™* obtained by placing a vertex of M* in each face of M and
drawing an edge of M™ across each edge of M. Duality is a genus preserving
involution on maps such that the vertices, edges and faces of M correspond
respectively to the faces, edges and vertices of M*. We now describe the
dual of k-constellations. Observe that k-constellations can be characterized
as the maps with black and white faces, and k types of edges 1,2, ...,k such
that

(i) each edge separates a black and a white face,
(ii) each black face has degree k,
(iii) in clockwise order around a hyperedge (resp. white face) the type
of the edges increases (resp. decreases) by one from one edge to the
next.
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Indeed, with the preceding conditions, for each vertex v there exists t € [k]
such that the edges incident to v are alternatingly of type ¢ — 1 and t for
some t in [k] (and we can thus say that v has type ¢ in this case). With the
previous characterization, it is clear that duality gives a bijection between
k-constellations and the dual-constellations, which are defined as the maps
with black and white vertices, and k types of edges 1,2, ...,k such that

(i) each edge joins a black and a white vertex

(ii) each black vertex has degree k,

(iii) in clockwise order around a black vertex (resp. white vertex) the
type of the edges increases (resp. decreases) by one from one edge
to the next.

We will now describe a class of maps closely related to the dual of tree-
rooted constellations. A bud is a dangling half-edge, that is, a half-edge
which is not part of a complete edge. We define a k-nebula, or nebula for
short, as a map having a single face with black and white vertices, k types
of edges 1,...,k, and k types of buds 1,...,k such that

(i) each edge joins a black and a white vertex,

(ii) each black vertex has degree k,

(iii) in clockwise order around a black vertex (resp. white vertex) the
type of the edges or buds increases (resp. decreases) by one from
one half-edge to the next,

(iv) for all ¢ € [k] the number of buds of type ¢ incident to black vertices
is equal to the number of buds of type t incident to white vertices.

A 3-nebula is shown in Figure [@ (right). A nebula is rooted if one of the
black vertices is distinguished as the root vertex. We call black buds and
white buds respectively the buds incident to black and to white vertices. A
k-nebula is said to have size n and type (p1,...,px) if it has n black vertices
and p; black buds of type ¢ for all t € [k].

Consider a k-constellation C' and a spanning tree A. We call dual-opening
of (C, A) the map with buds N obtained from the dual-constellation C* by
cutting in two halves the edges of C* which are crossing the edges of the
tree A (the edges of C* of type t crossing A gives two buds of type t). We
call root vertexr of N the dual of the root hyperedge of C'. The dual-opening
of a tree-pointed constellation (C, A) is represented in Figure [6

We now state the main result of this section.

Theorem 5.2. The dual-opening gives a bijection between tree-pointed con-
stellations of reduced type (p1, . ..,px) and rooted nebulas of type (p1,...,Pk)-

Theorems [3.1] and Lemma [5.1limmediately imply the following result.

Corollary 5.3. The nebulas of size n and type (p1,...,px) are in 1-to-
Hle pi! correspondence with the disjoint union Cp, 4y, ., UC] U

P1,p2+ 1, ,P
n .
UCy, po....ppt1 Of colored cacti.
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”\ — Type 1

: — Type 2

— — \I/) —Type 3
v

FIGURE 6. Dual-opening of a tree-pointed constellation.
Here the tree-constellation is embedded in the sphere (hence
so is its dual opening). The types of edges are indicated by
their thicknesses. The root-hyperedge is indicated in darker
shade, and the corresponding root-vertex of the nebula is
represented in gray.

Remark. By definition, tree-rooted constellations are tree-pointed constel-
lations such that the marked arborescence is directed toward the root-vertex
of the map. One can check that tree-rooted constellations actually corre-
spond to nebulas such that the sequence of black buds and white buds around
N form a parenthesis system, that is, the number of black buds never ex-
ceeds the number of white buds when turning in clockwise direction around
the face of N starting at the corner preceding the edge of type 1 around the
root vertex. Our reason for considering tree-pointed constellations is to get
get rid of the parenthesis system condition (which is hard to control).

The rest of this section is devoted to the proof of Theorem

Lemma 5.4. Let C be a k-constellation and let A be a spanning tree (not
necessarily an arborescence) having py edges of type t € [k]. Then the dual-
opening of (C, A) is a nebula of type (p1,...,pk)-

Proof. Let N be the dual opening of (C, A). Since the spanning tree A
connects all the vertices of the constellation C, the faces of C* are all merged
into a single face of N by cutting the edges of C* crossed by A. Moreover,
this face of N is simply connected because A is simply connected (i.e., has
no cycle). Hence N is indeed a map with a single face. The other properties
of nebulas are easily seen to hold. O

Lemma [5.4] proves that the dual opening of a tree-pointed constellation
is a nebula. We now define the closure of nebulas. Let N be a nebula. We
call turning clockwise around N the process of walking around the face of
N by following its edges, with the edges on the right side of the walker (see
Figure [8(a)). We say that a white bud w matches a black bud b if there is
no bud between w and b when turning clockwise around N starting from w.
We call closure of the nebula N, the result of recursively forming edges by
gluing together pairs of matching buds (thus, at a later step of this recursive
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process, we say that a white bud w matches a black bud b, if there is no
bud between w and b when turning clockwise around the face containing the
buds). This process is illustrated in Figure[7l It is clear that the closure can
be done without creating any edge-crossings, that it will exhaust all buds,
and that the result is uniquely defined.

Lemma 5.5. The pairs of buds glued together during the closure of a nebula
have the same type. Consequently, the closure of a nebula gives a dual-
constellation.

Proof. Tt is easy to see that if a map satisfies Condition (iii) of nebulas, then
matching pairs of buds (w,b) have the same type. Moreover, in this case,
Condition (iii) is preserved by forming an edge out of the buds w,b. This
shows the first claim by induction on the number of buds. The second claim
is clear. O

—Type 1
—Type 2
—Type 3

FIGURE 7. The closure of a nebula N (here N is embedded in
the sphere) obtained by recursively gluing pairs of matching
edges gives a dual-constellation D (with dashed bud-edges).
Taking its dual gives a tree-rooted constellation (C, A).

Let N be a nebula, let D be its closure (which is a dual-constellation) and
let C' be the corresponding constellation. Let A be the set of edges of the
constellation C' which are dual to the edges of D which have been created
during the closure of N (by joining two buds). The pair (C, A) is called the
dual-closure of the nebula N.

Lemma 5.6. The dual-closure of a nebula is a tree-pointed constellation.

Proof. Let N be a nebula, let D be its closure, and let (C, A) be its dual-
closure. By Lemma we know that C' is a constellation, so we only need
to show that A is an arborescence of C'. We call bud-edges the edges of D
created during the closure and we view them as oriented from the white bud
to the black bud (so that we can distinguish the face on their left and the
face on their right). Let fo be the face of the nebula N. During the closure
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of N, each time a matching pair of buds are glued into a bud-edge e, we
consider the face at the right of e as a “new face”, while we consider the
face the left of e as the “original face” fy. Hence, at any time during the
closure, the original face fy is at the left of every incident bud-edge, while
any face f # fy is at the right of exactly one bud-edge which we call the
closing edge of f. Observe that for any face f # fy of D, one can reach the
face fo of D by starting inside f and repeatedly crossing the closing edge of
the current face.

Let vg be the vertex of the constellation C' dual to the face fo of D, and
for any vertex v # vg let the parent edge of v be the dual of the closing edge
of f, where f is the face of D dual to the vertex v. By definition, A is the
set of parent edges and we will show that it is a vy arborescence. First of
all, the above observation implies that starting from a vertex v # vy and
repeatedly following the parent edges one eventually reaches the vertex vy.
Thus A connects all the vertices of C' and since there is one more vertex in
C than edges in A, we can conclude that A is a spanning tree of C. It now
suffices to check that the tree A is oriented toward vy, or equivalently that
the parent edge of a vertex of type t has type t. This is true because of the
orientation convention for closing edges and the fact that the type increases
in clockwise order around the black vertices of the dual-constellations D. [

We now conclude the proof of Theorem Let A and A denote re-
spectively the dual-opening and dual-closure mappings. By Lemma [5.6] the
closure A(N) of any nebula N is a tree-pointed constellation. Moreover, it
is clear that Ao A(N) = N.

We now consider a tree-pointed constellation (C, A), where A denotes the
marked vp-arborescence. By Lemma 5.4 N := A(C,A) is a nebula. We
want to prove that the dual-closure of N is the tree-pointed constellation
(C,A). For this, we consider the white bud w and black bud b obtained
by cutting in two halves an edge e* of the dual-constellation C* crossing A,
and want to prove that the buds w and b will be glued together during the
closure of N. We consider the set of buds encountered between w and b
when turning clockwise around N starting from the bud w. Note that when
N and A are superimposed, turning around the face of N is the same as
turning (counterclockwise) around the arborescence A. Let e be the edge of
A crossing the edge e*, and let A’ be the subtree of A — {e} not containing
the vertex vg. The buds between w and b around N are the buds cut by
the subtree A’ (since the tree A is oriented toward vg). We now reason by
induction on the number of edges in A’ to show that w and b will be glued
together during the closure of N. First observe that if A’ has no edge, then
w and b are matching buds, hence they will indeed be glued together during
the closure of N. Now if A’ has some edges, we know by induction that all
the buds between w and b will be glued in pairs during the closure, therefore
w and b will eventually be matching, hence will be glued together during the
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closure of N. Thus, the dual-closure of N is the tree-pointed constellation
(C, A). In other words, Ao A(C,A) = (C, A).

We have proved that A and A are inverse mappings, so the dual-opening
A is a bijection. This completes the proof of Theorem O

6. FROM NEBULAS TO BIDDINGS

In this section we draw a connection between nebulas and the set My,
whose cardinality appears in Theorem More precisely we will encode
nebulas by biddings, where a bidding of size n and type (p1,...,px) is a pair
((w1,...,wk), (R1,...,Ry)), where wy,...,wy are permutations of [n], and
(R1,...,Rpn) belongs to M7, . This will lead to the probabilistic puzzle
stated in Theorem

A nebula of size n and type (pi,...,px) is said to be labelled if its n
black vertices are given distinct labels in [n], and the p, white buds of type
t are given distinct labels in Ly, where L; is the set of labels of the p; black
vertices incident to the black buds of type t. Clearly there are n![[, p;! ways
of labelling a nebula of size n and type (p1,...,pr). We also define the label
of any edge of the nebula to be the label of the incident black vertex, so that
for every pair (t,7) € [k] x [n] there is either an edge or a white bud of type
t and label i. We denote by c(¢,) the corner preceding either the edge or
white bud of type t labelled ¢ in clockwise order around the incident white
vertex.

Let N be a labelled rooted k-nebula of size n. We will now consider the
sequence of white corners (corners incident to white vertices) encountered
when turning around the nebula N. Recall that turning clockwise around N
means walking around the face of NV by following the edges of N, with the
edges on the right-side of the walker (the buds are just crossed). A clockwise
tour of a nebula is indicated in Figure [§ By turning clockwise around N
each of the white corners {c(t,7), t € [k],i € [n]} are visited, and this defines
a cyclic order on [k] x [n]. This cyclic order then gives a total order on the
set [k] x [n] by choosing (k,£¢y) to be the greatest element, where ¢j is the
label of the (black) root vertex of N. We call this total order the appearance
order on [k] x [n] and we denote it by <y,

Definition 6.1. For a rooted nebula N, we denote by W(N) the bidding
((wiy. v wi), (R1,..., Ry)) defined as follows:
(i) for all i € [n], R; C [k] is the set of types of the buds incident to the
black vertex labelled 7,
(ii) for all t € [k], w is the permutation of n giving the appearance
order of the edges or white buds of type t, that is, (t,wi(1)) <n
(t,we(2)) <N -+ <N (t,wi(n)).

The mapping ¥ is indicated in Figure[Rl Recall now Definition of the
mapping «. We say that a bidding ((w1,...,wk), (R1,...,Ry,)) is valid if
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t,1) Case 1: Crossing a bud

(2, bud of type ¢

(1, edge or bud of type t—1
(2,

(1,

(3,

(2,1 Case 2: Following an edge
(1 3 bud of type t+r
3 3 edge of type t

edge or bud
of type t+r+1

)
)
)
)
4)
)
) bud of type t+1
3.1)
)
2,3)
1,2)
3.2)

FIGURE 8. (a) The clockwise tour of a nebula N. Here k = 3,
n = 4 and the root vertex has label ¢y, = 2. The appearance
order on [k] X [n] is indicated vertically (from top to bottom).
The bidding ¥(N) = ((w1,ws2,ws), (R1, Re, R3, R4)) is given
by Ry = {2}7 Ry = {273}7 R3 = {17 2}7 Ry = {27 3} and

= 1432, wy = 3214, ws = 4132 (the permutations are
indicated in one-line notation here). (b) From a white corner
to the next during the clockwise tour of a nebula.

the graph a((wi(n),...,wk—1(n)), (R1,...,Ry)) is a tree. We now state the
main result of this section.

Theorem 6.2. The mapping ¥ is a bijection between labelled rooted meb-
ulas of size n and type (p1,...,px) and valid biddings of size n and type

(p1;-- -, Pk)-

Corollary 6.3. The valid biddings of size n and type (Pl, ...,Dk) are in n!-
to-1 correspondence with the disjoint union Cp 4y, ., U---UCL . 1y
of colored cacti. Consequently, Jackson’s counting formula ( Theorem[1.2) is
equivalent to Theorem 1.4

Proof of Corollary [623. Recall that there are n![[,p;! ways of labelling a
rooted nebulas of size n and type (p1,...,pr). Hence, by Corollary [(5.3]
labelled rooted nebulas of size n and type (p1,...,px) are in nl-to-1 corre-
spondence with the union CJ, |, -ucy i1 Of colored cacti.

D2, sDk P1,D2,--
Thus the first statement of Corollary - is a direct consequence of Theo-

rem
We now prove the second statement of Corollary [6.3l First observe that

Theorem[I[.2limplies that the set Cgl poete = Cpiitpo g S UG i
has cardinality
k-1
‘ 1z = 1 (Mm p2—lipp—1 T Mm Lopr—1— 17pk> :
Conversely it is easy to see that this equation implies Theorem (that is,
ICpy po. il = ntk= lMI’}l = po—1...pe—1) by induction on p; starting with the
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base case

k—1 k—1
(6'1) ‘Cl D250 7pk’ = n! H <pt _ 1) n! MO,pz 1,..pp—1"

This base case can be checked as follows. The first equality in (6.I]) holds
because there are n! (p ) permutations with cycles colored using every color
in [p], and for any permutations 7o, ..., there is a unique permutation
71 such that m om0+ om, = (1,2,...,n) and a unique coloring of the
cycles of this permutation 71 with 1 color. The second equality in (6.1]) holds
because M~ "o—1...p—1 18 the set of (n —1)-tuples of subsets of {2,..., k} for
which every t € {2, ..., k} appears in exactly p; — 1 subsets (so that there
are (;__11) ways of choosing in which subsets ¢ appears).

n—1 n—1 :
Observe now that M~ .+ -+ My , _;, can be in-

terpreted as the cardinality of the set M of tuples (Rl, ., Ry)

P1,P2,---,Pk
in My, ., . such that Ry has cardinality & — 1 (indeed M’ p2 1ope1
counts the tuples (Ry,...,R,) in My, ., such that By = {2,3,...,k}

etc.). Therefore the preceding discussion shows that Theorem is equiv—
alent to

k
(6.2) nt|Cy D1 psepr] = T |M

Now, by Theorem [6.2] the left-hand side of ([6.2]) is the number of valid bid-
dings of size n and type (p1,...,px), while the right-hand side is the number
of biddings of size n and type (p1,...,px) such that Ry has cardinality k— 1.
This shows that Theorem is equivalent to Theorem O

P1,P2;--Pk |

The remaining of this section is devoted to the proof of Theorem
In order to analyze the mapping ¥ we introduce an intermediate class of
objects called prebidding and define a mapping ¥ between labelled nebulas
and prebiddings, and then a mapping ¢ between prebiddings and biddings
such that ¥ = ¢ o 4.

A prebidding is a pair (<, (Ri,...,R,)) where < is a linear order on
[k] x [n] and Ry,..., R, are strict subsets of [k]. We say that a prebidding
is walid if the greatest element is of the form (k,¢y) for some ¢y € [n| and
if, whenever (¢,i) and (,i") are consecutive pairs in the order <, or when
(t,7) = (k,p) and (¥',7') is the least element, one has t' = «(t, R;) (that
is, ! =t—1ifte Rgandt =t+rift¢ R, t+1,...,t+r € R; and
t+r+1¢R;).

We now consider the mapping ¥ which associates to a labelled rooted
k-nebula N the prebidding ¥(N) = (<n,(R1,...,Ry)), where <y is the
appearance order on [k] x [n] and R; C [k] is the set of types of the buds
incident to the black vertex labelled 1.

Lemma 6.4. The mapping ¥ is a bijection between labelled rooted nebulas
and valid prebiddings.
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Proof. Let N be a nebula. We first prove that the prebidding 9(N) = (<y
,(Ry1,...,Ry)) is valid. It is clear from the definition of the appearance
order <y that the greatest element is of the form (k, o) for some ¢y € [n].
We now consider pairs (¢,7) and (¢',4') which are either consecutive in the
appearance order or such that (¢,i) = (k,{p) and (¢',7’) is the least element
of the appearance order. By definition, if ¢ € R; the pair (¢,7) corresponds
to a white bud of N and if t ¢ R; it corresponds to an edge of N. We first
suppose that t € R;. Since t € R;, the white corner ¢(t, ) precedes the white
bud b of type t labelled i, so that after visiting the corner ¢(t, ) the clockwise
tour of N crosses the bud b and arrives at a white corner preceding either a
bud or an edge of type t — 1 (see FigureB(b)). Thus ¢ = ¢ — 1. Suppose now
that t ¢ R;. In this case the pair (,7) corresponds to an edge e incident to
the black vertex v labelled ¢ and to a white vertex w. After passing through
the white corner ¢(t,4) preceding e around w, the clockwise tour follows e,
crosses the buds of type t+1,...,t+r € R; around the black vertex v, then
follows an edge of type t+7+1 ¢ R; and arrives at a white corner preceding
either an edge or a bud of type t +r (see Figure§(b)). Thus ¢ = ¢ +r. This
completes the proof that the prebidding ¥(N) is valid.

We now prove the injectivity of the mapping 9. Observe that from the
prebidding ¥(N) one can deduce the complete list of edges followed and
buds crossed during the clockwise tour of the nebula N. This determines a
polygon with black and white vertices, and with buds drawn on the inside
region. This is illustrated in Figure [0l Moreover the edges come in pairs
having the same types and labels so that one knows how to glue the edges
of the polygon in pairs in order to recover the nebula N. Lastly the root
vertex of N is identified as the black vertex of label ¢y, where (k,£y) is the
greatest element of <.

In order to prove the surjectivity of ¥ we consider a valid prebidding P =
(<, (R1,...,R,)) and want to check that one can apply the above mentioned
procedure to get a nebula (see Figure [0). From the prebidding P one can
construct a polygon with black and white vertices, and with buds drawn
on the inside region such that edges and buds have types which increase
clockwise around white vertices and decrease clockwise around white vertices
(the polygon is constructed in such a way that its clockwise tour is described
by the prebidding P). Now it is easy to check that for each type t and label
i either there is both a white bud and a black bud of type t labelled i (this
happens if t € R;) or there are two edges of type ¢ labelled i one going from a
black vertex to a white vertex, and one going the opposite way when turning
clockwise around the polygon (this happens if ¢t ¢ R;). Thus one can glue
together the pairs of edges of the same types and labels, and thereby obtain
a map N with a single face such that its clockwise tour is described by the
prebidding P. In the map N the black vertices have degree k since for every
i € [n] the black vertex labelled 7 is incident exactly to the edges and black
buds labelled i. Thus N is a nebula. Lastly it is clear that ¥(IN) = P. This
proves the surjectivity and hence the bijectivity of 9. O
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(t,9)

(1,3)

(2:2) ) gluing pairs of edges
(2:3) Creating a poh son of same the and label
(L1

(1,2)

(1,3) ——Type 1
(32) ——Type 2
(33) —Type 3

FIGURE 9. From valid prebiddings to nebulas (the appear-
ance order is indicated from top to bottom).

We now define a mapping ¢ on valid prebiddings by setting

o(<,(R1,...,Ry)) = (w1,y...,wk), (Ri,...,Rpn)),

where w; is the permutation of [n] defined by (t,w:(1)) < (t,wi(2)) < --- <
(t,wi(n)). Observe that ¥ = o o . The proof of the following lemma is
based on the BEST Theorem.

Lemma 6.5. The mapping o is a bijection between valid prebiddings and
valid biddings.

Proof. Let (Rq,...,Ry) be a fixed tuple of strict subsets of [k]. We consider
the directed graph G with vertex set [k] and arc set {at;, (¢,7) € [k] x [n]},
where a;; is an arc from vertex t to vertex a(t,R;). First observe that
every vertex t of the graph G has n outgoing arcs (the arcs a¢;, ¢ € [n])
and n ingoing arcs (because for each i € [n] there a unique t' € [k] such
that a(t’, R;) = t). Now, to any Eulerian tour of G' one can associate a
linear order < on [k] x [n] defined by setting (¢,7) < (¢',4’) if the arc a;; is
taken before the arc ay ; during the Eulerian tour. It is easily seen that this
gives a bijection o1 between the linear orders < such that (<, (Ry,...,Ry,))
is a valid prebidding and the Eulerian tours of G starting (and ending) at
vertex k. Moreover, by the BEST Theorem, the Eulerian tours of G starting
at vertex k are in bijection with the assignments for each vertex ¢ € [k] of
a linear order of the arcs going out of ¢ (the order in which these arcs are
used during the Eulerian tour) such that the set of greatest arcs going out
of the vertices 1,2,...,k — 1 form a spanning tree of G directed toward
k. Note that the linear order on the outgoing edges of a vertex t can be
represented by a permutation w; defined by setting w;(i) = j if a;; is the
arc going out of vertex t used at the ith exit of that vertex during the
Eulerian tour. Hence the BEST theorem gives a bijection oo between the

Eulerian tours of G and the tuples of permutations (wi,...,wy) such that
((w1,...,wk), (R1,...,Ry)) is a valid biding. This completes the proof since
O’(-<,(R1,...,Rn)):(02001(4),(R1,...,Rn)). O

By deﬁnition VU = g o1, so Theorem is a direct consequence of Lem-
mas [6.4] and [6.5 O
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7. CASES k =2,3,4 oF THEOREM [L6l.

We have shown (Corollary [6.3]) that for each k& > 2 Jackson’s counting
formula is equivalent to Theorem In this section we prove a few cases
of Theorem

Case k = 2. Let B=((i),(Ry,...,Ry)), where ¢ € [n] and (Ry,...,Ry) €
M3, .- The graph G = a(B) has vertex set {1,2} and one arc a; = (1,7)
where x = 2 if R; = {1} or R; = {2}, and = = 1 otherwise (if R; is empty).
Thus, G is a tree if and only if R; has cardinality 1. Clearly the probability
that R; has cardinality 1 is the same as the probability that R; has cardi-

nality 1, thus Theorem is proved for k = 2.

Casek =3. Let B = ((4,7), (R1,...,Ry)), where¢,j € [n] and (R1,...,Ry) €
M3, by ps-  The graph G = «(B) has vertex set {1,2,3} and two arcs
a; = (1,z), and ay = (2,y). We want to evaluate the probability that
the graph G is a tree. There are three possible trees and they occur in the
events described by Figure [[0l Using inclusion-exclusion one gets that the

probability that G is a tree is
P(tree) = Puya) + Pluyxsy + Prapqs)
(7.1) — P23y — Pri1,3) — P12}
+P123x41,3) T Pp1,21xq2,3) T Pr1,31x2,3)
where P4y p denotes the probability of the event {A C R; and B C R;} (all

these probabilities depend on n, p1, p2, p3). We then use the following easy
lemma.

Lemma 7.1 (Exchange Lemma for k = 3). For {a,b,c} = {1,2,3} one has

Prapyxp = Prayx(pr — Placyx(pr + Plabyx{ac}
Proof. We consider the events Fy = {a € R;, ¢ ¢ R;andb € R;} and
Ey ={a,b € R;, ¢ ¢ R; and R; # {a,c}}. The probabilities of these event
are P(E1) = Prayx(vy — Placyx{py and P(E2) = Plapyxo — Plapyx{ac- We
now define a bijection between the events Fy and FEy by exchanging the b
content of R; and Rj, that is, by changing the sets R; and R; into R} and
R, respectively, where R} = R; U {b} if b € R; and R} = R; \ {b} otherwise,
and similarly R = R; U {b} if b € R; and R} = R; \ {b} otherwise. Since
exchanging the b content creates a bijection between the events E; and FEs
(which preserves the fact that (Ri,...,Ry) is in M} ) the probabilities

P1,P2,P3
of the events F1 and Ey are equal. O

Using Lemma [7.1] (three times) in (7.I]) gives
P(tree) = P oyxp + Prisyxo + Pp2,3)<o-

Thus the probability that G = «(B) is a tree is equal to the probability that
R; has cardinality 2. Theorem follows.
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2€Rjor1,3€R; 1,2,3€ R;

1€R;or 2,3631.: 1€R,;or QW R, ;;LQ,BER]

FIGURE 10. Events for which G = «(B) is a tree in the case
k = 3 of Theorem The notation @ € R means a ¢ R.

Case k = 4 and greater. In the case k = 4 one considers B = ((4, j,¢), (R1,..., Ry)),
where i,7,¢ € [n] and (Ry,...,R,) € My, . ... One gets the following
analogue of (T)):

P(tree) = 13{1}x{2}x{3} - 13{1}x{2}x{3,4} + 15{1}x{2,3}x{3,4} - 13{1}x{2,3,4}x{3}
—Pp191q2,31x43,4) T Prixqa,1,21x42,3) + Pipsqa12x(3.4) — Pripda,1,21x42,3,4)
P12, 31(3,40d4,1} — P2pq2,3.413,4,13 T Pp1,2,3)43,4,1)x(4,1,2}

with ]5A, B,C = Zle Pt At4+B+c, where t + A is the cyclically shifted set
{t + a,a € A} and P4 pc is the probability of the event {A C R;, B C
R; and C C Ry}. This expression can be obtained by direct inspection of
the 16 possible Cayley trees, or by using the matrix-tree theorem. Using the
later method we were able to compute analogues of (7)) for all k£ < 9.

In the case k = 4 we can use exchange lemmas similar to Lemma [71] to
prove Theorem [I] (one has to use six such lemmas, and the calculations
can be organized according to the order of magnitude of these probabilities
when n tends to infinity, with p1,pe,ps,ps kept fixed). One can in fact
generalize the type of exchange lemmas used, and use Groébner bases to
prove Theorem (hence Theorem [[.2)) up to k = 7. There is however
one extra difficulty starting with & = 4: the exchange operation as the one
used in the Proof of the lemma [7.1] become invalid unless one conditions on
the fact that the indices i, 7, ¢, . . . under consideration are distinct (otherwise
the exchange operation might affect one of the sets outside of the exchange).
Thus for £ > 4, the computer assisted proofs require to consider the different
subcases corresponding to having non-distinct indices among 4, 7, 4,.... In a
forthcoming paper [3] we shall give a general proof of Theorem for all k
and prove other similar results.
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