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The paper is devoted to integro-differential operators, which correspond to nonlocal reaction-diffusion equations considered on the whole axis. Their Fredholm property and properness will be proved. This will allow one to define the topological degree.

Introduction

Consider the semi-linear parabolic equation

∂u ∂t = ∂ 2 u ∂x 2 + F (u, J (u)) , ( 1.1) 
where

J (u) = ∞ -∞
φ (x -y) u (y, t) dy.

Here φ : R → R is a bounded function, not necessarily continuous, φ ≥ 0 on R. The support of the function φ is supposed to be bounded, supp φ ⊆ [-N, N ]. We will also assume that ∞ -∞ φ (y) dy = 1. Conditions on the function F will be specified below.

Integro-differential equations of this type arise in population dynamics (see [START_REF] Genieys | Pattern and waves for a model in population dynamics with nonlocal consumption of resources[END_REF], [START_REF] Volpert | Reaction-diffusion waves in biology[END_REF] and references therein). They are referred to as nonlocal reaction-diffusion equations. A travelling wave solution of equation (1.1) is a solution of this equation of the particular form u (x, t) = w (x -ct). It satisfies the equation w + cw + F (w, J (w)) = 0.

(

The constant c ∈ R is the wave speed. It is unknown and should be found together with the function w(x). There are numerous works devoted to the existence [START_REF] Ai | Traveling wave fronts for generalized Fisher equations with spatio-temporal delays[END_REF]- [START_REF] Berestycki | The non-local Fisher-KPP equation: travelling waves and steady states[END_REF], stability and nonlinear dynamics [START_REF] Genieys | Pattern and waves for a model in population dynamics with nonlocal consumption of resources[END_REF], [START_REF] Volpert | Reaction-diffusion waves in biology[END_REF], [START_REF] Britton | Spatial structures and periodic travelling waves in an integro-differential reaction-diffusion population model[END_REF] - [START_REF] Perthame | Concentration in the nonlocal Fisher equation: The Hamilton-Jacobi limit[END_REF] of travelling wave solutions of some particular cases of equation (1.1). Properties of travelling waves are determined by the properties of the integro-differential operator in the left-hand side of (1.2). In this paper we will study the Fredholm property of this operator and its properness. We will use them to define the topological degree and will discuss some applications. Let E = C 2+α (R) , E 0 = C α (R) , 0 < α < 1 the usual Holder spaces endowed with the norms

||u|| E 0 = sup x,y∈R |u (x) -u (y)| |x -y| α + sup x∈R |u(x)|, ||u|| E = ||u|| E 0 + ||u || E 0 + ||u || E 0 .
We are interested in the solutions of equation (1.2) with the limits w ± at ±∞, where the values w ± are such that F (w ± , w ± ) = 0. We are looking for the solutions w of (1.2) under the form w = u + ψ, where ψ ∈ C ∞ (R) , such that ψ (x) = w + for x ≥ 1 and ψ (x) = w - for x ≤ -1. Thus equation (1.2) becomes

(u + ψ) + c (u + ψ) + F (u + ψ, J (u + ψ)) = 0. (1.3)
Denote by A the operator in the left-hand side of (1.3), that is A : E → E 0 , Au = (u + ψ) + c (u + ψ) + F (u + ψ, J (u + ψ)) . (1.4) Suppose that F is differentiable with respect to both variables. The linearization of A about a function u 1 ∈ E is the operator L : E → E 0 , Lu ≡ A (u 1 ) u = u +cu + ∂F ∂u (u 1 + ψ, J (u 1 + ψ)) u+ ∂F ∂U (u 1 + ψ, J (u 1 + ψ)) J (u) , (1.5) where ∂F/∂u and ∂F/∂U are the derivatives of F (u, U ) with respect to the first and to the second variable, respectively. For the linearized operator L, we introduce the limiting operators. Since for w 1 = u 1 + ψ, there exist the limits lim x→±∞ w 1 (x) = w ± , it follows that J(w 1 ) = J (u 1 + ψ) → w ± as x → ±∞ and the limiting operators are given by

L ± u = u + cu + a ± u + b ± J (u) , ( 1.6) 
where

a ± = ∂F ∂u w ± , w ± , b ± = ∂F ∂U w ± , w ± .
We will now recall the main definitions and results concerning the essential spectrum and Fredholm property for linear operators and the properness of nonlinear operators.

Essential spectrum and Fredholm property. Let us recall that a linear operator M : E 1 → E 2 acting from a Banach space E 1 into another Banach space E 2 is called a Fredholm operator if its kernel has a finite dimension, its image is closed, and the codimension of the image is also finite. The last two conditions are equivalent to the following solvability condition: the equation Lu = f is solvable if and only if φ i (f ) = 0 for a finite number of functionals φ i from the dual space E * 2 . Suppose that E 1 ⊂ E 2 . By definition, the essential spectrum of the operator L is the set of all complex λ for which the operator L -λI, where I is the identity operator, does not satisfy the Fredholm property. The essential spectrum of general elliptic boundary value problems in unbounded domains can be determined in terms of limiting operators [START_REF] Volpert | Fredholm property of elliptic operators in unbounded domains[END_REF]. For the integro-differential operators under consideration, since they have constant coefficients at infinity, the essential spectrum can be found explicitly. It is proved [START_REF] Apreutesei | Competition of species with intra-specific competition[END_REF], [START_REF] Apreutesei | Travelling waves for integro-differential equations in population dynamics[END_REF] that the operator L -λI is normally solvable † with a finite-dimensional kernel if and only if the equations L ± u = λu do not have nonzero bounded solutions. Applying the Fourier transform to the last equations, we obtain

λ ± (ξ) = -ξ 2 + ciξ + a ± + b ± φ(ξ), ξ ∈ R,
where φ(ξ) is the Fourier transform of the function φ(x). Thus, the operator L is normally solvable with a finite-dimensional kernel if and only if the curves λ ± (ξ) on the complex plane do not pass through the origin. Under some additional conditions, it can be also shown that † By definition, an operator A : E 1 → E 2 is normally solvable if the equation Au = f has a solution if and only if φ(f ) = 0 for all functionals φ from some linear subspace in the dual space E * 2 . This is equivalent to the condition that the range of the operator is closed.

the codimension of the operator is finite, that is it satisfies the Fredholm property, and its index can be found.

A nonlinear operator B : E 1 → E 2 is called Fredholm if the linearized operator B satisfies this property. In what follows we will use the Fredholm property in some weighted spaces (see below).

Properness and topological degree. An operator B : E 1 → E 2 is called proper on closed bounded sets if the intersection of the inverse image of a compact set K ⊂ E 2 with any closed bounded set in E 1 is compact. For the sake of brevity, we will call such operators proper. It is an important property because it implies that the set of solution of the operator equation B(u) = 0 is compact.

It appears that elliptic (or ordinary differential) operators are not generally proper when considered in Hölder or Sobolev spaces in unbounded domains. We illustrate this situation with a simple example. Consider the equation

w + H(w) = 0, x ∈ R, (1.7) 
where H(w) = w(w -1). It can be verified that this equation has a positive solution w(x), which converges to zero at infinity. This convergence is exponential. So the solution belongs to Hölder and to Sobolev spaces. Along with the function w(x), any shifted function w(x + h), h ∈ R is also a solution. Hence there is a family of solutions, and the set of solutions is not compact. Similar examples can be constructed for the integro-differential equation.

In order to obtain proper operators, we introduce weighted spaces C k+α µ (R) with a growing at infinity polynomial weight function µ(x). The norm in this space is given by the equality

u C k+α µ (R) = µu C k+α (R) .
Let us return to the previous example. The family of functions w(x + h) is not uniformly bounded in the weighted space. If we take any bounded closed set in the function space, it can contain the solutions w(x + h) only for a compact set of the values of h. Therefore the set of solutions is compact in any bounded closed set. This example shows the role of weighted spaces for the properness of the operators.

Properness of general nonlinear elliptic problems in unbounded domains and in weighted spaces is proved in [START_REF] Volpert | Properness and topological degree for general elliptic operators[END_REF]. In this work, we will prove properness of the integro-differential operators. After that, using the construction of the topological degree for Fredholm and proper operators with the zero index [START_REF] Volpert | Properness and topological degree for general elliptic operators[END_REF], we will define the degree for the integro-differential operators. We will finish this paper with some applications of these methods to travelling waves solutions.

Properness in weighted spaces

In this section we study the properness of the semilinear operator A.

Definition 2.1. If X, Y are Banach spaces, an operator A : X → Y is called proper if for any compact set D ⊂ Y and any bounded closed set B ⊂ X, the intersection A -1 (D) ∩ B is a compact set in X. Remark 2.2. The operator A : E = C 2+α (R) → E 0 = C α (R)
may not be proper from E to E 0 (see the comments related to equation (1.7) from the introduction).

We will show in the sequel that A is proper in some weighted spaces associated to E and E 0 .

Let µ : R → R be the function given by µ We begin with the following estimate for the integral term J (u) .

(x) = 1 + x 2 , x ∈ R. Denote E = C 2+α (R) , E 0 = C α (R)
Lemma 2.3. Suppose that µ (x) = 1 + x 2 and φ : R → R is a function such that φ ≥ 0 on R, suppφ = [-N, N ] is bounded, ∞ -∞ φ (y) dy = 1 and φ ∈ E 0 . Then ||J (u) || 0µ ≤ K||µu|| C(R) , (∀) u ∈ E 0 , (2.1)
for some constant K > 0.

Proof.

If supp φ = [-N, N ] , then supp φ (x -•) = [x -N, x + N ] . First we write µ (x) J (u) (x) = x+N x-N µ (x) µ (y) φ (x -y) µ (y) u (y) dy. Since µ (x) /µ (y) is bounded for |x -y| ≤ N and ∞ -∞ φ (y) dy = 1, we have ||µJ (u) || C(R) ≤ K 1 ||µu|| C(R) , for some positive constant K 1 .
For every

x 1 , x 2 ∈ R, x 1 = x 2 , denote H (x 1 , x 2 ) = |µ (x 1 ) J (u) (x 1 ) -µ (x 2 ) J (u) (x 2 )| |x 1 -x 2 | α . If |x 1 -x 2 | ≥ 1, we have H (x 1 , x 2 ) ≤ 2K 1 ||µu|| C(R) . If |x 1 -x 2 | < 1, then H (x 1 , x 2 ) = 1 |x 1 -x 2 | α | x 1 +N x 1 -N [µ (x 1 ) φ (x 1 -y) -µ (x 2 ) φ (x 2 -y)] u (y) dy+ + x 1 +N x 1 -N µ (x 2 ) φ (x 2 -y) u (y) dy - x 2 +N x 2 -N µ (x 2 ) φ (x 2 -y) u (y) dy| ≤ ≤ | x 1 +N x 1 -N { [µ (x 1 ) -µ (x 2 )]φ (x 1 -y) µ (y) |x 1 -x 2 | α + µ (x 2 ) [φ (x 1 -y) -φ (x 2 -y)] µ (y) |x 1 -x 2 | α }µ (y) u (y) dy|+ + 1 |x 1 -x 2 | α x 2 -N x 1 -N µ (x 2 ) µ (y) φ (x 2 -y) µ (y) u (y) dy + + 1 |x 1 -x 2 | α x 1 +N x 2 +N µ (x 2 ) µ (y) φ (x 2 -y) µ (y) u (y) dy . Since |x 1 -x 2 | < 1 and |x 1 -y| ≤ N , then |x 2 -y| ≤ N + 1.
In this case, the boundedness of φ and of

µ (x 1 ) -µ (x 2 ) µ (y) |x 1 -x 2 | α , implies that H (x 1 , x 2 ) ≤ K 2 ||µu|| C(R) + K 3 ||φ|| E 0 ||µu|| C(R) + 2K 4 |x 1 -x 2 | 1-α ||µu|| C(R) ,
for some K 2 , K 3 , K 4 > 0. Thus the desired estimate holds and the lemma is proved.

We study the operator A acting from E µ into E 0 µ . In order to introduce a topological degree (in Section 4), we prove the properness of A in the more general case when the coefficient c and function F depend also on a parameter τ

∈ [0, 1] . Let A τ : E µ → E 0 µ , τ ∈ [0, 1] be the operator defined through A τ u = (u + ψ) + c (τ ) (u + ψ) + F τ (u + ψ, J (u + ψ)) .
(2.2)

We note that the linearization

L τ of A τ about a function u 1 ∈ E µ is L τ u = u + c (τ ) u + ∂F τ ∂u (u 1 + ψ, J (u 1 + ψ)) u + ∂F τ ∂U (u 1 + ψ, J (u 1 + ψ)) J (u) ,
while its limiting operators are given by

L ± τ u = u + c (τ ) u + ∂F τ ∂u w ± , w ± u + ∂F τ ∂U w ± , w ± J (u) .
Assume that the following hypotheses are satisfied: (H1) For any τ ∈ [0, 1] , the function F τ (u, U ) and its derivatives with respect to u and U satisfy the Lipschitz condition: there exists K > 0 such that

|F τ (u 1 , U 1 ) -F τ (u 2 , U 2 )| ≤ K (|u 1 -u 2 | + |U 1 -U 2 |) , for any (u 1 , U 1 ) , (u 2 , U 2 ) ∈ R 2 .
Similarly for ∂F τ /∂u and ∂F τ /∂U :

∂F τ (u 1 , U 1 ) ∂u - ∂F τ (u 2 , U 2 ) ∂u ≤ K (|u 1 -u 2 | + |U 1 -U 2 |) , ∂F τ (u 1 , U 1 ) ∂U - ∂F τ (u 2 , U 2 ) ∂U ≤ K (|u 1 -u 2 | + |U 1 -U 2 |) .
(H2) c (τ ), F τ (u, U ) and the derivatives of F τ (u, U ) are Lipschitz continuous in τ, i. e. there exists a constant c > 0 such that

|c (τ ) -c (τ 0 ) | ≤ c |τ -τ 0 | , |F τ (u, U ) -F τ 0 (u, U ) | ≤ c |τ -τ 0 | , ∂F τ (u, U ) ∂u - ∂F τ 0 (u, U ) ∂u ≤ c|τ -τ 0 |, ∂F τ (u, U ) ∂U - ∂F τ 0 (u, U ) ∂U ≤ c|τ -τ 0 |. (∀) τ, τ 0 ∈ [0, 1]
, for all (u, U ) from any bounded set in R 2 . (H3) (Condition N S) For any τ ∈ [0, 1] , the limiting equations

u + c (τ ) u + ∂F τ ∂u w ± , w ± u + ∂F τ ∂U w ± , w ± J (u) = 0 do not have nonzero solutions in E. Lemma 2.4. Suppose that conditions (H1) -(H2) hold. If τ n → τ 0 and µu n → µu 0 in C (R), then ||F τ n (u n + ψ, J(u n + ψ)) -F τ 0 (u 0 + ψ, J(u 0 + ψ))|| 0µ → 0.
Proof. We have the equality

F τ n (u n + ψ, J(u n + ψ)) -F τ 0 (u 0 + ψ, J(u 0 + ψ)) = F τn (u n +ψ, J(u n +ψ))-F τn (u 0 +ψ, J(u 0 +ψ))+F τn (u 0 +ψ, J(u 0 +ψ))-F τ 0 (u 0 +ψ, J(u 0 +ψ)).
Condition (H1) leads to the estimate of the first difference

|F τ n (u n + ψ, J(u n + ψ)) -F τ n (u 0 + ψ, J(u 0 + ψ))| ≤ K (|u n -u 0 | + |J(u n -u 0 )|) .
In view of hypothesis µu n → µu 0 in C (R) , the above inequality allows us to conclude that the weighted norm converges to zero.

In order to estimate the second difference, we begin with the following representation:

F τ n (u 0 + ψ, J(u 0 + ψ)) -F τ n (ψ, J(ψ)) = J(u 0 ) 1 0 ∂F τn (u 0 + ψ, J(ψ) + tJ(u 0 )) ∂U dt + u 0 1 0 ∂F τn (tu 0 + ψ, J(ψ)) ∂u dt.
Similarly,

F τ 0 (u 0 + ψ, J(u 0 + ψ)) -F τ 0 (ψ, J(ψ)) = J(u 0 ) 1 0 ∂F τ 0 (u 0 + ψ, J(ψ) + tJ(u 0 )) ∂U dt + u 0 1 0 ∂F τ 0 (tu 0 + ψ, J(ψ)) ∂u dt.
Therefore,

F τ n (u 0 + ψ, J(u 0 + ψ)) -F τ 0 (u 0 + ψ, J(u 0 + ψ)) = J(u 0 ) 1 0 ∂F τ n (u 0 + ψ, J(ψ) + tJ(u 0 )) ∂U dt - 1 0 ∂F τ 0 (u 0 + ψ, J(ψ) + tJ(u 0 )) ∂U dt + +u 0 1 0 ∂F τn (tu 0 + ψ, J(ψ)) ∂u dt - 1 0 ∂F τ 0 (tu 0 + ψ, J(ψ)) ∂u dt + +F τn (ψ, J(ψ)) -F τ 0 (ψ, J(ψ)) ≡ A + B + C
(A denotes the first line in the right-hand side, B -the second, C -the third). The expressions A and B converge to zero in the weighted norm of E µ = C α µ (R) , due to the Lipschitz condition with respect to τ of the derivatives of F τ (see (H2)). The expression C is a function with a finite support. It also converges to zero in the weighted norm as τ n → τ 0 . This concludes the proof.

We can now prove the properness of the τ -dependent operator A τ . Denote by

E loc = u ∈ C 2+α (I) , (∀) I = bounded interval , E µ,loc = µu ∈ C 2+α (I) , (∀) I = bounded interval
and similarly E 0 loc and E 0 µ,loc . Theorem 2.5. If φ ∈ E 0 , under assumptions (H1) -(H3), the operator A τ (u) :

E µ × [0, 1] → E 0 µ from (2.2) is proper with respect to (u, τ ) on E µ × [0, 1] . Proof. Consider a convergent sequence f n ∈ E 0 µ , say f n → f 0 in E 0 µ . Let (u n , τ n ) be a solution in E µ × [0, 1] of the equation A τn (u n ) = f n , such that ||u n || µ ≤ M, (∀)n ≥ 1.
(

We prove that one can choose a convergent in E µ subsequence of the sequence u n . Without loss of generality we may assume that τ n → τ 0 as n → ∞. Equation A τ n (u n ) = f n can be written as

(u n + ψ) + c (τ n ) (u n + ψ) + F τn (u n + ψ, J (u n + ψ)) = f n . (2.4)
Multiplying the equation by µ and denoting v n (x) = µ (x) u n (x) , g n (x) = µ (x) f n (x) , we derive that

v n + -2 µ µ + c (τ n ) v n + - µ µ + 2 µ µ 2 -c (τ n ) µ µ v n + +µF τn (u n + ψ, J (u n + ψ)) + µ (ψ + c (τ n ) ψ ) = g n . (2.5) Indeed, since µu n = (µu n ) -µ u n = v n -µ v n /µ and µu n = (µu n ) -µ u n -2µ u n = v n -µ v n /µ -2µ (v n /µ -µ v n /µ 2 )
, by (2.4) one easily obtains (2.5) .

The sequence v n = µu n is uniformly bounded in E :

||v n || E = ||µu n || E = ||u n || µ ≤ M, (∀) n ≥ 1. (2.6)
Then it is locally convergent on a subsequence. More exactly, for every bounded interval [-N, N ] of x, there is a subsequence (denoted again

v n ) converging in C 2+α [-N, N ] to a limiting function v 0 ∈ C 2+α [-N, N ] . By a diagonalization process we can prolong v 0 to R such that v 0 ∈ E. Since ||v n || E ≤ M, (∀)n ≥ 1, we can easily see that ||v 0 || E ≤ M.
Let u 0 be the limit that corresponds to u n . Then µu n → µu 0 in E loc and v 0 = µu 0 .

We now want to pass to the limit as n → ∞ in (2.4) and (2.5) . To this end observe that (H2) implies that

||F τn (u n + ψ, J (u n + ψ)) -F τ 0 (u 0 + ψ, J (u 0 + ψ)) || 0µ = = ||F τ n (u n + ψ, J (u n + ψ)) -F τ 0 (u n + ψ, J (u n + ψ)) || 0µ + +||F τ 0 (u n + ψ, J (u n + ψ)) -F τ 0 (u 0 + ψ, J (u 0 + ψ)) || 0µ ≤ ≤ c 1 |τ n -τ 0 | + ||F τ 0 (u n + ψ, J (u n + ψ)) -F τ 0 (u 0 + ψ, J (u 0 + ψ)) || 0µ . Since F τ 0 is continuous from E 0 µ ×E 0 µ to E 0 µ (see (H1)) and J (u n + ψ) → J (u 0 + ψ) in E 0 µ,loc , we derive that F τn (u n + ψ, J (u n + ψ)) → F τ 0 (u 0 + ψ, J (u 0 + ψ)) as n → ∞, in E 0 µ,loc . (2.7)
By the change of variable x n -y = -z, it follows that

J (u n + ψ) (x + x n ) = ∞ -∞ φ (x -z) u n (x n + z) dz + ∞ -∞ φ (x -z) ψ (x n + z) dz → w ± ,
uniformly on bounded intervals of x. Hypothesis (H1) shows that

T n 2 → ∂F τ 0 ∂u w ± , w ± V 0 , as n → ∞ in E 0 loc . (2.16)
On the other hand,

T n 3 = µ (J (u n + ψ) -J (u 0 + ψ)) × F τ 0 (u 0 + ψ, J (u n + ψ)) -F τ 0 (u 0 + ψ, J (u 0 + ψ)) J(u n + ψ) -J(u 0 + ψ) (x + x n ) = I n (x) • ∂F τ 0 ∂U (u 0 + ψ, sJ(u n + ψ) + (1 -s) J(u 0 + ψ)) (x + x n ) ,
for some s ∈ [0, 1] , where

I n (x) = µ (J (u n + ψ) -J (u 0 + ψ)) . For µ (x) = 1 + x 2 , x ∈ R,
with the aid of (2.11) , we arrive at

I n (x) = ∞ -∞ µ (x + x n ) µ (z + x n ) φ (x -z) V n (z) dz → ∞ -∞ φ (x -z) V 0 (z) dz = J V 0 , in E 0 loc . As above, since J (u n ) (x + x n ) → 0, J (u 0 ) (x + x n ) → 0, J (ψ) (x + x n ) → w ± uniformly on bounded intervals of x, we deduce that T n 3 → ∂F τ 0 ∂U w ± , w ± J( V 0 ), as n → ∞ in E 0 loc .
(2.17)

Now we may pass to the limit in (2.13) . With the aid of (2.14) -(2.17) and (H2) , one arrives at

V 0 + c (τ 0 ) V 0 + ∂F τ 0 ∂u w ± , w ± V 0 + ∂F τ 0 ∂U w ± , w ± J V 0 = 0,
which contradicts (H3) . Therefore we have proved that

V n → 0 in C (R) . Now we have to show that V n → 0 in E = C 2+α (R) .
To this end, we write equation (2.10) in the form S (V n ) = h n , where S (V n ) is the linear part from the left-hand side and

h n = (µf n -µf 0 ) -µ[F τ n (u n + ψ, J (u n + ψ)) - -F τ 0 (u 0 + ψ, J (u 0 + ψ))] -[c (τ n ) -c (τ 0 )] v 0 - µ µ v 0 + µψ .
Using Lemma 2.1 from [START_REF] Apreutesei | Travelling waves for integro-differential equations in population dynamics[END_REF] for the linear operator S, we can write

||V n || E ≤ C ||S (V n ) || E 0 + ||V n || C(R) .
We make use of Lemma 2.4, hypothesis (H 2 ) for c (τ n ) -c (τ 0 ) , and of the convergence

f n → f 0 in E 0 µ , to deduce that S (V n ) = h n → 0 in E 0 = C α (R) . Since V n → 0 in C (R) , we conclude that u n → u 0 in E µ . The theorem is proved.
Definitions. Recall in the beginning the definition of the topological degree. Consider two Banach spaces E 1 , E 2 , a class Φ of operators acting from E 1 to E 2 and a class of homotopies

H = {A τ (u) : E 1 × [0, 1] → E 2 , such that A τ (u) ∈ Φ, (∀) τ ∈ [0, 1]}.
Let D ⊂ E 1 be an open bounded set and A ∈ Φ such that A (u) = 0, u ∈ ∂D, where ∂D is the boundary of D. Suppose that for such a pair (D, A), there exists an integer γ (A, D) with the following properties:

(i) Homotopy invariance.

If A τ (u) ∈ H and A τ (u) = 0, for u ∈ ∂D, τ ∈ [0, 1] , then γ (A 0 , D) = γ (A 1 , D) . (ii) Additivity. If A ∈ Φ, D is the closure of D and D 1 , D 2 ⊂ D are open sets, such that D 1 ∩ D 2 = and A (u) = 0, for all u ∈ D\ (D 1 ∪ D 2 ) , then γ (A, D) = γ (A, D 1 ) + γ (A, D 2 ) .
(iii) Normalization. There exists a bounded linear operator J : E 1 → E 2 with a bounded inverse defined on all E 2 such that, for every bounded set

D ⊂ E 1 with 0 ∈ D, γ (J, D) = 1.
The integer γ (A, D) is called a topological degree.

Degree for Fredholm and proper operators. We now recall a general result concerning the existence of a topological degree which was proved in [START_REF] Volpert | Topological degree for elliptic operators in unbounded cylinders[END_REF], [START_REF] Volpert | Properness and topological degree for general elliptic operators[END_REF].

Let E 1 and E 2 be Banach spaces, E 1 ⊆ E 2 algebraically and topologically and let G ⊂ E 1 be an open bounded set.

Denote by I : E 1 → E 2 the imbedding operator, Iu = u, and by Φ a class of bounded linear operators L : E 1 → E 2 satisfying the following conditions:

(a) The operator L -λI : E 1 → E 2 is Fredholm for all λ ≥ 0, (b) For every operator L ∈ Φ, there is λ 0 = λ 0 (L) such that L -λI has a uniformly bounded inverse for all λ > λ 0 .

Denote by F the class

F = {B∈C 1 (G, E 2 ) , B proper, B (x) ∈ Φ, (∀) x ∈ G}, ( 4.1) 
where B (x) is the Fréchet derivative of the operator B. Finally, one introduces the class H of homotopies given by Remark 4.2. Condition (b) can be weakened. Let E 1 and E 2 be two Banach spaces such that E i ⊂ E i , i=1,2 where the inclusion is understood in the algebraic and topological sense. In the case of the Hölder space C k+α (R), this can be the space C k (R) with an integer nonnegative k. We can also consider some integral spaces W k,p ∞ (R) [START_REF] Volpert | Fredholm property of elliptic operators in unbounded domains[END_REF]. Instead of (b) above we can impose the following condition [START_REF] Volpert | Elliptic partial differential equations[END_REF]:

H = {B (x, τ ) ∈ C 1 (G × [0, 1] , E 2 ) , B proper, B (., τ ) ∈ F, (∀) τ ∈ [0, 1]}. ( 4 
(b ) For every operator L : E 1 → E 2 , there is λ 0 = λ 0 (L) such that L-λI has a uniformly bounded inverse for all λ > λ 0 .

Degree for the integro-differential operators. Now, let E 1 = E µ and E 2 = E 0 µ be the weighted spaces introduced in the previous section, with µ (x) = 1 + x 2 , x ∈ R. We will apply Theorem 4.1 for the integro-differential operator A of the form (1.4) , where function

ψ ∈ C ∞ (R) , ψ (x) = w + , for x ≥ 1, ψ (x) = w -for x ≤ -1 and
(H4) F (u, U ) and its derivatives with respect to u and U are Lipschitz continuous in (u, U ) ;

(H5) The limiting equations

u + cu + ∂F ∂u w ± , w ± u + ∂F ∂U w ± , w ± J (u) -λu = 0
do not have nonzero solutions in E, (∀) λ ≥ 0. Under these hypotheses, Theorem 2.5 assures that operator A is proper. Moreover, its Fréchet derivative is A = L from (1.5) and it is a Fredholm operator with the index zero (Theorem 3. 

Applications to travelling waves

In this section we will discuss some applications of the Fredholm property, properness and topological degree to study travelling wave solutions of equation (1.1). Let us begin with the classification of the nonlinearities. Denote F 0 (w) = F (w, w).

We obtain this function from F (w, J(w)) if we formally replace the kernel φ(x) of the integral by the δ-function. The corresponding reaction-diffusion equation

∂u ∂t = ∂ 2 u ∂x 2 + F 0 (u) (5.1)
is called bistable if F 0 (w ± ) < 0, monostable if one of these derivatives is positive and another one negative and, finally, unstable if F 0 (w ± ) > 0. As it is well-known, it can have travelling wave solutions, that is solutions, which satisfy the problem

w + cw + F 0 (w) = 0, w(±∞) = w ± . (5.2)
Let w 0 (x) be a solution of (5.2) with some c = c 0 . The operator L 0 linearized about this solution,

L 0 u = u + c 0 u + F 0 (w 0 )u
has the essential spectrum given by two parabolas:

λ 0 ± (ξ) = -ξ 2 + c 0 iξ + F 0 (w ± ), ξ ∈ R.
Therefore the operator L 0 satisfies the Fredholm property if and only if F 0 (w ± ) = 0. If this condition is satisfied, then the index of the operator is well defined. In the bistable case it equals 0, in the monostable case 1, in the unstable case 0 [START_REF] Collet | Computation of the index of linear elliptic operators in unbounded cylinders[END_REF].

In the case of the integro-differential operator

Lu = u + c 0 u + F u (w, J(w))u + F U (w, J(w))J(u),
the essential spectrum is given by the curves

λ ± (ξ) = -ξ 2 + c 0 iξ + F u (w ± , w ± ) + F U (w ± , w ± ) φ(ξ), ξ ∈ R,
where φ(ξ) is the Fourier transform of the function φ(x). If we replace J(u) by u, that is φ(x) by the δ-function, then the spectrum of the integro-differential operator coincides with the spectrum of the reaction-diffusion operator. We note that

F u (w ± , w ± ) + F U (w ± , w ± ) φ(0) = F 0 (w ± ) and Re φ(ξ) = ∞ -∞ φ(x) cos(ξx)dx < ∞ -∞ φ(x)dx = 1.
Fredholm property. Bistable case. Let

F 0 (w ± ) = F u (w ± , w ± ) + F U (w ± , w ± ) < 0
(we recall that φ(0) = 1). Suppose that F u (w + , w + ) < 0 and F U (w + , w + ) > 0. Then Re λ + (ξ) < 0 for all ξ ∈ R since

F u (w ± , w ± ) + Re F U (w ± , w ± ) φ(ξ) ≤ F u (w ± , w ± ) + F U (w ± , w ± ) = F 0 (w ± ).
Hence the essential spectrum is completely in the left-half plane. This allows us to prove properness of the corresponding operators in weighted spaces and to define the topological degree.

Consider now the case where F u (w + , w + ) > 0 and F U (w + , w + ) < 0. The principal difference with the previous case is that the essential spectrum of the integro-differential operator may not be completely in the left-half plane (Figure 1) though this is the case for the reaction-diffusion operator. Depending on the parameters, the essential spectrum can cross the imaginary axis for some pure imaginary values. However the linear operator remains Fredholm since the essential spectrum does not cross the origin; the nonlinear operator remains proper in the corresponding weighted spaces.

Thus, the bistable case for the reaction-diffusion equation gives rise to two different cases for the integro-differential equation. We will call both of them bistable but will distinguish them when necessary.

Monostable case. Suppose that F 0 (w + ) > 0 and F 0 (w -) < 0. Then λ 0 -(ξ) is in the left-half plane for all ξ ∈ R; λ 0 + (ξ) is partially in the right-half plane, λ 0 + (0) > 0. The essential spectrum of the integro-differential operator L given by the curves λ ± (ξ) has a similar structure. It does not cross the origin, so that the operator satisfies the Fredholm property. The curve λ + (ξ) is partially in the right-half plane, λ + (0) = λ 0 + (0) > 0. The curve λ -(ξ) can be completely in the left-half plane or partially in the right-half plane (Figure 1). Similar to the bistable case, there are two subcases in the monostable case.

Index. In order to find the index of the operator L, we consider the operator L τ which depends on the parameter τ characterizing the width of the support of the function φ τ , supp φ τ = [-N τ , N τ ]. We recall that ∞ -∞ φ τ (x)dx = 1. Let L 1 = L, that is the value τ = 1 corresponds to the function φ in the operator L.

Since the essential spectrum of the operator L τ can be determined explicitly, then we can affirm that it converges to the essential spectrum of the operator L 0 as τ → 0. Moreover, L τ converges to L 0 in the operator norm. The essential spectrum of the operator L τ does not cross the origin. Therefore it is normally solvable with a finite dimensional kernel. Hence the index of the operator L equals the index of the operator L 0 [START_REF] Gohberg | The basic propositions on defect numbers and indices of linear operators[END_REF]. It is 0 in the bistable case and 1 in the monostable case (cf. [START_REF] Collet | Computation of the index of linear elliptic operators in unbounded cylinders[END_REF]).

Topological degree and existence of solutions. In the bistable case we can define the topological degree for the integro-differential operator and use the Leray-Schauder method to prove existence of solutions. In order to use this method we need to obtain a priori estimates of solutions. In [START_REF] Demin | Existence of waves for a nonlocal reaction-diffusion equation[END_REF], a priori estimates are obtained in the case where F (u, J(u)) = J(u)u(1 -u) -αu. Thus, we can now conclude about the existence of waves for this particular form of the nonlinearity. More general functions will be considered in the subsequent works.

Local bifurcations and branches of solutions. Other conventional applications of the degree are related to local bifurcations and global branches of solutions (see, e.g., [START_REF] Krasnoselskii | Geometrical methods of nonlinear analysis[END_REF]). We can now use the corresponding results for the integro-differential operator in the bistable case. Let us emphasize that these results apply in particular for the case where the essential spectrum of the linearized operator crosses the imaginary axis (see above). Therefore the wave persists in this case unless a priori estimates are lost.

. 2 )

 2 Here the properness of B is understood in both variables x ∈ G and τ ∈ [0, 1] . Theorem 4.1. ([20]) For every B ∈ H and every open set D, with D ⊂ G, there exists a topological degree γ (B, D) .
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 43 [START_REF] Apreutesei | Competition of species with intra-specific competition[END_REF]. Consider F the class of operators A defined through(1.4) , such that (H4) -(H5) are satisfied. Consider also the class H of homotopies A τ : E µ → E 0 µ , τ ∈ [0, 1] , of the form (2.2) , satisfying (H1) -(H2) and (H6) For every τ ∈ [0, 1] , the equationsu + c (τ ) u + ∂F τ ∂u w ± , w ± u + ∂F τ ∂U w ± , w ± J (u) -λu =0 do not have nonzero solutions in E, (∀) λ ≥ 0. By Theorem 2.5 and Theorem 3.3, we infer that operators A τ (u) are Fréchet differentiable, proper with respect to (u, τ ) and their Fréchet derivatives A τ = L τ verify condition (a) above. Condition (b ) follows from the lemma in the appendix. Hence H has the form (4.2) . Applying Theorem 4.1 for the class of operators F and the class of homotopies H, we are led to the following result. Suppose that functions F τ and c (τ ) satisfy conditions (H1) -(H2) and (H4) -(H6) . Then a topological degree exists for the class F of operators and the class H of homotopies.
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 1 Figure 1: Schematic representation of a possible location of the essential spectrum of the operator L.

  endowed with the usual norms || • || E and || • || E 0 . We will work in the weighted Holder spaces E µ and E 0 µ , which are E and E 0 , respectively, with the norms ||u|| µ = ||µu|| E and ||u|| 0µ = ||µu|| E 0 .

Acknowledgements

This work was partially supported by the LEA Math Mode between CNRS France and Romanian Academy through the joint project "Existence of travelling waves for nonlocal reaction-diffusion equations".

Passing to the limit as n → ∞, uniformly on bounded intervals of x in (2.4) and (2.5) , one obtains that

)

+µF τ 0 (u 0 + ψ, J (u 0 + ψ)) + µ (ψ + c (τ 0 ) ψ ) = µf 0 .

(2.9) Subtracting (2.9) from (2.5) and denoting V n = v n -v 0 , one finds

(2.10)

Recall that V n = v n -v 0 → 0 as n → ∞ in E loc . We show that V n → 0 in C (R) . Suppose that it is not the case. Then, without any loss of generality, we can chose a sequence

Writing (2.10) in x + x n , one obtains

We will pass to the limit as n → ∞ in (2.13) . First we note that by (2.11) and (2.6) , there exists

) implies a similar estimate for v 0 , so v 0 (x + x n ) and v 0 (x + x n ) are bounded in E. We also have ψ (x + x n ) = 0 for x + x n > 1 and for x + x n < -1 and

(

Denote by T n 1 , T n 2 , T n 3 the three terms in the right-hand side. Hypothesis (H2) for

Next, (2.11) leads to

Fredholm property in weighted spaces

Consider the operator L τ :

and its limiting operators

Recall here Condition NS for L τ , i. e. hypothesis (H3) : For each τ ∈ [0, 1] , the limiting equations L ± τ u = 0 do not have nonzero solutions. We prove now the Fredholm property of L τ as an operator acting between the above weighted Holder spaces.

µ (acting between weighted spaces) is normally solvable with a finite dimensional kernel.

Proof. Like in Theorem 2.2 from [START_REF] Apreutesei | Travelling waves for integro-differential equations in population dynamics[END_REF], we can prove that L τ from E to E 0 is normally solvable with a finite dimensional kernel. To verify the property in the weighted spaces, we use Lemma 2.24 in [START_REF] Volpert | Properness and topological degree for general elliptic operators[END_REF]: if L τ : E → E 0 is normally solvable with a finite dimensional kernel and the operator K :

µ is normally solvable with a finite dimensional kernel.

Let {u i } be a sequence such that ||u i | | Eµ ≤ M. We prove the existence of a subsequence of {Ku i } which converges in

one can find a subsequence, denoted again {v i } , which converges locally in C 2 to a function v 0 , which can be prolonged to R by a diagonalization process. We have v 0 ∈ E, ||v 0 || E ≤ M and v i → v 0 in E loc (in C 2+α (I) , for every bounded interval I).

Let u 0 be such that v 0 = µu 0 . Then

Observe that ||z i || E ≤ 2M and z i → 0 in E loc . Now we can write

, where h (x) → 0 as x → ±∞, z i (x) is uniformly bounded and z i (x) → 0 as i → ∞ locally with respect to x, it follows that µJ (z i /µ) -J (z i ) → 0 as i → ∞, uniformly with respect to x on R. Similarly, z i , z i are uniformly bounded, z i → 0, z i → 0 as i → ∞ locally and µ /µ → 0, µ /µ → 0 as x → ±∞, so the first two terms from (3.3) tend to zero uniformly with respect to x ∈ R, as i → ∞. This implies that

. Therefore, with the aid of the local convergence

The theorem is proved.

We prove now the Fredholm property for L τ : E µ → E 0 µ , under an additional hypothesis. To this end, let I be the identity operator on E µ .

Condition NS(λ) . For each τ ∈ [0, 1] , the limiting equations L ± τ u -λu = 0 associated to the operator L τ -λI do not have nonzero solutions in E µ , for any λ ≥ 0.

We recall an auxiliary result from [START_REF] Apreutesei | Travelling waves for integro-differential equations in population dynamics[END_REF] which will be employed below.

Lemma 3.2. Consider the operators L

. Then there exists ρ ≥ 0 large enough such that the limiting equations (L s ) ± u = 0 do not have nonzero solutions for any s ∈ [0, 1] . Theorem 3.3. If Condition NS (λ) is satisfied, then L τ , regarded as an operator from E µ to E 0 µ , has the Fredholm property and its index is zero. Proof. We put L 0 u = L τ u -λu, L 1 u = u -λu and L s :

. Condition NS(λ) for L τ implies Condition NS for L 0 = L τ -λI. Then, Theorem 3.1 ensures that L 0 = L τ -λI, regarded from E µ to E 0 µ , is normally solvable with a finite dimensional kernel. For operator L 1 , we have ker L 1 = {0} , ImL 1 = E 0 µ , hence L 1 is a Fredholm operator and its index is indL 1 = 0. By Lemma 3.2 applied for L s , there exists λ ≥ 0 large enough such that Condition NS holds for all L s , s ∈ [0, 1] . In view of Theorem 3.1, it follows that the operators L s are normally solvable with a finite dimensional kernel. In other words, the homotopy L s gives a continuous deformation from the operator L 0 to the operator L 1 , in the class of the normally solvable operators with finite dimensional kernels. Such deformation preserves the Fredholm property and the index. Since the index of L 1 is zero, we derive that the index of all L s is zero. In particular, for s = 0 and λ = 0, one arrives at the conclusion that L τ has the Fredholm property and its index is zero. This completes the proof.

Topological degree

In this section we apply the topological degree construction for Fredholm and proper operators with the zero index constructed in [START_REF] Volpert | Properness and topological degree for general elliptic operators[END_REF] to the integro-differential operators.

Appendix

Sectorial property of an operator implies certain location of its essential spectrum and an estimate of the resolvent. For general elliptic problems in unbounded domains it is proved in [START_REF] Volpert | Elliptic partial differential equations[END_REF]. A simple particular case of second-order operators on the axis is considered in [START_REF] Volpert | Traveling wave solutions of parabolic systems[END_REF]. In the lemma below we prove an estimate of the resolvent using this last result.

where the coefficients of this operator are sufficiently smooth bounded functions. Then the operator M λ u = M 0 u -λu, considered as acting in the same spaces, has a bounded inverse with the norm independent of λ for λ ≥ λ 0 > 0, where λ 0 is sufficiently large.

Proof. Consider the equation

We need to obtain the estimate u C 2 (R) ≤ K f C(R) (5.4) of this equation where K is independent of λ for all λ sufficiently large. Here and below we denote by K the constants independent of u, f and λ.

We first prove the estimate

(5.5)

Since the operator

is sectorial [START_REF] Volpert | Traveling wave solutions of parabolic systems[END_REF], then

Estimate (5.5) follows from the last one for λ sufficiently large. We can write equation (5.3) in the form

We can choose σ > 0 such that the operator in the left-hand side is invertible. Hence

This estimate and (5.5) give (5.4). The lemma is proved.

This lemma remains valid for the operators acting in the weighted spaces.