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Abstract. The work is devoted to the computational algorithm for a problem of plant
growth. The plant is represented as a system of connected intervals corresponding to
branches. We compute the concentration distributions inside the branches. The originality
of the problem is that the geometry of the plant is not a priori given. It evolves in time
depending on the concentrations of plant hormones found as a solution of the problem. New
branches appear in the process of plant growth. The algorithm is adapted to an arbitrary
plant structure and an arbitrary number of branches.
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1 Introduction

Plant modelling attract much attention both from the point of view of understanding of
fundamental biological mechanisms and for practical purposes related crop optimization.
Various approaches are developed (see [1], [2]). In this paper we describe a numerical al-
gorithm developed in order to model plant growth and structure formation on the basis of
realistic biological mechanism suggested in our previous works [3], [4]. Plants are considered
here as interconnected one-dimensional intervals. Each interval corresponds to a branch.
There are branches of different generations. There exists only one branch of the first gener-
ation. It corresponds to the trunk. One its end is fixed and corresponds to the root, another
one moves with some speed. If we introduce a space variable x along this interval, then x = 0
corresponds to its fixed end and x = L(t) to the moving boundary. We do not consider the
root system and take it into account only by means of the flux of nutrients passing though
the fixed boundary. The moving boundary corresponds to the apical meristem, a narrow
layer of cells at the very end of the growing branch. These cells divide and determine the
plant growth. The cells along the trunk differentiate and do not divide anymore.

We next introduce the concentration of nutrients C(x, t), which depends on the space
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variable x and on time t, and the concentration of growth and mitosis factor R(t), which
depends only on time. Nutrient are supplied trough the fixed boundary of the interval and
consumed at its moving boundary. Growth and mitosis factor is located in the apex. It is
produced there and determines the proliferation rate of the cells, that is the rate of branch
growth. Thus, we obtain a free boundary problem where the speed of the boundary is
determined by the variable R(t) defined at this boundary and by the variable C(x, t) defined
in the whole interval. Precise formulation of the problem will be given in the next section.
Biological background of this study is presented in the previous works [3], [4].

Branches of the second generation are also straight intervals with one endpoint inside the
first branch (trunk) and another endpoint, which is free. It corresponds to the apex of this
new branch and determines its growth. The number of branches of the second generation can
be arbitrary, as well as their starting points. These are not fixed parameters of the problem.

In order to describe how branches of the second and of other generations appear, we briefly
recall some biological facts. Appearance of new buds is determined by the concentrations of
plants hormones auxin and cytokinin. They are produced by the plant itself and redistributed
by ascending or descending fluxes. The most recent investigations reveal that auxin efflux
carrier PIN1 protein plays the central role in this regulation. The expression of this protein
is considered as a key factor for formation of plant organs [5]-[10], [11]-[17]. On the other
hand, regulation of the PIN genes is itself under the auxin control (via PLETHORA gene
feedback loop [13]). Therefore, we have an auxin induced auxin efflux which can be modelled
with or without the intermediate PIN protein. However, auxin by itself cannot initiate
cell proliferation. It can happen only in the presence of cytokinin, another plant hormone
(actually a group of hormones), the main role of which is the regulation of cell proliferation.
Therefore it can be an interplay of these two hormones that causes formation of a new bud.

Thus, if these concentrations take on some given values at some space point, then a new
bud appears there. From the algorithmic point of view, buds represent very short branches
with associated values of the concentration of mitosis and growth factor. If this value is low,
then the bud remains dormant. If it becomes sufficiently high, then the bud gives a new
growing branch. Thus, we introduce two new variables A(x, t) and K(x, t) which describe
the distributions of auxin and cytokinin. They are defined inside all branches, as well as the
concentration of nutrients C(x, t). The space variable x here is proper to each branch. A
more precise description of the model is given below.

We summarize the model of plant growth as follows. Plant is represented as a number of
connected and growing straight intervals. Their appearance, location and the rate of growth
are determined by concentrations of nutrients, hormones and mitosis and growth factors
defined either inside the branches or at their boundaries. The plant architecture, that is the
number of intervals and their locations are not a priori given. From the mathematical point
of view, we consider several free boundary problems whose solutions influence each other.
The number of these problems and their relation to each other evolve in time. This is a new
type of free boundary problems which we call one-dimensional problems with branching. The
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numerical algorithm should be able to describe any possible plant architecture. The main
purpose of this work is to present this algorithm (Section 3). We illustrate its application to
the study of branching patterns in Section 4.

2 Model

2.1 Without branching

We consider in this work one-dimensional model justified if the length (or height) L of the
plant is essentially greater than the diameter of its trunk. Hence we consider the interval
0 ≤ x ≤ L(t) with the length depending on time. The left endpoint x = 0 corresponds to
the root. Its role is to provide the flux of nutrients taken into account through the boundary
condition. We do not model the root growth here in order to simplify the problem. Therefore
the left boundary is fixed. The right endpoint, x = L(t) corresponds to the apex. Its width
is much less than that of the plant. We suppose in the model that it is a mathematical point.
The value L(t) increases over time. According to the assumption above, the growth rate is
determined by the concentration of metabolites at x = L(t), which we denote by R. Thus

dL

dt
= f(R). (2.1)

The function f(R) will be specified below.
We recall that the interval 0 < x < L(t) corresponds to differentiated cells that conduct

nutrients from the root to the apex. We suppose that they are in a liquid solution. Denote
by C their concentration, which is a function of x and t. Its evolution is described by the
diffusion-advection equation

∂C

∂t
+ u

∂C

∂x
= d

∂2C

∂x2
. (2.2)

Here u is the velocity of the fluid, and d is the diffusion coefficient. Assuming that the
fluid is incompressible and fills the xylem uniformly (the part of the plant tissue conducting
nutrients from below to above and located inside the cambium layer), we obtain

u =
dL

dt
.

We complete equation (2.2) by setting the boundary conditions

x = 0 : C = 1, x = L(t) : d
∂C

∂x
= −g(R)C. (2.3)

The second boundary condition shows that the flux of nutrients from the main body of the
plant to the meristem is proportional to the concentration C(L, t). This is a conventional
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relation for mass exchange at the boundary, Robin boundary conditions. The factor g(R)
shows that this flux can be regulated by proliferating cells. We discuss this assumption as
well as the form of the function g(R) below.

We now derive the equation describing the evolution of R. At this point we need to
return to the model in which the width of the meristem is finite. We denote it by h. Then
we have

h
dR

dt
= g(R)C − σR. (2.4)

The first term in the right-hand side of this equation describes production of the GM-factor
R in the meristem. The second term corresponds to its consumption.

System of equations (2.1)-(2.4) is a generic one-dimensional model of plant growth based
on: a) “continuous medium” assumptions of mass conservation (for C + R) and of the
proportionality of the flux ∂C/∂x at the boundary to the value of C; and b) a “biological”
assumption that there is a chemical species R, the plant growth and mitosis factor, which is
produced in the meristem and which determines the plant growth.

We note that the conservation of mass in the case σ = 0 implies that the term g(R)C
enters both the boundary condition and equation (2.4). Therefore, the assumption that
the rate of the plant growth factor production depends on its concentration R makes the
boundary condition depend on it also. We will see below that properties of the function g
can be crucial for plant growth. In particular, if it is constant (the production rate is not
auto-catalytic), we will not be able to describe the essential difference in plant sizes.

We now specify the form of the functions f and g. We will consider f as a piece-wise
constant function equal to 0 if R is less than a critical value Rf and equal to some positive
constant f0 if R is greater than Rf (Figure 1a). This means that growth begins if the
concentration of the plant growth factor exceeds some critical value.

The production of the growth factor R is assumed to be auto-catalytic. To simplify the
model, we consider a piece-wise linear function g(R) (Figure 1b). In some cases we also con-
sider smooth functions f and g. These assumptions are consistent with plant morphogenesis.
They are discussed in [3], [4] in more detail.

2.2 With branching

The concentrations of nutrients C, and of hormones A and K are described by the diffusion
equations with convective terms:

∂C

∂t
+ V

∂C

∂x
= dC

∂2C

∂x2
, (2.5)

∂K

∂t
− VK

∂K

∂x
= dK

∂2K

∂x2
− µK, (2.6)
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Figure 1: Functions f and g.

∂A

∂t
− VA

∂A

∂x
= dA

∂2A

∂x2
− µA. (2.7)

The convective speed VA in equations (2.6) and (2.7) can be different in comparison with
equation (2.5). It corresponds to transport in the phloem in the direction from top (meris-
tem) to bottom (root). The speed V in the first equation is determined as the speed of
growth:

dL

dt
= V, L

∣∣∣
t=0

= L0, h
dR

dt
= Cg(R)− σR, R

∣∣∣
t=0

= R0, V = f(R) (2.8)

Here dC , dK , dA and µ are parameters; the space variable x is defined independently for each
branch.

The boundary conditions for C are the same as in the case without branching:

C
∣∣∣
x=0

= C0, dC
∂C

∂x
+ Cg(R)

∣∣∣
x=L

= 0. (2.9)

The boundary conditions for K describe its possible production in the root, and its produc-
tion in the meristem with rate proportional to the rate of growth:

K
∣∣∣
x=0

= K0, dK
∂K

∂x

∣∣∣
x=L

= εV. (2.10)

Finally, the boundary conditions for A are similar, except that the boundary condition at
x = 0 takes into account that this horomone can be transported from the stem to the root:

∂A

∂x
− βA

∣∣∣
x=0

= 0, dA
∂A

∂x

∣∣∣
x=L

= εV. (2.11)

We define next the branching conditions. A new branch appears at x = x0 and t = t0 if

A(x0, t0) = Ab, K(x0, t0) = Kb, (2.12)
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where Ab and Kb are some given values. Appearance of a new branch means that there is an
additional interval connected to the previous one at its point x0. The variables Cn, An, Kn

and Rn are described at the new interval by the same equations as above. Here the subscript
n determines the number of the branch. We should complete the formulation by the initial
value of the concentration Rn = Rn(t0). It cannot be found as a solution of the problem but
should be considered as a parameter.

Figure 2: Schematic representation of convective and diffusion fluxes in 1D plant with branch-
ing.

There are additional branching conditions for the concentrations

Cn(0, t) = C(x0, t), An(0, t) = A(x0, t), Kn(0, t) = K(x0, t),

which means that the concentrations are continuous at branching points. We also need some
conditions on the fluxes to provide the conservation of mass. Under the notations shown in
Figure 2, we have

SV = S̃Ṽ + SnVn, S
∂C

∂x
= S̃

∂C̃

∂x
+ Sn

∂Cn

∂x
.

Here S, S̃, and Sn are parameters determined by the cross section area of the corresponding
branch. If all branches have the same cross section, then S = S̃ = Sn = 1. If the cross
section areas are conserved and narrow branches have the same diameter, then S = 1, and
S̃ = Sn = 1/2.

In this work we restrict ourselves to the case where all branches have the same cross
section. Otherwise, the diameter of each branch should be considered as a function of time.
The diameter would depend on fluxes of metabolites coming through the branch to the root.
On the other hand, the fluxes of nutrients going through the branch from the root would
depend on its cross section. We obtain a very complex time-dependent problem with many
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feedbacks. This will essentially complicate the understanding of the mechanism of growth
and the interpretation of the results.

As is discussed in the previous section, bud formation is accompanied by production of
A and K. The angle of the new branches with respect to the previous one is given as a
parameter. It is not related to light and photosynthesis which are not considered in this
model.

3 Computational algorithm

In this section we discuss the numerical algorithm for the one-dimensional problem with
branching. The model is based on the reaction-diffusion equations, which can be considered
in the following form:

∂ϕ

∂t
+ u

∂ϕ

∂x
= d

∂2ϕ

∂x2
− µϕ, (3.13)

where ϕ corresponds to the unknown variable (e.g. C, K), x is the space variable defined
on each particular branch. Let us introduce a finite-difference mesh along any branch with
the nodal coordinates xi (i = 1, . . . , I) (Figure 3a).

Figure 3: Numerical mesh with branching

Let the nodes xi be located uniformly with distance δx between them. We will denote
the values of ϕ in the nodes by ϕi. Consider an explicit upwind approximation for equation
(3.13) first in the interior nodes (i = 2, . . . , I − 1)

ϕn
i − ϕn−1

i

δt
+ (|u|+ u)

ϕn
i+1 − ϕn

i

2δx
+ (|u| − u)

ϕn
i−1 − ϕn

i

2δx
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= d
ϕn

i+1 − 2ϕn
i + ϕn

i−1

(δx)2
− µϕn

i , (3.14)

where δt is the time step and δx the space step. The superscript n corresponds to the time
step. To simplify the notations, in what follows we will omit n, that is, we will write ϕi

instead of ϕn
i , and will keep the notation ϕn−1

i . Let us write equation (3.14) in the form

aiϕi−1 − ciϕi + biϕi+1 = −fi, i = 2, . . . , I − 1, (3.15)

where

ai =
|u| − u

2δx
+

d

(δx)2
, bi =

|u|+ u

2δx
+

d

(δx)2
,

ci =
1

δt
+
|u|
δx

+
2d

(δx)2
+ µ, fi =

ϕn−1
i

δt
. (3.16)

Consider now the approximation of the boundary conditions. If the ends of the branch
correspond to the root (x = 0) or to the growing part (Figure 4a), then the approximation
of the boundary conditions here yields the expressions:

−c1ϕ1 + b1ϕ2 = −f1, (3.17)

and
aIϕI−1 − cIϕI = −fI . (3.18)

Specific expressions for a1, b1, . . . , fI in the case of some particular boundary conditions can
be given in a similar way.

In the case of the growth of a single branch, the numerical scheme is completely described
by system (3.15), (3.17), and (3.18). The matrix of this system is tri-diagonal:




−c1 b1 0 0 0 0 0 . . . 0
a2 −c2 b2 0 0 0 0 . . . 0
. . .
0 . . . 0 ai −ci bi 0 . . . 0
. . .
0 . . . 0 0 0 0 aI−1 −cI−1 bI−1

0 . . . 0 0 0 0 0 aI −cI




. (3.19)

In order to solve a linear system with a tri-diagonal matrix (3.19), we can use the Thomas
algorithm.

The situation is more difficult if there are several branches. Moreover, the tree can have
an arbitrary structure (see, e.g., Figure 3b). There are nodes from which several branches end
or begin. Such nodes will also be called boundary nodes. Each of them will be numbered,
and the value of ϕ at the k-th node is denoted by ϕk. The boundary conditions in the
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conventional sense are not imposed in such nodes. Instead, we should take into account
conservation of species and fluxes.

Let there exist J branches leaving the boundary node k. Then ϕj,1 = ϕk at j = 1, . . . , J .
The values of ϕ at the second node of each branch will be denoted by ϕj,2, at the third ϕj,3,
and so on. Then the conservation of ϕ at the node k can be written as follows:

J∑

j=1

(
d
ϕj,2 − ϕk

δx
− µ

δx

2
ϕk − δx(ϕk − ϕn−1

k )

2δt
− |uj| − uj

2
(ϕk − ϕj,2)

)
= 0. (3.20)

If there are J branches entering the boundary node k, then the finite difference scheme at
this node will be:

J∑

j=1

(
d
ϕj,I−1 − ϕk

δx
− µ

δx

2
ϕk − δx(ϕk − ϕn−1

k )

2δt
− |uj|+ uj

2
(ϕk − ϕj,I−1)

)
= 0. (3.21)

If for some of the branches the numeration begins at the node k and for some other it ends
there, then the finite difference scheme can be represented as a superposition of (3.20) and
(3.21).

To summarize, we recall that, in the internal nodes of the mesh, we use a three-point
scheme (3.15). In the boundary nodes, we have expressions (3.20) or (3.21) (see Figure 4b)
that include ϕk and the values ϕj,I−1 or ϕj,2 taken at the nodes nearest to the boundary node
from the branches connected to this node. Thus we have a completely implicit approximation
of our 1D problem.

We describe here the algorithm for the case in which the domain of the computation
has several branches arbitrarily connected between each other. Moreover, the number of
branches can change during the computation.

The finite difference scheme for the internal nodes of the j-th subsystem has the following
form: 




−c1ϕk1 + b1ϕ2 = −f1 + other terms,

aiϕi−1 − ciϕi + biϕi+1 = −fi, i = 2, . . . , I − 1

aIϕk2 − cIϕI−1 = −fI + other terms.

(3.22)

The first and the last equations in system (3.22) are obtained from expressions (3.20) and
(3.21) corresponding to k1-th and k2-th boundary nodes. The terms corresponding to the
j-th branch are written explicitly; for other branches they are included in “other terms”.

Instead of the tri-diagonal matrix (3.19) we have here an “almost tri-diagonal” matrix
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for the j-th branch:




−c1 b1 0 0 0 0 0 . . . 0 other terms
a2 −c2 b2 0 0 0 0 . . . 0
. . .
0 . . . 0 ai −ci bi 0 . . . 0
. . .
0 . . . 0 0 0 0 aI−1 −cI−1 bI−1

0 . . . 0 0 0 0 0 aI −cI other terms




. (3.23)

Step 1. Transformation of matrix (3.23) to an “almost two-diagonal” form. Let us write
the corresponding system (3.22) in the form





−c1ϕk1 + b1ϕ2 = −f1 + other terms,

βiϕk1 − ϕi + αiϕi+1 = −γi, i = 2, . . . , I − 1,

aIϕk2 − cIϕI−1 = −fI + other terms,

(3.24)

where

αi =
bi

ci − αi−1ai

, βi =
aiβi

ci − αi−1ai

,

γi =
aiγi−1 + fi

ci − αi−1ai

, i = 3, . . . , I − 1 (3.25)

and

α2 =
b2

c2

, β2 =
a2

c2

, γ2 =
f2

c2

. (3.26)

Thus, matrix (3.23) is reduced to the following one:




−c1 b1 0 0 0 0 0 . . . 0 other terms
β2 −1 α2 0 0 0 0 . . . 0
. . .
βi . . . 0 0 −1 αi 0 . . . 0
. . .

βI−1 . . . 0 0 0 0 0 −1 αI−1

0 . . . 0 0 0 0 0 aI −cI other terms




. (3.27)

Step 2. Transformation of the matrix of system (3.24) to an almost diagonal form. Let
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us write the internal part of system (3.24) in the form:




−c1ϕk1 + b1ϕ2 = −f1 + other terms,

piϕk1 − ϕi + qiϕk2 = −si, i = 2, . . . , I − 1,

aIϕk2 − cIϕI−1 = −fI + other terms,

(3.28)

where
pi = αipi+1 + γi, qi = αiqi+1,

si = αisi+1 + βi, i = I − 3, . . . , 2 (3.29)

and
pI−2 = γI−2, qI−2 = αI−2, sI−2 = βI−2. (3.30)

Now matrix (3.27) is reduced to the following one:



−c1 b1 0 0 0 0 0 . . . 0 other terms
p2 −1 0 0 0 0 0 . . . q2

. . .
pi . . . 0 0 −1 0 0 . . . qi

. . .
pI−1 . . . 0 0 0 0 0 −1 qI−1

0 . . . 0 0 0 0 0 aI −cI other terms




. (3.31)

Step 3. Determination of the new values of ϕ at the boundary nodes. For any branch
we substitute the second equation (i = 2) from (3.28) into the first one, and the (I − 1)-th
equation to the last one. We obtain

(bk1p2 − ck1) ϕk1 + bk1q2ϕk2 = −bk1s2 − fk1 + other terms,

(ak2 − ck2qI−1) ϕk2 − ck2pI−1ϕk1 = ck2sI−1 − fk2 + other terms. (3.32)

Let us consider the first and the last equations in (3.32). We see that only the boundary
nodes enter these equations. “Other terms” now also contain only the corresponding bound-
ary nodes. Therefore, the boundary nodes form a complete system which allows us to find
the unknowns ϕ in all boundary nodes.

Step 4. Determination of new values in the internal nodes. When the values of ϕ are
found in all boundary nodes, we can obtain new values of ϕ in the internal nodes for all
branches using the corresponding internal equations from system (3.28).

This algorithm is applicable for an arbitrary connection of subsystems. We will finish
this section with a short discussion of the sensitivity of the results with respect to numerical
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discretization. Convergence of the numerical results when we decrease the time and the
space steps occurs when we consider finite and not very big time intervals. The situation
is much more complex if we consider longtime behavior. Figure 4 shows final (stationary)
solutions for different space steps. The absence of convergence of the results can be related to
structural instability specific for this model and important for growth of biological organisms
(see the discussion in [3]).

Figure 4: The final (stationary) form of the plant for different space steps: for each figure,
the step is half of the previous one.

4 Branching pattern

A typical example of plant growth in the 1D model with branching is shown in Figure 5. In
the beginning of the evolution there is a single branch which grows with an approximately
constant speed until the growth period is finished. The apical meristem is located at the
upper end of the interval. The plant hormones auxin and cytokinin are produced there
and are transported along the whole branch. It can be diffusive or convective transport.
Cytokinin can also be produced in the roots. This is taken into account through the boundary
condition at x = 0.

If at some point of the branch the concentrations of auxin and of cytokinin take on some
prescribed values, then a new bud appears. In the simulation shown in Figure 5, there are
five buds that appear one after another at an approximately equal distance. Each of the
buds contains its own apical meristem with some value of the GM-factor R. When a new
bud appears, the initial value R0 is prescribed. It can be some given constant or it can
depend on some factors (on plant hormones or on the value of R in the apical meristem of
the main growing branch). After that, the value of Ri in the bud evolves according to the
same equation (see (2.4)).

12



Figure 5: Time evolution of the plant. The figure shows the moments in time when new
buds or branches appear. Convective flux of nutrients is shown in red.
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When Ri becomes larger than Rf , proliferation begins and a new branch starts growing
from the bud. As it is shown in [3], growth of branches can be stepwise, that is a branch
has periods of growth and of rest during which the speed of its growth equals zero. When
the main branch stops growing, under appropriate conditions a new branch can appear from
another bud.

As it is discussed above, we consider diffusive and convective fluxes of nutrients. Diffusive
flux acts throughout all branches, whereas convective flux is directed to growing branches.
This is related to the continuity equation for the incompressible fluid. The routes of convec-
tive flux of nutrients is shown in red in Figure 5.

Thus, initiation of growth of new branches is determined by the interplay between the
concentrations of nutrients and of the growth factor. In the example presented in Figure 5
there are five buds formed on the main branch. Three of them give branches of the second
generation with three new buds on each of them. Branches of the second generation appear
one after another when the main branch stops growing. It is interesting to note that one of
the buds on the main branch gives a rudimentary branch which stops growing right after it
appears. There are also some branches of the third generation.

Figure 6: Final plant forms for different values of h.

Similar to the 1D case without branching, the final plant size decreases for larger h. In
the case with branching, the final length is determined basically by the number of branches
and not by their length (Figure 6). There are four generations of branches for h = 0.0002,
three of them for h = 0.0005 and h = 0.001, and only two generations for greater values of
h. A possible explanation of the influence of h on the final length from the point of view of
nonlinear dynamics is given in [3].

Plant evolution in time can be influenced by the initial value of the GM-factor concen-
tration in a new bud. We have described it in the case where R0 = 0.12 (Figure 5). In fact,
it is the same for all values of R0 between 0.01 and 0.12. Further increase of this parameter
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changes the plant evolution (Figure 7). When the first bud appears, it does not stay dormant
but gives a new branch right away. It grows at the same time with the main branch. The
difference between the two cases is determined by the behavior of solutions of equation (2.4).
As we have already discussed, when a new bud appears, we prescribe it an initial value R0 of
the GM-factor concentration. We recall that the concentration of nutrients C is a function
of space and time. Its value C(x0, t0) at the new bud determines the right-hand side of this
equation: it equals zero at R = 0 and at two positive values of R, it is negative between
first two zeros and positive between the second two. If the initial value R0 is at the interval
of negativity, then the solution rapidly decreases, and the bud remains dormant. When the
main branch stops growing, the concentration of nutrients increases. When its value C(x0, t)
at the bud approaches 1, the right-hand side of equation (2.4) becomes positive for small
positive values of R. The concentration of the GM-factor starts growing. After some time it
can reach the critical value which is necessary for the new branch to grow. However, it may
happen that another branch will start growing before this one. Then the concentration of
nutrient can drop down again, and the concentration of the GM-factor may also decrease.

Figure 7: Evolution of the plant structure in time, h = 0.0005, R0 = 0.13. Increase of R0

changes completely the plant structure.

Formation of new buds and growth of new branches is determined by a complex interac-
tion of plant hormones, nutrients and mitotic factors. The plant structure depends on the
values of the parameters. Figure 8 shows the simulations where the buds are double and
give symmetric branches. The symmetry of the plant growth is prescribed by the algorithm.
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Consumption of nutrients and production of plant hormones are different in this case in
comparison with the case without symmetry. Hence the number of new buds and the whole
plant organization will also be different.

Figure 8: Plant evolution in the case of a double bud and R0 = 0.12.
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