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Maneuver based trajectory planning for highly
autonomous vehicles on real road with traffic and

driver interaction
Sébastien Glaser, Benoit Vanholme, Saïd Mammar, Dominique Gruyer, Lydie Nouveliere

Abstract—This paper presents the design and first test on a
simulator of a vehicle trajectory planning algorithm that takes
into account traffic and obstacles on a highway. The proposed
algorithm is designed to run in an embedded environment with a
low computational power such as an ECU, to be implementable in
commercial vehicles. The target platform has a clock frequency
of less than 150 MHz, 150 KB RAM memory and 3 MB program
memory. To the best of our knowledge, the methods available in
literature fail to comply with these limitations.

The trajectory planning is performed by a two steps algorithm.
The first step defines the feasible maneuvers with respect to
the environment, aiming at minimizing the risk of a collision.
The output of this step is a target group of maneuvers such as
accelerating, decelerating and changing lanes. The second step is
a more detailed evaluation of several possible trajectories within
the accepted maneuvers. It optimizes according to additional
performance indicators such as comfort, speed and consumption.
The output of the module is a trajectory described in the vehicle
frame that represents the recommended vehicle states (position,
heading, speed and acceleration) for the following seconds.

Index Terms—Decision System, Human Machine Interface,
Autonomous Vehicles, Advanced Driving Assistance Systems,
Autonomous Intervention and Control, Trajectory Planning.

I. INTRODUCTION

E
VEN with the introduction of advanced driving assistance
systems (ADAS), the number of fatalities remains high.

Most of these fatalities result from driver errors, such as slow
road departures caused by driver drowsiness or inattention,
fast road departures, low driver experience or excessive speed.
In existing ADAS, the driver remains the sole responsible of
the driving task. With the development of new technologies,
it becomes possible to provide a more intrusive driving as-
sistance, for instance a longitudinal control with ACC1. The
demonstrations on Californian Highways at the end of the 90s
proved that autonomous driving in a secured environment (a
dedicated lane on a highway with magnets) is possible. Most
of the current works focus on the interaction with the driver
and the design of the HMI [27]. The recent European project
SPARC [5], provides a safe way to interact with driver both
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for longitudinal and lateral control. Using these developments,
it is possible to offer the driver new concepts of driving
assistance. The successor of this project, HAVEit, focuses on
the cooperation between the driver and a co-pilot system on
the maneuver decision level. It defines different automation
modes ranging from fully human to highly automated. It also
proposes a methodology for choosing the best mode at each
moment. This is the context in which the presented system is
developed.

The objective of the system is to sense the environment,
monitor the driver actions and compare a set of safe trajectories
computed by the automation with the trajectory followed by
the driver. When the difference between the safe and the
realized trajectories becomes too high, the system can decide
to intervene in the driving task.

In this article, we focus on the generation of a trajectory
which is optimal with respect to safety, desired speed, driver
comfort, fuel consumption and the traffic rules. The trajectory
planning algorithm must comply with two strong specifica-
tions. Firstly, for a strong interaction with driver, it has to
be understandable in its decisions and respect the driver’s
wish. Secondly, the algorithm must run on an embedded
system which is compliant with the vehicle industry. The
target platform has a clock frequency of less than 150 MHz,
150 KB of RAM memory and 3MB of program memory. In
this environment, the computation of the trajectory planning
algorithm must be done in few milliseconds.

For calculating a safe maneuver or trajectory, approaches
developed in robotic control (such as in [3]) integrate envi-
ronment sensing and vehicle control directly in the trajectory
generator. We can distinguish two main approaches:

• Tree exploration based methods: these methods search
for solutions in a fine grid attached to the environment.
In a highly dynamic road environment, the size of this
grid can become very big which is not compatible with
the available memory on embedded environments.

• Potential evaluation based methods: these methods as-
sociate a time-dependent potential field to each object
in the environment. Based on these fields, a trajectory
is evaluated. The disadvantage of these methods is their
high computational cost.

The calculation memory and computation power of these
approaches will not be available on commercial vehicles, in
the next years to come. Vehicles that integrate a trajectory
planning for autonomous driving already exist, like the Cy-
berCars [4], but only work at low speeds, in slowly varying
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environments, with a limited number of obstacles. Vehicles in-
volved in the DARPA Challenge integrate a trajectory planner
in a more complex environment and at higher speeds, but the
sensors and the computation power needed are not realistic
with respect to the price, energy limitations of an everyday
vehicle. These systems have two additional drawbacks:

• The interaction with the driver: they focus on a full
automation without any interaction with the driver. For
psychological and legal reasons, we want to give the
driver the possibility to remain in the driving loop. This
means that interaction must be integrated at each level of
the system.

• The generation of the trajectory: Algorithms in the lit-
erature propose to optimize the trajectory generation for
avoiding collisions and respecting the vehicle dynamics.
We believe that, for an optimal driving experience, others
indicators should be introduced, with respect to traffic
rules, fuel consumption and driver wishes and comfort.

Our approach exists in designing a trajectory planning of
two levels. At a high level, nine maneuver cases are identified
by combining basic actions: three in longitudinal direction
(staying in the same speed range, decelerating or accelerating)
and three in lateral direction (staying in the same lane, chang-
ing lanes to the left or to the right). To these nine manoeuvres,
a safe state manoeuvre can be added, which corresponds with
stopping on the right most lane, and an emergency manoeuvre,
corresponding with maximal braking till standstill. This level
gives a first evaluation of the situation with respect to the most
important criterion: the collision avoidance. The computation
time of this step is very low and it uses a limited description
of the environment, mainly the relative distance to and speed
of the obstacles. The output is a ranking of the possible
maneuvers according to their corresponding collision risk. At a
low level, several trajectories are evaluated within each of the
previously accepted maneuvers. This level aims at optimizing
the trajectory definition with respect to a finer definition of risk
and to other important criteria for the driver: speed, comfort,
energy consumption and traffic rules. The search space can be
refined by the evaluating the fusion of pairs of suboptimal
trajectories. The output of the module is a trajectory that
describes the optimal position and speed of the vehicle, for
the following seconds.

The remainder of this paper is divided as follows. The
next section presents the integration of the work within the
HAVEit project. Section III gives an overview of the global
architecture of the proposed system. Section IV contains the
description of the high level, with the risk analysis of the
maneuvers and the development of a mechanism to ensure
its stability over time. Section V describes the method to
generate and evaluate trajectories and to output the optimal
ones. Section VI discusses how the maneuvers calculated by
the automation are compared with driver’s maneuvers. Section
VII describes the controller used to follow the trajectory both
in the longitudinal as in the lateral direction. Finally, section
VIII shows some results in a simulation environment. Section
IX gives the conclusion and a view on the future works.

DRIVER CO-PILOT

Environment
Driving task

Selection of 

automation mode

State information
about the driver, e.g.
Attentiveness/Distraction
Activation / drowsiness
System and situation
awareness

State information
about the Co-Pilot, 
e.g.
System reliability
System limits
Error level

Safe motion vector
to be executed

Mode
Infor-

mation

Mode
Infor-

mation

External effect of action

Command
Driver intention

Recommendation
System intention

Human leading System leadingHuman leading System leading

DRIVER CO-PILOT

Environment
Driving task

Selection of 

automation mode

State information
about the driver, e.g.
Attentiveness/Distraction
Activation / drowsiness
System and situation
awareness

State information
about the Co-Pilot, 
e.g.
System reliability
System limits
Error level

Safe motion vector
to be executed

Mode
Infor-

mation

Mode
Infor-

mation

External effect of action

Command
Driver intention

Recommendation
System intention

Human leading System leadingHuman leading System leading

Fig. 1. Driver and Algorithm comparison (HAVEit Project)

II. INTEGRATION OF THE WORK WITHIN HAVEIT PROJECT

HAVEit is a research project of the seventh framework
programme of the European Commission, which co-funds
this work. It aims at giving the long-term vision of a highly
automated driving for an intelligent transport. The project will
develop, validate and demonstrate important intermediate steps
towards highly automated driving. HAVEit will significantly
contribute to higher traffic safety and efficiency usage for
passenger cars, busses and trucks, thereby strongly promoting
safe and intelligent mobility of both people and goods. HAVEit
will generate a significant impact on safety, efficiency and
comfort by three measures:

• The design of the task repartition between the driver and
co-driving system.

• The presentation of a failure tolerant safe vehicle archi-
tecture including an advanced redundancy management.

• The development and validation of the next generation of
ADAS directed towards a higher level of automation as
compared to the current state of the art.

The work presented in this paper touches with the first and the
third point. It is integrated in the co-pilot of the co-system de-
picted in figure 1. The sub project in HAVEit that builds the co-
system is leaded by DLR2 and has as partners, INRIA3, ICCS4,
IZVW5, Continental and Ibeo. The co-system analyses the
surrounding sensed environment, defines an optimal maneuver
and an associated optimal trajectory and finally controls the
different actuators according to the state of the block labeled
Selection of Automation Mode.

III. ARCHITECTURE

In this section the architecture of the co-pilot is presented.
The goal of the proposed system is two-fold: firstly the system
allows a high driver interaction, secondly it is able to optimize
a trajectory according to different performance criteria, in
a everyday traffic environment. This multi-criteria optimal
trajectory assures a high level of safety and can be used to
control the vehicle. But, in order to meet the safety level

2DLR is the German Aerospace Center
3INRIA is the National Institute for Research in Computer Science and

Control
4ICCS is the Institute of Communications and Computer Systems
5IZVW is the Center for Traffic Sciences
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Fig. 2. Driver and automate process

required on the vehicle, the system allows a high cooperation
with the driver. The architecture presented is different from
the ones commonly used in robotics. This is needed to tackle
the following challenges:

• The environment is highly dynamic. Even in a specific
environment such as highways, there can be numerous
static and dynamic.

• The computation time and memory are limited when
working with a safe and embedded architecture.

• The system must be able to closely interact with the
driver, both by receiving commands coming from the
driver and by giving him a clear feedback.

• The system has to take into account the real road envi-
ronment constraints, such as lanes, which drastically limit
the action space.

A. Functional architecture

The automation and the driver follow the same process
(figure 2). They can interact at different levels of this process:
e.g. for the perception of the environment, the automation can
help with the detection of a front vehicle in foggy weather.
We can define two main ways of interaction:

• Definition of the maneuver: this is the high level verbal-
ization of the longitudinal and lateral targets.

• Execution of the trajectory through the actuators.

The automation can act on the two levels. According to figure
3, we define the following assistance modes:

• Proposition of the maneuver: the driving assistant anal-
yses the environment and presents a set of possible
maneuvers that enhance the safety and other performance
criteria of the vehicle. The final decision and action is left
to the driver (left figure).

• Shared control: both driver and automation define an
optimal maneuver. The execution of the corresponding
trajectory is done by the control module of the automation
(right figure).

The decision of the automation must be easily understand-
able by the driver. It is represented as a grid of possible
maneuvers, shown in figure 4. Maneuvers are defined relatively
to the actual state of the ego vehicle. With the green maneuvers
the multi-criteria driving performance improves. In the yellow
sections, the situation stays the same and in the red ones,
it worsens. The grid can easily be compared with the driver
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Fig. 3. Proposed driving assistant
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intentions, by monitoring the state of the indicators and
accelerator and braking pedals, as will be explained in section
VI.

B. Software architecture

For meeting the goals of the system, we have developed a
two steps computation for the trajectory planning (fig. 5). In a
first step, a high level evaluation of the future actions is given,
in terms of maneuvers. Afterwards, the trajectory evaluation
module finds the best trajectory within the accepted (first the
green, then the yellow) maneuvers. It gives detailed description
of the recommended vehicle speed and position for a time
frame of 5 to 10 seconds.

The next sections give more details on the two steps of the
algorithm.

1) Maneuver module: This first module aims to provide
a clear interface to the driver and to drastically reduce the
computation time of the second module; the trajectory module.
The module analyses the state of the ego vehicle and of the
environment and attributes a risk value to each maneuver. Only
the collision risk is evaluated here, a finer evaluation of the
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Control
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Fig. 5. General architecture
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risk is done by the second module. A ranked list of maneuvers
is the output of this module.

2) Trajectory module: The trajectory module reads the
environment information and the results of the maneuver
module. It generates trajectories within the best maneuvers and
evaluates them according to multiple performance indicators.
A finer definition of the risk is given, including the slipping
risk in curves. In addition the module evaluates the trajectory
with respect to its speed, the fuel consumption, the comfort
and the traffic rules. The search process of trajectories is done
in the order of the ranking of the maneuvers, and can be
stopped at any time to respect a prefixed computation time. All
trajectories respect the constraints on longitudinal and lateral
acceleration, to assure their controllability. The final output is
a set of spatio-temporal points with the recommended position,
heading, speed and acceleration in the vehicle frame. It can
be used in order to control the vehicle or to be provided as
information for the driver.

IV. MANEUVER GENERATION

The objective of this module is to provide a high level
interaction with the driver. It also gives a fast ranking of the
different zones of the solution space, drastically increasing the
efficiency of the trajectory module and thus ensuring a real
time running. Nine maneuver cases are defined by combining
three actions in the longitudinal direction (staying in the same
speed range, decelerating or accelerating) and three in the
lateral direction (staying in the same lane, changing lanes
to the left or to the right). For safety reasons, these nine
manoeuvres, a safe state manoeuvre can be added, which
corresponds with stopping on the right most lane, and an
emergency manoeuvre, corresponding with maximal braking
till standstill.

The ranking of the maneuvers is based on a fast risk
evaluation on every lane. The risk is related to the speed
and the relative distance to each vehicle in each lane. For
the adjacent lanes, the ego vehicle is replaced by a virtual
vehicle set at the same curvilinear position, on the evaluated
lane. By doing this, we do not consider the risk generated
during the lane change, this is done at the trajectory level.
The risk is computed for a wide ego vehicle speed range and
is not defined as an absolute value but relative to the current
risk state.

A common approach in risk theory is to define the risk
related to an event by using two criteria:

• The probability that the event occurs,
• The gravity of the resulting situation under the assump-

tion that the event occurs.

In our maneuver selection, the event to avoid is a collision.
We determine the gravity of the possible collision, using
the Equivalent Energetic Speed (EES). A true calculation of
probability of a collision is hard to achieve and may depend on
several external parameters that are not available or not even
measurable. Instead, we will define the possibility of a colli-
sion which is deduced from the analysis of traffic indicators.
The possibility has the same limits as the probability: at 0 the
collision possibility is not relevant, at 1, it is highly possible
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Fig. 6. EES (speed) and MAIS scale (probability) for a moderate injury

that a collision occurs. The possibility is deduced from the
analysis of indicators as the inter vehicular time, the time to
collision and the reaction distance.

For each maneuver, the average risk of the corresponding
speed range and lane is calculated, as shown in figure 4. Then
it is compared with the current maneuver to determine whether
it is less or more risky or about the same.

Next sections will define the two components of risk as-
sessment.

A. Crash Severity

The severity of a collision has been extensively studied and
often uses the equivalent energetic speed (namely EES) during
the collision. The EES corresponds to the deformation energy
of a damaged vehicle during a collision, given their respective
speed and mass. This is directly linked with the damage done
to the human in the vehicle. The speed can be computed using
the following equations:

{

MV + MiVi = MV̂ + MiV̂i

1
2MV 2 + 1

2MiV
2
i = 1

2MV̂ 2 + 1
2MiV̂i

2 (1)

In these equations, the variables X are related to the ego
vehicle, Xi to the considered obstacle, before the collision. X̂
and X̂i represents the respective variables after the collision.
The EES of the vehicle is then:

EES = V̂ − V =
2Mi

M + Mi

(Vi − V ) (2)

Using data on EES and probability of injuries, we can define
a scale of severity relative to the probability of a light injury,
a heavy injury or fatality. Figure 6 represents the likelihood
of a moderate injury (MAIS>2, Maximum Abbreviated Injury
Scale) with respect to the EES.

B. Possibility of collision

In order to define the possibility of collision, we have to
analyse condition of the traffic around the vehicle. Traffic
indicators often use a time value to describe the situation,
which is easily understandable by the driver. However, it is
hard to achieve an accurate analysis of the risk related to the
traffic with only one indicator.

4



TTC

1 10

Probability

1

TIV

0.5

Probability

1

1 2

0.5

Fig. 7. TTC (left) and TIV (right) based possibility of collision

Two main types of danger exist when considering a lane
with traffic: low inter vehicle distance and high speed dif-
ferences. The traffic indicators show the first type is easily
detected by the inter vehicular time, while the second can be
estimated by using the time to collision. In order to define a
possibility of collision, these two criteria are used.

1) Time to collision: The first parameter is relative to the
Time To Collision. Hayward [2] defines the TTC as: The time

required for two vehicles to collide if they continue at their

present speed and on the same trajectory. The TTC formula
is:

TTC =
Di

V − Vi

(3)

In this formula, Di is the relative distance with vehicle
i. Projects as ARCOS (www.arcos2004.fr) and PREVENT
(www.prevent-ip.org) have studied TTC and define several
boundaries for the cooperation between the driver and automa-
tion:

• At a TTC of 10 s, vehicle i is supposed to have no
interaction.

• A TTC of 1.5 s is commonly used to trigger a first level
of warning.

• When TTC goes below 1.3 s the system can strengthen
the warning.

• If TTC becomes lower than 1 s the control by the
automation can be activated.

Looking at the system as collision mitigation by braking [26],
a collision is highly possible as soon as the time to collision
goes below 1 s, this is the threshold used by some collision
mitigation systems. A value of 1 s is also common as a driver
reaction time.

The two extreme time values are used to determine a
possibility of collision of 0 (for a TTC of 10 s and higher) and
1 (for a TTC below 1 s). Between these values the possibility
is linear with respect to TTC. Figure 7 (left) represents the
evaluation of the possibility associated with the TTC, namely
PTTC .

2) Inter vehicular time: However, the TTC itself is not
sufficient to describe the risk related to the situation: for
instance, when two vehicles are close to each other, with
the same speed, the TTC is large, but the situation can be
dangerous. In order to take into account this kind of situations,
we enhance this definition of the risk possibility with the inter-
vehicle time. The TIV is defined as:

TIV =
Di

V
(4)

This parameter is often used in regulations. For instance, a
recent French law demands a minimal TIV of 2 s. This value is

commonly used for traffic safety, allowing the driver to analyse
the reactions of the followed vehicle. It is also frequently used
in Advanced Cruise Control (ACC) systems to regulate the
speed of the vehicle. Similarly to the TTC, we define a relation
between the TIV and the possibility of collision, as shown in
figure 7 (right). The possibility of collision associated with the
TIV is now denoted as PTIV . The 1 s boundary is taken for
the same reason as explained for the TTC.

C. Generating a risk

In the two previous sections, we have described the compu-
tation of the gravity index and of two possibilities. However,
these possibilities do not represent the same event: the first
one mainly deals with fast approaching vehicles, the second
with close vehicles. As the scenarios are not the same, the
gravities in case of occurrence of the event is not the same.
The final risk is expressed by:

R = RTTC + RTIV (5)

Where RTTC is the risk associated with the TTC and RTIV

the risk associated with the TIV. For each considered target
speed V of the ego vehicle and given speed Vi of the obstacle,
the risk related with the TTC is computed as follows:

RTTC(V ) = PTTC(V )G(V, Vi) (6)

Where G denotes the function that evaluates the gravity as
defined previously.

The risk related to the TIV represents the problem of a hard
braking vehicle in front of the ego vehicle. In order to translate
this problem in terms of risk, we use the following equation,
with the variable described previously:

RTIV (V ) = PTIV (V )max (G(V, Vi), G(V, Vi − γTTIV ))
(7)

where γ is the considered deceleration, set to 0.8g.

D. Example

Previous developments explain the maneuver selection. In
order to demonstrate the risk evaluation, we suppose that the
vehicle exactly follows the maneuver advice given by the
algorithm.

As a first remark when dealing with vehicle following
scenario, figure 7 and equations 3 and 4 clearly show that
the ego-vehicle speed will converge to the speed of the front
vehicle with a relative distance of 2 s. Figure 8 shows the
minimal distance according to the ego vehicle speed and front
vehicle speed that ensures a zero risk for the ego vehicle. For a
front vehicle speed of 35 m/s, the speed is mainly regulated by
the inter vehicular distance factor. But when this speed drops
to 15 m/s, in a traffic jam for instance, the time to collision
quickly becomes the main factor.

An interesting simulation is to evaluate the approach on a
slow moving vehicle. In order to evaluate this scenario, we
suppose that our vehicle drives at 40 m/s (144 km/h) and the
front vehicle is at 300 m with a speed of 20 m/s (72 km/h).
The controlled vehicle will drive at the maximal safe speed.
Figure 9 shows the resulting speed. At the beginning, the front
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Fig. 9. Fast vehicle approaching scenario

vehicle is too far to have an impact on our vehicle, so the speed
remains constant. After T = 6 s, the front vehicle starts to have
an impact on the risk evaluation of our vehicle, corresponding
to a decrease in speed. After T = 19 s, the inter vehicular
distance regulates the speed, so a stronger decrease appears.
The simulation stops at T = 25 s when both vehicles have the
same speed with a safe inter vehicular distance.

During the simulation, the deceleration of the controlled
vehicle remains below 0.3g. The steps in speed profile result
from the direct association of computed speed with the realized
speed, not using a controller on the actuators.

To summarize the maneuver algorithm, we can highlight
that the objective is to give a ranking to several possible
maneuvers. Additionally the target speed and target lane of the
best maneuver can be given. The maneuver level will allow a
close cooperation with the driver. Section VI will explain the
maneuver grid computed by the automation and enriched by
the trajectory module here can be compared with the intention
of the human driver.

V. TRAJECTORY GENERATION AND EVALUATION

The trajectory module finds the optimal trajectory within the
accepted maneuvers (green and yellow on figure 4). It gives a
detailed description of it for a time frame of 5 to 10 seconds.
The fast ranking of the different zones of the solution space by
the maneuver module, greatly increases the efficiency of the

Fig. 10. Scenario for the algorithm example: overtaking of a slower vehicle
by the ego vehicle

trajectory algorithm and allows to stop it when a certain pre-
fixed calculation time is reached. If the computation is very
limited, it could only search in the green cells or even only
the best green cells.

The trajectory module uses a finer evaluation of risk and
additional performance indicators such as speed, legal driving,
comfort and consumption. The module also refines the solu-
tion space by investigating multiple trajectories within each
maneuver cell. The core idea behind the trajectory algorithm
is that for a complex problem with a multitude of good (sub-
optimal) solutions, it is wiser and faster to evaluate a small
set of well-chosen solutions, rather than searching the best in
the complete solution space.

The process can be described in three steps:

• Prediction of the evolution of the environment: giving
the future positions in time for every non-ego vehicle or
obstacle in the environment.

• First generation and evaluation of trajectories in the
maneuver grid: ranking the trajectories with a multi-
criteria performance indicator.

• Second generation and evaluation of trajectories by fusing
the best ones: refine the solution space and output the
(sub-)optimal trajectory.

Each of these steps will now be described. The algorithm
will be explained through the example shown in the first
section of figure 10: the ego vehicle C1 is driving at 10 m/s on
the right lane of a two lane road. At 20 m behind it on the left
lane, a vehicle C2 is detected which is driving slightly faster,
at 11 m/s. At 20 m in front of the ego vehicle, another vehicle
C3 is driving slowly at 5 m/s. This situation can be dangerous.
We will see in the trajectory generation and evaluation how
the system will react.

A. Prediction of the evolution of the environment

The quality of the environment perception and the horizon
of sight of the sensors are important information for the tra-
jectory module. Data fusion will not only deliver information
on the detected objects, but will also indicate the limits of the
zone of detection. The trajectory module will create phantom
vehicles at the outside of this zone, in order to always be
prepared for a worst case (legal) scenario.

For example, in a highway environment a traffic jam is
believed to exist at the detection horizon of the sensors in the
front of the vehicle. This means that a large phantom object
with zero speed is created there. A phantom object at high
speed is created at the perception limit of the rear sensors. On a
two direction road, the constraints are stronger because at each
moment a phantom vehicle at high speed will be believed to
come from the other direction. This is why a fully automated
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lane changes in such environment are difficult with today’s
sensors.

The trajectory module deals with the phantom objects as
with the detected objects to make sure to drive slow enough
to be able to stop for a traffic jam and fast enough not to put
fast vehicles in the back at risk.

At each moment, the first step is to predict the trajectory
of every detected object using a Kalman Filter. Object clus-
tering allows us to limit the number of relevant objects to
8 surrounding the vehicle: in the front, in the rear on the
current and adjacent lanes and on the side in adjacent lanes.
This guarantees a limited calculation time. A 5 to 10 seconds
time description of the position and speed of each object in
the environment is then available. It will be used for the risk
evaluation of the trajectories of the ego vehicle C1.

We need to know the uncertainty on the prediction according
to the initial covariance on the data from sensors and data fu-
sion module. In order to predict the evolution of environment,
we use the predictive phase of a Kalman filter applied on each
object:

{

Xk+1 = AXk + BU0

Pk+1 = APkAt + Q
(8)

where Xk is the predicted state, X0, the initial state is given
by the sensors and data fusion module; U0 is the input of the
system at the initial step; Q is the process noise matrix and
Pk is the covariance on the system, as for the state, P0 is
given by the sensors and data fusion module. We separate the
longitudinal and lateral behavior of each object with respect
to the road.

1) Longitudinal behavior: In our application, the longi-
tudinal behavior of a near vehicle can be deducted directly
from the Kalman observation. In equation 8, the state vector
is Xk = [s, v]t, where s is the curvilinear abscises and v
the vehicle speed, the input U0 is the acceleration, which is
constant. The matrices A, B and Q are:

A =

(

1 ∆t
0 1

)

B =

(

0
∆t

)

Q =

(

εs εsv
0 εv

)

(9)

where ∆t is the time step of the prediction, and εi denotes
the error to be defined.

In our example of figure 10 the non-ego vehicles C2 and C3

are believed to continue at a constant speed from their current
position.

2) Lateral behavior: In a next step, the lateral movement
of the non-ego vehicles is predicted. This can be done in a
similar way as for the driver maneuver prediction (explained
in section VI) by calculating the probability of the three lateral
maneuvers: staying on current lane, changing to right lane, and
changing to left lane. We combine information on the lateral
position in the lane, of the lateral speed in the lane and on the
state of the indicators to find this probability.

A position on the right side of the lane, a speed towards
the right or the activation of right blinkers all lead to a high
probability - between 0.7 and 1.0 - for changing lanes to the
right and low probability for staying on the same lane or
changing to the left lane. By combining these probabilities,
we predict that the detected vehicle will change lanes to the
right and we generate a trajectory for this vehicle in a similar

way as we will explain for the ego vehicle C1 in the next
section.

When information on position, speed or indicators are
conflicting, leading to comparable probabilities for two or
three maneuvers, the vehicle is then replaced by two or three
phantom objects with corresponding trajectories.

All information on both the vehicles C2 and C3 in our
example gives a high probability for staying in the lane. The
Kalman-prediction of the movement of the these vehicles is
shown in the second section of figure 10.

B. First generation and evaluation of trajectories for ego

vehicle

For the ego vehicle a fix number of smooth polynomial
trajectories is generated, each with a different target speed
and target lane within the ranges of the maneuvers specified
by the maneuver module. In simulations, a number of 2 to 5
trajectories per maneuver show a good compromise between
calculation time and resolution of the solution space.

1) Generation of trajectories: The three current values (i.e.
begin of time description) of position, speed, and acceleration
and two target values (i.e. end of time description) of speed and
acceleration give 5 constraints in the longitudinal direction. In
the lateral direction, there are 6 constraints as both current and
target values of position, speed and acceleration are specified.
This defines a 4th and a 5th order polynomial time description
for longitudinal and lateral position respectively. With the
origin of the coordinate axis in the center of gravity of the
vehicle, X the longitudinal axis in the driving direction of the
vehicle and Y right hand side perpendicular on X , we write
the equations for the longitudinal and lateral positions p with
respect to the time t, the difference with the current time:

{

px : g0x + g1xt + g2xt2 + g3xt3 + g4xt4

py : g0y + g1yt + g2yt2 + g3yt3 + g4yt4 + g5yt5
(10)

For the calculation of the coefficients of these polynomials
using the begin and end constraints, we refer to the work of
[7]. The conversion of these constraints into coefficients for
our application is worked out in Annex A.

In our example we show the generation of a trajectory
for two different maneuvers proposed by figure 4. For the
maneuver Stay on current lane and decelerate, trajectories
with target speeds of 2 m/s, 4 m/s, 6 m/s and 8 m/s will
be calculated. We call the trajectory Stay on current lane with

target speed 8 m/s, trajectory T1. For the maneuver Change to

the left lane with current speed, trajectories with target speeds
around the current speed, such as 9 m/s, 10 m/s and 11 m/s
are calculated. The trajectory Change to left lane at 10 m/s is
called trajectory T2.

The begin constraints for the polynomial description are the
same for both trajectories T1 and T2. The end constraints for
the trajectories are set by their target lateral position, their
target longitudinal speed and a zero lateral speed and accel-
eration and zero longitudinal acceleration. With v referring to
the speed, a to the acceleration, 0 being the begin time, T end
time, and the indices 1 and 2 referring to trajectory T1 and T2

respectively, the constraints are defined in table I.
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trajectory T1 trajectory T2

begin end begin end
vx01 = 10 vxT1 = 8 vx02 = 10 vxT2 = 10

ax01 = 0 axT1 = 0 ax02 = 0 axT2 = 0

py01 = 0 pyT1 = 0 py02 = 0 pyT2 = 3

vy01 = 0 vyT1 = 0 vy02 = 0 vyT2 = 0

ay01 = 0 ayT1 = 0 ay02 = 0 ayT2 = 0

TABLE I
BEGIN AND END CONSTRAINTS FOR THE GENERATION OF TRAJECTORIES

T1 AND T2

With these constraints, the polynomial description of the
trajectories is found directly, as explained before. The third
section of figure 10 shows trajectories T1 and T2.

2) Evaluation of cost: In a next step, the performance or
alternatively the cost of each proposed trajectory is calculated.
This cost is a more complex definition than the collision risk
used in the maneuver module. It integrates aspects like speed,
estimated comfort, consumption and traffic rules offences,
amongst other possible ones. The total cost of a trajectory
is the weighted sum of each partial cost. These weights are
set to encourage sportive, comfortable or full legal driving,
depending on manufacturers’ or customers’ preferences.

Safety being the most important concern, risk is the first
cost to be evaluated. The definition of risk was presented in
the description of the maneuver module. Here, the risk cost
takes into account possible instability from slipping if road
friction information is available.

Risk =

N objects
∑

i=1

Prob(TTC) Grav(V, Vi) (11)

where Prob and Grav denote the functions defined in the
previous parts.

For trajectory T1 in our example, the time to collision with
the vehicle C3 is 4 s leading to a small probability of collision.
However, the gravity of a collision would be high as there is a
big speed difference between two vehicles, even with the ego
vehicle slowing down to 8 m/s. The risk of collision with the
vehicle C3 was found to be 10. The risk of a collision with
the vehicle C2 is believed to be 0 as its trajectory does not
intersect with T1. The addition of both risk costs of trajectory
T1 is 10.

For trajectory T2 the time to collision with the vehicle C2

is 20 s, which gives a very low probability of collision. As
its speed difference with the ego vehicle is small, also the
gravity of the collision is small. The risk of collision with C2

is calculated as 1. There is no collision with C3 as the ego
vehicle changes lanes. The risk cost of trajectory T2 totals 1.

The risk of collision with the phantom objects turns out to
be zero.

The speed cost is calculated as the difference of the distance
which could be reached at legal speed limits and the distance
actually reached within the time period of the suggested
trajectory.

Trajectory T1 takes a big speed cost as it proposes to drive
at 8 m/s which is much slower than the legal speed limit of
15 m/s. The speed cost was calculated as 20. Trajectory T2

with its target speed of 10 m/s is slightly faster, leading to a
speed cost of 15.

The comfort cost is calculated as the quadratic integration
of the variations in acceleration during the execution of the
trajectory.

Both trajectory T1 as trajectory T2 take a substantial com-
fort cost. Trajectory T1 requests braking in the longitudinal
direction. This is not the case for trajectory T2, but this one
has an important acceleration in the lateral direction. Both take
a comfort cost of 10.

The consumption cost is deducted by a weighted quadratic
integration of the longitudinal acceleration and speed values
needed for following the trajectory.

Trajectory T1 corresponds to braking, which is consumption
free. Trajectory T2 takes a small consumption cost of 1 for
maintaining the same cruise speed.

The traffic rules offence cost integrates penalties for speed-
ing and for crossing full road marks. Driving on the left lane
on a high way does not necessarily lead to penalties by law
but in the algorithms it gets small offence costs inviting the
pilot to choose the right lane when possible.

This is the case for trajectory T2 which gets an offence cost
of 5 for driving on the left lane. Trajectory T1 is offence cost
free.

3) Ranking of trajectories: After all trajectories are gener-
ated and evaluated, they are ranked by their total cost.

With the partial costs we found, we can calculate the total
costs for trajectory T1 and trajectory T2. As the customer
wants a neutral driving, not too sporty, not too conservative,
we set all weights to 1. This results in a total cost of 40 for
trajectory T1 and 32 for trajectory T2.

Both trajectory T1 and trajectory T2 have advantages and
disadvantages but the latter takes the smallest total cost.
For sporty driving the weight of the speed cost in the total
cost could be increased, leading to an even bigger difference
between both trajectories. With a more conservative setting,
trajectory T1 could be found the best option.

In a next step the best trajectories are mixed for a second
generation of trajectories.

C. Second generation and evaluation of trajectories for ego

vehicle

The second generation refines the discrete solution space
of trajectories, leading to better performing trajectories and to
smoother transitions from one trajectory to another.

A trajectory of the second generation is created by com-
bining two best trajectories of the first generation, weighted
by their total costs. This means that the new trajectory lies
in between its two parent trajectories, but closer to the parent
with the lowest total cost.

With the same method as in the first generation, the total
cost of each of these new trajectories is calculated. They are
inserted in the ranking of all trajectories.

The best trajectory of both generations, for example trajec-
tory T2 in figure 10 is chosen to be executed in the case of
automated driving. Alternatively, in assisted driving, several
best trajectories to choose from can be presented to the driver.
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Fig. 11. Trajectory research framework

The white dots in Human Machine Interface (HMI) pre-
sented in figure 11 show an (sub-)optimal trajectory of the
ego vehicle in white on a two lane road in green with other
objects shown as red squares. The best trajectories can easily
be communicated on the 9-maneuver grid with a green case
and with a message stating the target speed and target lane.
Histograms show the total cost of the best trajectory, with its
different cost components.

With the same algorithm or intelligence, the character of the
pilot is greatly influenced by the great number of parameters
used in the algorithm. Optimization can be done with a genetic
algorithm in a simulation environment. This promotes pilot
behavior with low average costs on test tracks, imitating the
training process of human pilots.

VI. CO-PILOT AND DRIVER MANEUVER GENERATION

The maneuver grid view presented in previous sections,
turns out to be a very intuitive way to give instructions to
the driver. In the opposite direction, a simple analysis of
the driver’s actions can give a grid representation of the
driver’s wishes. The grid by co-pilot and the grid by the driver
can easily be cross-evaluated. The two-ways communication
between the two principle actors in the vehicle is essential for
a reliable and understandable cooperation.

A. Co-pilot maneuver grid

As seen in previous sections, the maneuver module gives
a performance value to each maneuver in the grid, based
on a fast estimation of the collision risk. The trajectory
module generates and evaluates several solutions within the
maneuvers, with a multi-criteria performance measurement.
For communication with the driver the results from the tra-
jectory module are used to enrich the maneuver grid. The
total cost or performance value of each calculated trajectory
is mapped on the corresponding maneuver. The average of all
mapped values is used as the final performance value of the
grid maneuver.

The mapping between the trajectory and maneuver grid is
done with respect to the target lane and the target speed of the
trajectory. The following limits on the speed of each maneuver
were found understandable for the driver:

• Hold current speed: a target speed within −2 m/s and +2
m/s of the current vehicle speed.

• Decelerate: a target speed of minimum 2 m/s below the
current vehicle speed.

• Accelerate: a target speed of minimum 2 m/s above the
current vehicle speed.

B. Driver maneuver grid

The prediction of driver intention is usually done consider-
ing one specific maneuver. The emergency braking assistance
which is common on new vehicles, for instance, analyses
the brake pedal position and pedal speed in order to detect
a emergency maneuver initiated by the driver. In [9], an
advanced estimate on the driver state is used to enhance the
acceptability of the collision warning system. [10] uses an
approach based on a bayesian network for identifying a driver
behavior model. Most of these methods require either an intru-
sive monitoring of the driver or strong computational power.
We propose a fast analysis combining the driver commands
and the vehicle position in the environment in order to assess
the maneuver wished by the driver. This analysis is separated
in a longitudinal and a lateral analysis. Both analyses are
merged to give the maneuver grid of the driver.

1) Longitudinal analysis: As is done in existing braking
assistance systems, we use the commands of the driver (pedal
position, pedal speed) and the state of the vehicle (longitudinal
acceleration, speed) in order to estimate the longitudinal
component of the maneuver wished by the driver. We could
use a detailed map of the road to make the distinction between
the power required by the slope and the real wishes of the
driver, or alternatively directly work with a slope observer, as
described in [14]. This is done as follows:

1) To determine the current state: using the road slope
observer and knowing the current speed of the vehicle,
the torque on the motor axle can be determined, together
with the required position of the gas pedal and the
brake pedal. By comparing these positions with the real
position of those pedals, we find if the driver wants to
accelerate, hold speeds or decelerate. All data used is
available on recent vehicles. A longitudinal accelerom-
eter, can give extra redundant information.

2) To determine the driver wish: the variations in the
position of the gas and brake pedals are also used in
order to estimate the driver wish. As for the emergency
braking maneuver, a separate process can be defined
that checks if the position and speed of the brake pedal
exceed a given limit.

Figure 12 shows the three membership functions for the
longitudinal acceleration of the vehicle and for the speed of the
brake pedal. The special function of the emergency maneuver
is presented on the figure of the brake pedal speed. The
functions used are normalized gaussian functions. Only the
constant class is tuned, the other classes are directly deducted.
For the emergency braking, the maximum value is not set to
1, so that this mode is only selected if confirmed by the other
indicators.

Finally, theses values are merged in order to find the
longitudinal wishes of the driver.
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Fig. 12. Membership functions for longitudinal behavior classification (left:
longitudinal vehicle acceleration, right: brake pedal speed)
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2) Lateral analysis: The analysis of the lateral behavior of
the driver has the same structure:

1) To determine the current state: using the knowledge
of the road curvature, the vehicle speed and vehicle
parameters, the nominal steering angle to follow the
lane is defined. Comparing this steering angle with the
real steering angle gives a first indicator for the lateral
behavior. A second, redundant, indicator uses the lateral
position of the vehicle with respect to the center of
the lane. This indicator is tuned with a driver behavior
analysis during normal driving on one lane. The average
lateral displacement from the center of the lane is around
0.20 m for most drivers.

2) To determine the driver wish: A third indicator uses the
Time to Line Crossing (TLC, see [17]), with a first
order approximation. This value integrates the lateral
positioning and heading with respect to the lane. Here
too, the values found in previous experiments [16], can
be used for tuning. Finally, the state of the blinkers can
be integrated in a forth indicator.

Figure 13 shows the membership functions of two criteria, the
lateral displacement and the blinkers status. For the first one,
a normalized gaussian function is used, the left lane and right
lane classes are directly deduced from the same lane class.
This last one is tuned using an admissible lateral displacement.
For the blinkers status, no class membership is set to 0 in order
to be able to detect lane changes without the activation of the
blinkers.

C. First level of assistance

By comparing the driver maneuver grid with the co-pilot
grid, a first level of driving assistance can be defined. In most
situations, both grids will be similar or, at least, the driver
most wished maneuver will be the same as or adjacent to the
co-pilot optimal maneuver. When a considerable difference
is detected, the co-system can warn the driver and indicate

possible risks. In a more active way it give a haptic feedback
on the steering wheel and pedals or even temporarily take over
the control of the vehicle.

For instance, a blind spot assistance could easily be derived
from the comparison of the two maneuver grids. If the driver
engages a lane change maneuver to the left, without seeing
a fast approaching vehicle on the target lane, the system will
find an incompatibility between the driver and co-pilot grids
and warn the driver on this specific risky situation.

We could also define an obstacle warning application, which
detects wether the driver adapts his speed when approaching
an obstacle or a slow moving vehicle. In this case the optimal
maneuver in the co-pilot grid will be a emergency brake or a
lane change maneuver.

Most of the current ADAS could be derived from the simple
grid comparison. This framework offers a generic way for
building driving assistance systems.

VII. LONGITUDINAL AND LATERAL CONTROL

As presented in previous sections, the co-pilot can cooperate
with the driver on different levels of the driving task. It can
just inform the driver or take over the control of the vehicle.
This section explains how the latter is done.

The trajectories described, are designed to respect the limits
of the road adherence, both in the longitudinal as lateral
direction. We also avoid braking while taking a curve. This
means that a decoupled longitudinal and lateral control can be
used to guide the vehicle along the trajectory.

Works as [12], [13], [11] present a coupled longitudinal and
lateral control. A control for highly dynamic trajectories, such
as obstacle avoidance trajectories, are developed in [13].

A. Lateral control

The vehicle positioning relative to the selected trajectory
is done with the following variables: the relative yaw angle
∆ψ and the lateral displacement yL at a certain distance ls
ahead, relative to the center of gravity of the vehicle [18].
With this formulation, the trajectory curvature ρref is seen
as a disturbance input and the control problem becomes a
disturbance rejection problem with zero as target values for
∆ψ and yL. Only a front view video camera is needed
for measuring these two variables [20]. It is assumed that
the vision algorithm allows to estimate the curvature of the
trajectory, for a feed-forward controller that improves the
performance during the transient phases. The steering angle
has the following form:

δf = K1∆ψ + K2yL + K3ρref (12)

where K = [K1,K2] is computed using an H∞ optimiza-
tion [19]:

K = arg min
K

‖Tρref→[∆ψ,yL]T ‖∞ (13)

while K3 is computed from the closed-loop system steady-
state gain.

Figure 14 shows a lane change maneuver using this algo-
rithm. Transitions, both in position and yaw angle are efficient
and smooth and there is no overshoot on the target lane.
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Fig. 14. Lateral control results during a lane change maneuver

Tb Brake torque (N.m)
Mrr Rolling resistance torque (N.m)

h height of the center of the wheel (m)
Fa aerodynamic force (N)

g gravity (9.81 m.s−2)
θ Road slope angle (deg)

a acceleration (m.s−2)

Jwr Jwf Rear/front wheel inertias (1.2825 kg.m2)

Je Engine/ transmission inertias(0.2630 kg.m2)
Rg gear ratio ( final gear included)
Ts Shaft torque (N.m)

v Vehicle speed (m.s−1)
ωe Engine speed (rpm)
m Vehicle mass (kg)

TABLE II
VEHICLE MODEL PARAMETERS

1) Speed control: The following longitudinal control com-
putes the required acceleration, to follow the speed profile
proposed by the trajectory module. It is decoupled from the
lateral control.

a) Vehicle modeling [25]: The vehicle model used for
control synthesis is a simplified non-linear model. The longi-
tudinal equation of the drive train is described by:

(m +
(Jwr + Jwf )

h2
)a =

Ts − Tb − Mrr

h
− Fa − mg sin(θ)

(14)
With a non-slip assumption (v = Rghwe) and (Te = RgTs),
the term of for the traction effort in equation (14) can be
eliminated. This gives:

Te − Rg(Tb + Mrr + hFa + mgh sin(θ)) = Ita (15)

with

It =
(Je + R2

g(Jwr + Jwf + mh2))

Rgh
(16)

b) Formulation procedure: A second order sliding modes
algorithm is chosen to perform the presented control, for the
following reasons:

• Sliding modes techniques are easy to implement,
• It is robust with regards to the model errors and varia-

tions,
• Second order sliding modes techniques avoid the so-

known chattering problem linked to the classical sliding
modes.

In order to synthesize the control algorithm, a sliding surface
S has to be defined, with the objective to be reached:

S = (v − v∗) + β(v̇ − v̇∗)

This sliding surface takes into account, the speed error between
the vehicle speed v and the speed imposed by the trajectory
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Fig. 15. Desired speed profile given by the trajectory module versus actual
vehicle speed

v∗ in a first term, and the acceleration error in a second. The
coefficient β sets the weight of both terms. The term (v− v∗)
performs the speed tracking, the term (v̇− v̇∗) assures a given
comfort level, in the longitudinal direction.

The equivalent control method is applied in order to refine
the sliding modes technique. This equivalent control ueq is
obtained as:

ueq =
{

u
/

Ṡ(X, u) = 0
}

since the degree of the considered system is equal to 1. X is
the state vector and u is the control input. This gives:

ueq = v̇∗ − β(v̈ − v̈∗)

The second order sliding modes algorithm is the twisting
algorithm presented in [22], [23], [21]:

u̇ =







−u if |u| > |ueq|

−KMsign(S) if SṠ > 0 and |u| ≤ |ueq|

−kmsign(S) if SṠ ≤ 0 and |u| ≤ |ueq|

(17)

Two gains km and KM are to be tuned, to obtain a convergence
of the method in a finite time tf :

km > KM > 0
km > 4CM

S0

km > C0

cm

KM > CM km

cm
+ 2 C0

cm

The parameters CM , cm, S0 and C0 are determined with the
four conditions, through the Utkin Theorem [24].

c) Simulation results: The control algorithm is designed
and simulated in MATLAB/SIMULINK with the vehicle
model presented in paragraph VII-A1a. The gains km and
KM are tuned to 10 and 30. The weight factor β is chosen
for having smooth variations in the speed: β = 0.25. The
simulation results are quite good in terms of speed following,
but it is hard to get the longitudinal acceleration smooth
enough. In a prototype vehicle, it would generate high jerks
in the longitudinal direction.

A solution to this problem consists in replacing the function
sign in the Twisting algorithm by a saturation function to
soften the variation in the accelerations. The saturation func-
tion is chosen close to the sign function, in order to respect
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Fig. 16. RT-Maps interface for the co-system

the theoretical background of the algorithm. The saturation
function can be written as:
{

sat(S) = sign(S) if S ∈] − inf,−τ ] and S ∈ [τ, inf[
sat(S) = S

τ
if − τ < S < τ

For this method, the simulation of the speed tracking is given
in figure 15. The constant τ is chosen to be 0.05. A good speed
tracking is obtained, with a very short convergence time. Such
a control algorithm can be easily implemented in a prototype
vehicle.

VIII. SIMULATION

A. Description of simulation environment

With several parameters needed to be tuned, a simulation
tool is crucial in the development of these algorithms. The
simulation of different scenarios is done with SiVIC[15],
which is internally developed software. The communication
between SiVIC and different modules of co-system is done
by RTMaps6. This allows us to directly plug-and-play the
software in the test vehicles, when the algorithm is optimized.
The software structure is shown in figure 16. The environment
data, the behavior of the ego vehicle and ten surrounding
vehicles are calculated by SiVIC and sent to the modules of
the co-system through the simulated sensors denoted with a
L. The output of SiVIC is the information we can expect from
real sensors and digital map information in the test vehicles.
All data is fused by a data fusion module. This module is not
the topic of our research; it is a black box which results in a
local map with all relevant data for our trajectory calculation
algorithms, such as position, speed and acceleration of the
ego vehicle and other vehicles, the description of road marks,
and possibly the speed limits. As most (accurate) data is
provided by sensors on the ego vehicle, the output of data
fusion is given in a coordinate axis attached on the ego vehicle.
Additional information in an absolute axis, from GPS sensors
for example, could easily be converted in the ego vehicle axis
with a Cartesian transformation.

The maneuver and trajectory algorithms we developed are
brought together in the pilot module. It reads the local map
provided by the data fusion module and delivers a spatial
description of the best trajectory to be followed, and a temporal
description of the recommended speed. The cost components
of the pilot are passed for information for the driver. In
the HAVEit project, these performance indicators are used
by a mode selection unit. This high level module constantly

6RT-Maps is developed by Intempora, www.intempora.com

Fig. 17. Visualization of the maneuver grid and optimal trajectory in the
HMI

compares driver and automation behavior and decides on the
best automation mode. In dangerous situations for example,
this module (temporarily) hands over control from driver to
automation. In situations with partial or full automation, the
control module is charged of following the optimal trajectory
calculated by the pilot module. In the case of pure driving
assistance without automation control, the driver remains fully
responsible of the driving task. The output of control module is
then a copy of the driver’s steering, acceleration and braking
actions. Today’s challenge for OEM’s is to combine human
driver actions with co-pilot actions, and is one of the main
focuses of the European HAVEit Project. During simulation
the data of the control module for longitudinal and lateral
actions are passed to the ego vehicle via the simulation
software. In the test vehicles, these outputs are passed to
actuators on the steering wheel and pedals. Two interface
modules data fusion-pilot and pilot-control act as a translation
between the data structures used by the co-pilot and the data
fusion and control modules.

A separate Human Machine Interface (HMI) module, shown
in figure 17 reads and combines all relevant information from
the data fusion, pilot and the control module. The challenge
is to provide complete information in a clear way. In a first
version of our HMI, a vehicle position for the next 10 s
according to the best trajectory is drawn on a simple local
environment map, together with the position and speed of other
objects. The corresponding longitudinal and lateral actions
are summarized by simple arrows and words. The maneuver
grid shows the corresponding maneuver by a green case, and
gives a value on the other possible maneuvers in color code.
The different cost components could be added as additional
information.

B. Results of simulation

The cost indicators used by the co-pilot algorithm are a
good base to evaluate the performance of the co-pilot. They
are also used to compare the co-pilot performance with the
performance of the human driver, or even with the performance
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of other co-pilot algorithms. The most important tuning param-
eters are the weights of each of the partial costs with respect to
the total cost. During the simulations, they greatly influenced
the character of the algorithm, making the difference between
a sporty and comfortable co-pilot, with the same intelligence.
Through the HMI, the human driver is able to switch between
normal, sportive, comfortable and low consumption co-pilot.

Our algorithm is designed to be integrated on simple em-
bedded microsystems. This means that the calculation cycle
time and total memory used are other important performance
indicators for our co-pilot.

On a two lanes road and five near objects, the total calcula-
tion time is 10 ms on a standard office PC. As explained in the
description of the Trajectory Module, the number of relevant
objects could be reduced to a maximum of 8. Therefore
considering code optimizations, the maximum calculation time
is believed to be below 100 ms on an embedded system, corre-
sponding to an acceptable 3 to 4 m longitudinal displacement
before reaction at highway speeds.

The algorithm is now ready to be tested on a physical
test vehicle, which was in-house equipped with high-tech
proprioceptive and exteroceptive sensors and control actuators.
First tests will be done in an assistance mode, to gradually
move to higher forms of automation.

The result of the HAVEit project will be a demonstrator that
combines human and automation actions, switching between
different modes of automation, which go from giving simple
warnings to perform a high form of automation.

IX. CONCLUSION

In this paper a method was presented to determine an
optimal vehicle trajectory with the consideration of the road
environment and other vehicles (moving or not). Various
methods, mainly from robotics, exist in this domain, but their
computation time and the memory needed are not available on
today’s ECU’s and they do not allow an interaction with the
driver. The simulation results show that the proposed method
is very fast, outputting a new optimal trajectory every 10 ms.

In the first step of the co-pilot, the possible maneuvers are
ranked based on fast collision avoidance criteria. A grid with
nine maneuvers and their associated risk is outputted, together
with the target lane and target speed of the best maneuver.

In the second step, the co-pilot evaluates a small set of
trajectories within the best maneuvers, and can also evaluate
the fusion of the best trajectories. On each trajectory, several
performance indicators are evaluated, such as risk, speed,
consumption, comfort and legal driving. A weighted sum of
the different indicators, gives the total performance indicator
of a trajectory. The weights in this sum set the character of
the co-pilot and can be tuned to the character chosen by the
car manufacturer or driver.

The method allows an easy comparison of the co-pilot’s and
driver’s decision, at the high maneuver level. This can be used
in two ways: to correct or to execute the driver’s decision. With
the grid visualization, driving assistance systems as blind spot
warning can be easily defined.

For the automatic control of the vehicle along the trajectory,
a decoupled longitudinal and lateral control is presented. The

complete system has been integrated in the SiVIC simulator
to test and evaluate the co-pilot in several scenarios. Results
show a very good behavior both in assistance mode as in
an automated mode during lane following, lane changes and
distance regulation to a vehicle in the front.

Next steps are further developing the interaction with the
driver, implementing the algorithms in a physical vehicle and
enhancing the control laws.
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APPENDIX

This appendix presents the calculation of the coefficients
of the fourth order polynomial describing future longitudinal
positions and the fifth order polynomial describing future
lateral positions. The coefficients are directly linked with the
kinematical constraints we put on the begin and the end state
of the future motion.

In the following equations we refer with p, v and a to the
position, speed and acceleration respectively. The begin state
is indicated by 0 and the end state by T .

For the longitudinal direction, we use a fourth order poly-
nomial. Polynomial coefficients are determined using the con-
straints of continuity, which can be written as follows:

{

px(t) : g0x + g1xt + g2xt2 + g3xt3 + g4xt4 (18)























px(0) = px0

ṗx(0) = vx0

p̈x(0) = ax0

ṗx(T ) = vxT

p̈x(0) = axT = 0

(19)

>From 18 and 19, we develop the coefficients in function
of the constraints:























g0x = px0

g1x = vx0

g2x = ax0/2
g3x = (−vx0T − 2/ax0T

2 + vxT T )/T 3

g4x = (−1/2vx0T + 1/4ax0T
2 − 1/2vxT T )/T 4

(20)

In the lateral direction the constraints of continuity in
begin longitudinal position, speed and acceleration and in end
longitudinal position, speed and acceleration, can be met by a
fifth order polynomial. This polynomial is expressed relatively
to the road frame.

{

py : g0y + g1yt + g2yt2 + g3yt3 + g4yt4 + g5yt5 (21)































py(0) = py0

ṗy(0) = vy0

p̈y(0) = ay0

py(T ) = pyT

ṗy(T ) = vyT = 0
p̈y(T ) = ayT = 0

(22)

>From 21 and 22 we develop the coefficients in function of
the constraints:































g0y = py0

g1y = vy0

g2y = ay0/2
g3y = (−10py0 − 6vy0T − 3/2ay0T

2 + 10pyT )/T 3

g4y = (−15py0 + 8vy0T + 3/2ay0T
2 − 15pyT )/T 4

g5y = (−6py0 − 3vy0T − 1/2ay0T
2 + 6pyT )/T 5

(23)
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