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Abstract—Crude oil transportation is a central logistics opera-
tion in petrochemical industry because its cost represents a sig-
nificant part in the cost of petrochemical products. In this paper,
we consider the transportation by tankers or trucks. We show that
under some realistic assumptions, this problem can be transformed
into a single item lot sizing problem with limited production and
inventory capacities. We develop a strongly polynomial dynamic
programming algorithm to solve it. The problem of crude oil trans-
portation is very difficult. There are few efficient methods in this
domain. In the model considered in this paper, crude oil is directly
shipped from a supplier port to client ports to satisfy customer
demands over future periods. The supplier port disposes a fleet
of identical tankers with limited capacity. The inventory capaci-
ties of customers are limited and time-varying. The backlogging is
admitted. The objective is to find an optimal shipment plan mini-
mizing the total cost over the -period horizon. When the number
of tankers is unlimited and customer demands are independent,
shipment plans of different customers become independent. This
problem can be considered as independent problems. Each of
them can be transformed into a single item lot sizing problem with
limited production and inventory capacities, where tanker capacity
corresponds to production capacity in classical lot sizing models.
The main contributions of this paper are: 1) transformation of a
transportation planning problem into a lot-sizing problem; 2) an
�� �� algorithm is proposed to solve it; and 3) the results can also
be applied to terrestrial transportation with direct deliveries.

Note to Practitioners—This paper addresses a real-life crude oil
transportation planning problem with direct delivery. Based on
mathematical properties, the problem is transformed into a lot
sizing problem with limited production and inventory capacity.
This latter problem is shown to be exactly solvable in polynomial
time with dynamic programming. In other words, an optimal so-
lution of this problem can be obtained within a very short amount
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of computation time, even for large sized instances. Furthermore,
the algorithm can be easily implemented with Excel tables and a
case study with real-life data shows that the proposed algorithm
yields a solution reducing very significantly (by more than 25%)
the transportation cost, compared with the classical solution with
immediate deliveries.

Index Terms—Complex system, crude oil transportation, dy-
namic programming, lot-sizing, scheduling.

I. INTRODUCTION

W
ITH worldwide economic growth, the demand for

energy, in particular, crude oil, is increasing very

quickly and meeting it at the lowest cost becomes crucial for

the economy of a country. The crude oil transportation problem

recently attracted much attention in oil industry. Several modes

are often used to transport crude oil: pipelines, tankers, trucks,

and trains. The choice of transportation modes is made ac-

cording to distance, crude oil type, cost, and available resources.

We can use one or their combination in a crude oil supply chain.

For example, in an upstream crude oil supply chain, pipeline

and tankers are often used for large volume transportation over

long distances. Trucks or trains are used in the downstream

distribution of oil products. Typical unitary crude oil transporta-

tion cost ranges from 1.5 to 3.0 US$ per barrel. Therefore, total

yearly worldwide crude oil transportation cost for a large oil

company can be as much as several billion dollars [4]. Hence,

an appropriate plan can lead to significant transportation cost

savings.

According to the United Nation Annual Review of Maritime

Logistics [16], with an increasing worldwide demand for crude

oil and petroleum products, tankers have become one of the

principal crude oil transportation modes. However, there are few

related works for oil transportation planning with tankers.

The problem studied in this paper can be summarized as fol-

lows. A type of crude oil is shipped from a supplier or hub port to

client ports to satisfy customer demands over forthcoming

periods. The supplier port disposes a fleet of identical tankers

with limited capacity. The number of tankers, however, is as-

sumed to be unlimited. This assumption is not restrictive since

tankers are generally rented from third-party companies by an-

ticipation, as done in China Petroleum. Furthermore, this is a

common practice in industry, since companies seek for focusing

on their own core business by outsourcing accessory activities

such as logistic ones. The delivery lead time is assumed to be

negligible in case where it is relatively short with respect to the

length of each period. Customer demands are dynamic and es-

timated based on the forecast. The inventory capacities of cus-

tomers are limited and time-varying. Backlogging is admitted
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but incurs a penalty. There is a setup cost for transportation,

independent of the quantity, called fixed cost. This cost can rep-

resent the rental cost and is assumed to be constant over time.

Transportation, inventory, and backlogging cost functions are

linear. The objective is to find an optimal shipping plan over

periods minimizing the cost.

Iakovou [11] considers a single period, multicommodity,

multisource-destination and multimodal maritime oil trans-

portation problem. He develops a multiobjective (risk analysis

and transportation costs) network flow model. In his linear

programming model, the flow capacity for a type of vessels is

limited and backlogging is not admitted. The model is then de-

composed into two subproblems, one for the risk, and the other

for the transportation. A commercial software package CPLEX

is used to solve the subproblems. An interactive methodology

is proposed based on a software tool known as Interactive Oil

Transportation model.

Sherali et al. [14] study a -period maritime transportation

problem, in particular, the Kuwait Petroleum Corporation

(KPC) problem. This problem involves multiple types of ships,

multiple products, and time window constraints. A penalty is

imposed on shipments that are not delivered within the time

windows. A relatively complex mixed-integer linear program-

ming (MILP) model for the KPC problem is proposed and

solved by using CPLEX for small-sized test instances. Later

on, an aggregate model (AP) that retains the principal features

and is also an MILP model is formulated. Finally, a specific

rolling horizon heuristic for AP is developed to solve practical

sized instances.

Christiabsen and Nygreen [5] consider a single item pickup

and delivery problem with time windows and inventory con-

straints. In this problem, inventory cost is not involved and back-

logging is not admitted. A mathematical programming model

is developed. The model is decomposed into subproblems re-

spectively for ship routing and harbor inventory planning. The

former consists of finding an approximately optimal route for

each ship. The latter for each independent internal harbor is to

find a sequence of visiting harbors with the least reduced cost.

The subproblems are solved successfully by column generation.

A solution for the overall problem is obtained by synchronizing

the solutions of the subproblems.

Cheng and Duran [4] are the first to consider multimodal

(pipelines and tankers), stochastic crude oil inventory/trans-

portation problems. They developed a decision support system

to investigate and improve a solution based on the discrete-event

simulation and optimal control. An integrated simulation model

using a commercial package Arena is constructed to simulate

the dynamic and stochastic behavior of the system, and to

evaluate various strategies for the design and operation of the

system. For the optimal control problem, a Markov process

mathematical model is formulated. The whole system is then

decomposed into independent subsystems, one for each demand

location. The cost-to-go function of each subsystem is linearly

approximated. In their computational experiments, the MILP

model of the subsystem is solved with Matlab. However, no

computational results are reported.

The existing works cited before for oil inventory trans-

portation problems provide constructive ideas and interesting

research directions. Their common characteristics are: Com-

plete models are first constructed and then decomposed or

simplified. Subproblems are solved by software packages.

Finally, a solution of the original problem is obtained by syn-

chronizing the solutions of the subproblems.

Our idea is to consider a relatively simple oil inventory trans-

portation model and to develop an efficient optimization algo-

rithm. Based on this algorithm, we can consider multimode or

multiproduct oil inventory transportation problems. As a pre-

liminary research for a long term project of developing an ef-

ficient tool for planning maritime crude oil transportation, we

only consider tanker transportation problems in this paper.

We will first show that the shipment planning problem can

be transformed into a single item lot sizing problem with pro-

duction and inventory capacities and stationary unit production

and setup costs, and linear inventory/backlogging cost func-

tions. Even though it is widely studied in manufacturing envi-

ronment, it is relatively new in transportation. To the best of our

knowledge, there is not yet any polynomial algorithm for this

problem. This paper shows, based on mathematical properties,

that the problem can be solved in polynomial time.

Single item lot sizing problems have been widely investigated

in the literature. For capacitated lot-sizing models without back-

logging, Bitran and Yanasse [2] study the computational com-

plexity with linear production and holding cost functions with

a constant production capacity. Florian and Klein [9] obtain an

algorithm with a constant production capacity, concave

production and inventory holding cost functions. Chung and Lin

[8] give an algorithm with production capacity that is

nondecreasing over time, and where unit production and setup

costs are nonincreasing over time and holding cost functions

have arbitrary pattern.

For lot sizing models with inventory capacity and backlog-

ging, Love [12] proposes an algorithm by assuming that

the value of the concave production and holding cost functions

can be computed in constant time. For the same models with

linear production and holding cost functions and setup costs,

Chu and Chu [6] propose an algorithm, and an al-

gorithm if the production cost functions are linear with setup

cost and nonspeculative holding/backlogging cost functions.

Backlogging models with inventory capacity, production

capacity and general cost functions (with setup cost) are

NP-hard, since the model without backlogging is NP-hard.

For such problems, Swoveland [15], Shaw and Wagelmans

[13], and Chu et al. [7] propose pseudopolynomial dynamic

programming algorithms. Hoesl and Wagelmas [10] develop

fully polynomial approximation schemes. For the problem

with linear production and holding cost functions, which is a

special case of minimum cost network flow problem, Ahuja

and Hochnaum [1] propose an algorithm. Al-

though setup cost is not considered in their paper, this model

has numerous applicable scenarios in today’s manufacturing

environment.

In Section II, the problem is described in detail. In Section III,

its linear programming model is proposed. We prove mathemat-

ical properties of the model. Based on them, we show that the

problem can be transformed into a single item lot sizing problem

with limited inventory and production capacities. Section IV
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Fig. 1. A crude oil transportation problem.

presents a new polynomial dynamic programming algorithm to

solve it. In Section V, a case study is presented to illustrate the

algorithm. Section VI concludes this paper and indicates some

future research directions.

II. PROBLEM DESCRIPTION

In this section, we describe the crude oil transportation
problem at hand. It can be presented as in Fig. 1 in which one
unlimited capacitated hub port supplies multiple client ports
by a fleet of identical tankers. The capacity of a tanker and
inventory capacity of the client ports are limited.

The problem considered is to organize crude oil trans-
portation from the supplier port to client ports for the
forthcoming periods indexed from 1 to . The demand of cus-
tomer for period is known and denoted . In
each client port, the inventory capacity is and time-varying
because several products may share the same storage area.
Backlogging is admitted but incurs a penalty. Backlogging and
holding cost functions are linear and stationary in the horizon.
The supplier port sends out a fleet of identical tankers each
with capacity . The demand of a customer for a period may
be greater than the tanker capacity. The transportation cost
is stationary in the horizon and constituted by a fixed and a
variable shipping cost. The stationariness of the cost generally
holds, especially when the transportation is subcontracted. The
fixed cost is charged to every tanker used, to represent the
rental cost, for instance. The variable one is linear with the
quantity transported and transportation distance. The number
of tankers is considered to be unlimited. The delivery should
be made directly from the supplier port to a client port. As a
consequence, the delivery to a customer is independent from
any other customer. Because of all these assumptions, the crude
oil transportation problem with customers can be considered
to be independent ones. Hence, if an optimal shipping plan
for each customer can be determined, the optimal shipping
plan for custumers is obtained. In the remainder of this
paper, without loss of generality we consider one supplier, one
customer shipping problem. The objective is to find a shipping
plan for each customer to minimize the total transportation and
inventory cost over the -period planning horizon.

The single-product, single-supplier, and single-customer
crude oil transportation problem has similarities with the single
item lot sizing problem with limited production and inventory
capacities in the literature, if we consider tanker capacity as
production capacity, and shipping cost as production cost. The
only difference is that in the model we consider, customer de-
mand for some period may be greater than the tanker capacity

and more than one delivery is necessary in a period to satisfy
the requirement of the customer. It means that in a lot sizing
problem, demand exceeds the production capacity. Another
point is that each delivery incurs a setup (fixed) cost in the oil
transportation problem, while in a lot sizing problem, there is
generally only one production setup cost for one period.

III. MATHEMATICAL FORMULATION

The following notation will be used throughout the paper.

the number of periods in the planning horizon;

production (tanker) capacity;

demand of period ;

setup cost (fixed cost for each delivery);

unit transportation cost;

unit holding cost per period;

unit backlogging cost per period;

;

actuated demand of period
, ;

lower limit of inventory level ( ,
is the upper limit of backlogging level) at the end
of period ;

upper limit of inventory level at the end
of period ;

production (transportation) quantity of period ;

inventory level at the end of period ;

production (transportation) cost function that is
period-independent, i.e., ,
where gives the required number of tankers,
the first term then gives the fixed cost related to the
tankers and the second term gives the variable cost
proportional to the quantity transported;

inventory holding/backlogging cost function which
is period-independent, i.e.,

if

otherwise

Among these notations, ’s are decision variables and ’s are
state variables. We assume that , , and .

Without loss of generality, we assume that the inventory
levels at the end of periods 0 and are 0. We define

The corresponding lot sizing problem can be formulated as
follows:

(1)

(2)
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TABLE I
CUSTOMER DEMANDS

TABLE II
ACTUATED CUSTOMER DEMANDS

(3)

(4)

(5)

- (6)

where represents the number of tankers required in period
. In fact, due to constraint (4) and the minimization operation

in (1), we must have in optimal solutions. The
constraints are linear functions. The objective function is not
linear but it is well known that it can be transformed into a linear
one by introducing an additional variable representing the in-
ventory holding/backlogging cost for each period and additional
constraints.

If demand exceeds tanker capacity and
, it means that the demand of period can fill

tankers. With stationary transportation cost, it is logical to im-
mediately transport the partial demand that fills tankers to
avoid additional backlogging and/or holding costs. We have the
following property.

Property 1: In an optimal plan, for any period
such that ; in other words, there are at least

immediate deliveries with full loaded tankers in any period .
Proof: See Appendix I.

To illustrate the algorithm developed, the following example
is used throughout this paper.

Example 1: We consider a hub port and one client port crude
oil shipping problem. The forecast demands in the forthcoming
periods are presented in Table I. The fixed and unit transporta-
tion costs are, respectively, and . The tanker’s
capacity is . For the customer, the holding and back-
logging costs are respectively and . The upper
limit of the inventory level at the end of periods are, respec-
tively, , , , . The lower
limit of inventory level at the end of period are for

.
According to Property 1, in an optimal solution, the numbers

of full loaded tankers immediately delivered for four periods are,
respectively, 5, 4, 7, and 6. The actuated customer’s demands are
given in Table II.

Property 2: In an optimal solution, for any period , if
, then . In other words, if the available inventory is

enough to cover the actuated demand, then the quantity trans-
ported is exactly full tankers.

Proof: Assume that there is an optimal plan in which there
is some period such that (note that the solutions in
which can be discarded according to Property 1) and

TABLE III
CUMULATIVE DEMANDS �

By the definition, we have
. Due to the assumption that ,

we must have . Construct another solution by shifting the
production quantity from period to period so
that in the new solution, we have . The
holding cost of period is reduced, while the other costs do not
increase. Therefore, the new solution is strictly better than the
initial solution, which is in contradiction with the assumption
that the initial solution is optimal.

Property 3: In an optimal plan, in addition to tankers used
for immediate deliveries, at most one tanker can be used in each
period, i.e., , for any such that .

Proof: See Appendix II.
From Properties 1 and 3, the remaining problem is to establish

a transportation plan for the actuated demand. By defining
, the two above properties imply

which is identical to the capacity constraints in classical lot
sizing problems, where the production capacity is given by .
With this in mind, the production cost function can be rewritten
as

if

otherwise

and the range of in the mathematical formulation can be
rewritten as . Furthermore, we have the following
corollary from Property 2.

Corollary 1: In an optimal solution, for any period , if
, then .

We introduce the notion of cumulative demand as follows:

We have , and , for any such that
.

Example 1 (Continued): The cumulative demands in the ex-
ample 1 are given in Table III.

In the remainder, we assume without loss of generality that
the demands are actuated ones. For the actuated demands, we
have and the actuated demand shipping problem
corresponds to a lot sizing problem.

The problem at hand is a standard single item lot sizing
problem with production and inventory capacities and sta-
tionary unit production and setup costs, and linear inven-
tory/backlogging cost functions. In the next section, we show
that the problem can be solved in polynomial time with a new

. dynamic programming algorithm.
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IV. A NEW POLYNOMIAL DYNAMIC

PROGRAMMING ALGORITHM

In this section, we develop some properties of optimal solu-
tions, and then present a new dynamic programming algorithm
for the lot sizing problem based on the properties developed.

A. Definitions and Properties of Optimal Solutions

We first recall some definitions derived from the result of
Love [12].

Definition 1: If , is called a production period. In
particular, if (resp. ), is called a full (resp.
partial) production period.

Definition 2: If , , is an inventory

point.
For stationary transportation, holding and backlogging cost

functions, we have the following properties.
Property 4: In an optimal solution, , for any

such that .
Proof: Assume that there is an optimal solution in which

for some such that . Let be the first
one of such periods. This means that which implies
that .
By considering the fact that (Property 2), we have

. The facts
that and are in contradiction with the
assumption that the solution is optimal according to Corollary 1.

Assume that there is an optimal solution such that
for some such that . Let be the first one of
such periods. This implies that and

. Let be the next
production period. We have for any
such that . Construct a new solution such that

, and . In the
new solution, there is still backlogging in periods to , but
the backlogging cost is reduced, while the transportation cost
does not increase, which is in contradiction with the assumption
that the initial solution is optimal.

Property 5: In an optimal solution, for any partial pro-
duction period . In other words, if there is production in a pe-
riod it is impossible in an optimal solution that the requirement
of that period is not satisfied, while the production capacity is
not fully utilized.

Proof: Assume now that there is an optimal solution in
which there is a partial production period such that .
There must be at least one production period after since oth-
erwise we would have which is in contradiction with
the assumption. Let be the first production period after .
We must have for any such
that . Reducing the production quantity by

in period , while increasing the
production quantity of period by the same quantity reduces the
backlogging level of these periods and thus leads to a strictly
better solution which is in contradiction with the assumption
that the initial solution is optimal.

Example 2: Note that Property 5 is valid only for partial pro-
duction periods. It is possible that it does not hold for some full
production periods as shown in the following four-period ex-
ample with , , , and . ,

for , 2, 3, and 4.

TABLE IV
ACTUATED CUSTOMER DEMANDS

For this example, the only optimal solution is
and . In this solution, is a full production

period but .
From Property 5, we have the following corollary.
Corollary 2: In an optimal solution, for any partial produc-

tion period , .
Proof: From Corollary 1, we know that .

Furthermore, from Property 5, we have , which implies
.

Property 6: There is an optimal solution such that between
every adjacent partial production periods , there is at least
one inventory point . Equivalently, between any
two adjacent inventory points, , there can be at most one
partial production period .

Proof: It is obvious from [9] and [12], since the cost func-
tions are linear or linear with fixed charges, therefore concave.

From this property, an optimal plan can be decomposed into
a series of subplans as in [9] and [12], in which
and and are adjacent inventory points (the inventory levels
of periods and are, respectively, and ) with
and where denotes the set of values of such that
the inventory level of period can be equal to . All values
of for and all values of for are distinct;
namely, and

.
From Property 4, if (resp. ), the

lower (resp. upper) limit will never be reached in an optimal
solution. To be more specific, we have Corollary 3 according to
Property 4.

Corollary 3: For each subplan in an optimal solu-
tion, .

In the remainder, we will not consider the subplans
such that or . In
other words, we must have and .

Example 1 (Continued): For Example 1, the possible sub-
plans are (0, 0, 1, ), (0, 0, 2, ), (0, 0, 3, ), (0, 0, 4, 0), (1,

, 2, ), (1, , 3, ), (1, , 4, 0), (2, , 3, ), (2, , 4, 0), (3,
, 4, 0) with or . For each subplan, we have

and . In total, there are 46 possible subplans. In
subplan (1, , 4, ), for instance, as , ac-
cording to Property 4 or Corollary 3, the upper limit will never
be reached in an optimal solution. Hence, the subplan (1, 1, ,

) for , 3, 4, does not appear in an optimal
solution.

Let denote the minimal cumulative production and
inventory/backlogging cost of a subplan , that is, from
period to period , such that the inventory levels at the
end of periods and are and , respectively. In the re-
mainder, we develop a new polynomial dynamic programming
algorithm based on the properties obtained. For this purpose, we
must calculate the minimal cumulative cost for each
subplan .

In a subplan , the total production quantity is al-
ways , independent of the positions of the
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production periods, and there is at most one partial production
period. We consider two cases. In the first case, there is an
such that ; in other
words, the total demand of the subplan is not a multiple of the
production capacity, and there is exactly one partial produc-
tion period with a partial production quantity

. In the second case, the total pro-
duction quantity is and .

In what follows, we will compute the minimal cumulative
cost for each of these two cases. Note that in either of the cases,
the production amount and the number of production periods in
a given subplan are independent of the positions of the produc-
tion periods. For a given subplan , with stationary pro-
duction and setup costs, the total setup and variable production
cost is independent of the positions of the production periods
and is always equal to

. That is why we do not take into account the pro-
duction cost for the moment.

We first consider the case with one partial production period
such that . First note the following corollary.
Corollary 4: If , then .

Proof: If and , we would have
. This is in contradiction with Property 5.

This corollary means that in a subplan , if
, then cannot be a partial production period. To ob-

tain , the idea is to consider all possible positions for
the partial production period , if any, in a subplan
and the minimal cumulative inventory holding/backlogging
cost before (resp. since) period . In fact, let

• (resp. ) with be the min-
imal cumulative inventory/backlogging cost from to
without any partial production period such that the inven-
tory level at the end of period is (resp. ).
Without loss of generality, we assume that the full produc-
tion periods will not create inventory points before .

• (resp. ) with be the min-
imal cumulative inventory/backlogging cost from to
without any partial production period from to such
that the inventory level at the end of period is
(resp. ). Without loss of generality, we assume
that these full production periods will not create inventory
points after .

Then, we will have
,

if the partial production is at period , where “ ” may be “ ”
or “ ,” provided that . We will come back to this
point in Section IV-D.

In the following two subsections, we show how to compute
’s and ’s and then in Section IV-D, we show how to com-

pute when all ’s and ’s are known. Note that, if
in a subplan , then there is no partial

production period and is determined by
and . In this case, it is not necessary to calculate

and .

B. Minimal Cumulative Costs and

Before presenting the cumulative costs and
, let denote the number of full production

periods from period until . For any period such

TABLE V
NUMBER OF FULL PRODUCTION PERIODS � ��� ��

TABLE VI
NUMBER OF FULL PRODUCTION PERIODS � ��� ��

that , the inventory level at period is
. Due to Property 4,

is either with or

with . Otherwise, if
, the inventory level at period is 0. Fur-

thermore, if there is some period such that and
, is infeasible according to Property 3.

Thus, . If , it means that the
inventory level at period can satisfy the demands until period

without any production period. Naturally, we must have
, while and according

to Property 4. To sum up

if

if

if

otherwise.

Therefore, since , we have

Example 1 (Continued): The bounds on the numbers of full
production periods and in Example 1 are given
in Tables V and VI. In these tables, “ ” indicates that the corre-
sponding subplan with does not exist; “ ” means that it
is impossible that the corresponding subplan appears in an op-
timal solution and therefore can be ignored, and “ ” means that

is incompatible with .
We can write as follows:

if

if

if
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We distinguish two cases according to whether the inventory
level of period is positive or negative. These two cases also re-
spectively correspond to the cases where the number of full pro-
duction periods is or . In fact, (resp.

) is the minimal cumulative inventory and backlog-
ging cost from to with (resp. ) full pro-
duction periods and without any partial production from
until , such that (resp. ( , 0]).

According to the definition, there must be no inventory points
before . If for some such that

, we will have . This means that is an inventory
point. We have naturally for
any such that .

By the definition of , , and , these
quantities can be computed recursively.

From the definitions of the number of full production periods,
we have and ;

; and .

By the definition, we can initialize the minimal cost from
to

if

otherwise.

For any such that , we have the first equation
shown at the bottom of the page.

By the definition, corresponds to the case where
and the number of full production periods from to

must be .
If , we have and

the solution is infeasible. Hence, the minimal cumulative cost
is .

For the second and third cases of , its first term is
, the holding cost of period . Its second term corresponds

to the minimal cumulative cost from to without any
partial production.

If , period may or may not be a full
production period. If so, the number of full production periods
from to will be

. This leads to according to the definition

of and the cumulative inventory/backlogging cost

of these periods is . If is not a full production

TABLE VII
MINIMAL CUMULATIVE COSTS � ��� ��

period, the number of full production periods from to
is . This implies .
The cumulative inventory/backlogging cost of these periods is

. In an optimal solution, the decision corresponds
to the best one of these situations.

If , must be a full production period,
since otherwise the number of full production periods from
to would be which is infeasible.
Therefore, the number of full production periods from
to must be , which implies and
the cumulative inventory/backlogging cost of these periods is

. In the case that , we must have
, and . From

the recursive equation, by considering the third case, we have
for any such that , since

.
For the case that , by the definition, the minimal

cost from to is given by

if

otherwise

which is the initial condition of the dynamic programming al-
gorithm. For any such that , we have the following
recursive equations (second equation) shown at the bottom of
the page.

The explanation of expression can be found in
Appendix III. From the recursive formulations, we can see that
all , , and can be computed

in time.
Example 1 (Continued): All minimal cumulative costs

and are presented, respectively, in
Tables VII and VIII.

For subplans (1, , 4, ) with , there are three possible
subplans (1, 1, 4, 0) (1, 0, 4, 0) and (1, 1, 4, 0). Subplan (1,

if

if

if

if

if

if
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TABLE VIII
MINIMAL CUMULATIVE COSTS � ��� ��

1, 4, 0) is not in an optimal solution, because
according to Property 4. For subplan (1, 1, 4, 0),

, there is no partial production period. For
subplan (1, 0, 4, 0), the partial quantity , or the
partial production period is . If , ,
then . Thus,
is not in an optimal solution according to Property 5. Similarly,
if , , then

. Thus, is
not either. For subplan (1, 0, 4, 0) and with

and , we
have

and

C. Minimal Cumulative Costs and

Similarly to the previous subsection, recall that
(resp. ) for any such that ,
is the minimal cumulative inventory and backlogging cost from

to without any partial production from to such that
the inventory level at is (resp. ( , 0]).

To calculate and , we can make the
same observations for any period such that , as those
for and . In the remainder, let be
the number of full production periods from to , and

,
which are respectively the lower and upper bounds of the
number of full production periods from to . Fur-
thermore, if there is some such that and

, is infeasible according to Property
3. Thus, . If , it means that

no production period is needed after . Naturally,
and we have and according to
Property 4.

TABLE IX
NUMBER OF FULL PRODUCTION PERIODS � ��� ��

TABLE X
NUMBER OF FULL PRODUCTION PERIODS � ��� ��

Similarly to , we have

if

if

if

otherwise.

We can observe that

Example 1 (Continued): The numbers of full production pe-
riods and in Example 1 are given in Tables IX
and X. Note that “ ” means that the corresponding subplan
with does not exist, “ ” means that it is not in an op-
timal solution and “ ” means that is infeasible with

.
To summarize, we have

if

if

if

By the definition, the number of full production periods from
to corresponding to (resp. ) is

(resp. ).
Recall that we assume that there is no inventory point between

and . As a consequence, if for some

such that , then
for all such that .

If (resp. ), the holding cost of period is
(resp. ).

From the definitions of the number of full production periods,
we have and ;

; and .
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TABLE XI
MINIMAL CUMULATIVE COSTS � ��� ��

TABLE XII
MINIMAL CUMULATIVE COSTS � ��� ��

For , we initialize the minimal cost from to

if

otherwise

For any such that , we have the first equation
shown at the bottom of the page. The explanation of expression

can be found in Appendix IV.
For , we initialize the minimal cost from to

if

otherwise.

For any such that , we have the second
equation shown at the bottom of the page.

The explanation of expression can be found in
Appendix V.

From the recursive formulations, we can see that all these
quantities can be computed in time in a recursive
manner.

Example 1 (Continued): All minimal cumulative costs
and are presented, respectively, in

Tables XI and XII.

For subplan (1, 0, 4, 0) and , the minimal cumulative in-
ventory and backlogging cost and

.

D. Minimal Cumulative Cost and Polynomial

Algorithm

We establish now the conditions on the partial production pe-
riod to calculate . By the definition, the quantity that
should be produced at period must be . Note
that is a partial production period. From Corollary 4, in an op-
timal solution, if . As a consequence, we have
either or .

The number of full production periods from to
, i.e., and according to

the definition of the number of full production periods. From
Corollary 2, we must make sure that

. In
other words, we must have .

If , we have . If

, we must have

, which implies .
On the other hand, the number of full production periods from

to must be in order

that according to Property 5.
By definition, the total number of full production periods in

a subplan must be . This means that we
must have . Let

be the set of ’s such that this condition is fulfilled.
To facilitate the expression of , the minimal total

cost of a subplan , we distinguish two cases
and . Let

if

if

if

if

if

if
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TABLE XIII
MINIMAL CUMULATIVE COSTS � ��� ��

TABLE XIV
CORRESPONDING � OR � OF � ��� ��

For each given , this set can be computed in
time. All ’s can then be computed in time.

By definition, we have the following relation according to
Property 6:

where

Note that if is empty, we have .
If there is no partial production period; i.e., ,

we have, by definition

if

otherwise.

When all ’s and ’s are known, all ’s can be com-
pute in time.

Example 1 (Continued): The minimal cumulative cost
and corresponding or are given in

Tables XIII and XIV, respectively. In which, “ ” means that
the corresponding subplan with or does not
exist. “ ” means that it is not in an optimal solution and the
corresponding value of is set to . “ ” means that

TABLE XV
MINIMAL CUMULATIVE COST � ���

For subplan (1, 0, 4, 0), we have . For in-
stance, we have

The corresponding production quantities are

For subplan (1, 1, 4, 0), there is not partial production. We
have

The corresponding production quantities are
.

The subplan (1, 1, 4, 0) is not in an optimal solution, or
.

We can now give an algorithm to compute an optimal produc-
tion plan. Let , with and , be the min-
imal cumulative (production, inventory and backlogging) cost
from period 0 to period such that the inventory level at the end
of period is . According to Property 6, we have the fol-
lowing relations that respectively give the starting condition and
the recursive equation for the dynamic programming approach

For any and such that and , we have

The optimal solution corresponds to . The optimal
solution can be obtained in a backward manner, and the total
optimal cost (production, inventory and backlogging) equal to

.
As a consequence, for each and , in order to compute

, we need to consider all values of . The number of these
values is , and the number of is . Therefore,
additional time is needed to compute all ’s after the com-
putation of all ’s which needs time. Therefore,
the overall complexity to find an optimal solution is .

Example 1 (Continued): The minimal cumulative cost
is given in Table XV.

The optimal total cost is
is empty. .
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TABLE XVI
DEMAND DATA

TABLE XVII
ACTUATED CUSTOMER DEMANDS

V. A CASE STUDY

To illustrate the applicability of our model and algorithm to

real problems, we devise a case originating from crude oil trans-

portation at a Chinese oil company. This company imports every

year more than three million tons of crude oil from Venezuela,

and the import quantity per month is variable and affected by oil

price and demand. Generally, when the marine distance is more

than 6 000 miles, supertankers with tonnage over 200 thou-

sand tons (mainly, very large crude career (VLCC) with ton-

nage of 300 thousand tons) are used to transport crude oil in

order to save transportation cost. Venezuela is about ten thou-

sand miles away from China. Hence, the company adopts VLCC

as its transportation means. If the number of tankers is large

enough, the problem can be regarded as a single item lot sizing

problem with limited production (tanker) capacity and inven-

tory capacity. Based on the business data of the oil company,

the monthly demands in 2007 are given in Table XVI and ex-

pressed in 10 thousand tons.

According to Property 2 in Section III, in an optimal trans-

portation plan, when the customer demand in one period is more

than the capacity of a tanker, the most part of the demand will

be immediately delivered by fully loaded tankers except for the

actuated customer demands, which are calculated and shown in

Table XVII.

Other parameters of the problem are given as follows:

, (in 10 thousand tons) for , and

we suppose ; (in 10 thousand dollars)

per tanker, (in 10 thousand dollars) per 10 thousand tons,

(in 10 thousand tons), (in 10 thousand dollars)

per 10 thousand tons and (in 10 thousand dollars) per 10

thousand tons. Note that at the destination harbour crude oil is

unloaded from a tanker to the depot rented by the oil company

for a long period of time, or parameter is estimated based on

the inventory holding cost and the rental cost to take both costs

into account.

If these actuated customer demands are satisfied by imme-

diate delivery, the corresponding total transportation and inven-

tory cost is 50.68 million dollars.

Our dynamic programming algorithm is implemented with

Excel tables on a PC with Intel Core DUO CPU of 2.0 GHz with

2.0 GB RAM. An optimal solution is computed simultaneously

when the data are input. The computation time is therefore 0. It

is given in Table XVIII with a total cost of 37.64 million dollars.

TABLE XVIII
NUMERICAL RESULTS

In the optimal transportation schedule, only eight tankers

are needed to satisfy all the actuated demands over 12 months,

and total transportation and inventory cost is 37.64 mil-

lion dollars. Compared with the immediate delivery cost,

the proposed algorithm reduces the transportation cost by

. This clearly represents very

significant cost saving.

Since the problem can also be modeled as a mixed integer

linear program, we also used CPLEX to optimally solve it. The

computation time is 0.2 s CPU for this case study. Since the

method used in CPLEX is based on branch and bound approach,

the computation time exponentially increases with the size of

the problem while our method is polynomial. The difference

of computation times will certainly increase with instances of

larger size. Furthermore, Excel is a common software, while

very few industrial people are familiar with CPLEX. Therefore,

the algorithm proposed in this paper is much more appropriate

to handle industrial problems.

VI. CONCLUSION

In this paper, we investigate the transportation planning of

crude oil from a supplier port to client ports to satisfy cus-

tomer forecast demands by tankers. Under some realistic as-

sumptions, the problem can be considered to be independent

one-customer shipping planning problems. We show that each

shipping planning problem can be transformed into a capaci-

tated lot sizing problem with limited production and inventory

capacities. So far, this problem has not been studied neither in

manufacturing environment nor in transportation. Then, we de-

velop a new polynomial algorithm that can be used in transporta-

tion and production environments.

For the obtained lot sizing model, we can cite some prospec-

tive research directions. At first, if the number of tankers in the

supplier port is limited, the problem cannot be decomposed into

independent one-customer problems. One has to coordinate the

decisions between these client ports. Second, an outsourcing

policy with production and inventory capacities is still an open

problem in a lot sizing model. Third, we can further integrate

time-varying purchase cost in our transportation model.

This work is a preliminary one for a long-term project to de-

velop efficient tools for the planning of crude oil transportation.

In the near future, we intend to extend our current research by

considering multimodes and multi-items in crude oil transporta-

tion and other related operations [17]–[23].

APPENDIX I

PROOF OF PROPERTY 1

Assume that there is an optimal solution in which

for some period such that . Since , we

11



should have . Without loss of generality, we can write

with and . We have two

cases.

If , there must be at least one

transportation period after due to the assumption that .

Let be the first transportation period after . Construct a new

solution by increasing the transportation quantity of period by

and decreasing the transportation quan-

tity of period by . In this new solution, the transportation

cost does not increase, while the backlogging level between

and is reduced. For each period such that , the

inventory/backlogging cost varies from

to ;

i.e., decreases by

since and

according to the assumption. This is in contra-

diction with the assumption that the initial solution is optimal.

If , we have

(A1)

There must be at least one transportation period before due

to the assumption that . Let be the last transporta-

tion period before . Construct a new solution by increasing the

transportation quantity of period by

and decreasing the transportation quantity of period by .

In this new solution, the transportation cost does not increase,

while the inventory level between and is reduced. For

each period such that , the inventory/backlog-

ging cost varies from to

; i.e., decreases

by

since and

according to (A1). This means that the new solution is strictly

better than the initial one which is a contradiction.

APPENDIX II

PROOF OF PROPERTY 3

Assume that there is an optimal solution in which more than

one tanker is used in some period , in addition to tankers used

for immediate deliveries, i.e., . We can always

write , where is an integer such that and

. Then, one tanker is needed to transport quantity

. Thus, can be distinguished into the following two cases.

If , construct another solution by in-

creasing the transportation quantity of by and by re-

ducing that of period by . In this new solution, the transporta-

tion cost does not increase while the inventory/backlogging cost

of period changes from to .

The total cost is decreased by

by considering the fact

that and the assumption that , which

is equivalent to . This is in contradiction

with the assumption that the initial solution is optimal.

If , we have

(A2)

Construct another solution by increasing the transportation

quantity of by and by reducing that of period by . In

this new solution, the transportation cost does not increase while

the inventory/backlogging cost of period changes from

to . The total cost is

decreased by at least

. Since and

or equivalently [see

(A2)], we have ; namely,

the new solution is strictly better than the initial one, which is a

contradiction.

APPENDIX III

EXPLANATION OF EXPRESSION

By definition, corresponds to and the

number of full production periods from to must be

. The first case of is similar to that of

.

For the second and third cases of , its first term cor-

responds to , the backlogging cost of period . Its second

term corresponds to the minimal cumulative inventory and back-

logging cost from to without any partial production.

If , period cannot be a full production

period since otherwise the number of full production periods

from to would be

, which is infeasible. As a consequence, the number

of full production periods from to is which

implies that and the cumulative inventory/backlogging

cost for these periods is .

If , period may or may not be a full

production period. If so, the number of full production periods

from to is . This im-

plies and the cumulative inventory/backlogging cost

of these periods is . If is not a full production

period, the number of full production periods from to

is , which implies and

the cumulative inventory/backlogging cost of these periods is

. In an optimal solution, the decision corresponds

to the best one of these situations.

In the case of , we must have , and

. From the

recursive equation, by considering the third case, we have
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for any such that , since

.

APPENDIX IV

EXPLANATION OF EXPRESSION

The first case of is similar to the corresponding
case of .

For the second and third cases of , its first term
corresponds to , the holding cost of period . Its second term
corresponds to the minimal cumulative cost from to
without any partial production from period to . Note that
there must be full production periods from to .

If , must not be a full production
period, since otherwise the number of full production periods
from to would have to be

which would be impossible. Therefore, the number

of full production periods from to must be ,
which implies that , and the cumulative inventory/
backlogging cost from to is . Note that
if , we must have and

. By the recursion, we have
.

If , may or may not be a production
period. If so, the number of production periods from to
is , which implies that . The

cumulative inventory/backlogging cost is . If
is not a production period, the number of full production periods
from to is , which
implies that . The cumulative inventory/backlogging
cost from to is . The minimal cumulative
inventory/backlogging cost from to is

.

APPENDIX V

EXPLANATION OF EXPRESSION

The first case of is similar to the corresponding
case of .

For the second and third cases of , its first term
corresponds to , the backlogging cost of period . Its second
term corresponds to the minimal cumulative cost from to

without any partial production. Note that the number of full
production periods from to must be in this case.

If , period may or may not be a full
production period. If so, the number of full production periods
from to is ,
which implies, we will have and the cumulative inven-
tory/backlogging cost from to is . If
is not a full production period, the number of full production pe-
riods from to is , which leads to

and the cumulative inventory/backlogging cost from
to is . In an optimal solution, the minimal

cumulative inventory/backlogging cost from to must be
.

If , must be a full production
period, since otherwise the number of full production periods
from to would be which is in-
feasible. Therefore, the number of full production periods from

to must be , which implies and

the cumulative inventory/backlogging cost from to is
. Note that if , we must have

and . By the
recursion, we have .

REFERENCES

[1] R. Ahuja and D. Hochbaum, “Solving linear cost dynamic lot sizng

problem in ��� ����� time,” University of California, Berleley, CA,

Tech. Rep., working paper, 2004.

[2] G. Bitran and H. Yanasse, “Computztional complexity of the capaci-

tated lot size problem,” Manage. Sci., vol. 28, no. 10, pp. 1174–1186,

October 1982.

[3] G. G. Brown, G. W. Graves, and D. Ronen, “Scheduling ocean trans-

portation of crude oil,” Manage. Sci., vol. 33, no. 3, pp. 335–346, 1987.

[4] L. Cheng and M. A. Duran, “Logistics for world-wide crude oil trans-

portation using discrete event simulation and optimal control,” Comput.

Chem. Eng., vol. 28, no. 6–7, pp. 897–911, Jun. 15, 2004.

[5] M. Christiansen and B. Nygreen, “A method for solving ship routing

problems with inventory constraints,” Ann. Oper. Res., vol. 39, pp.

357–378, 1998.

[6] F. Chu and C. Chu, “Polynomial algorithms for single item lot sizing

models with bounded inventory and backlogging or outsourcing,” IEEE

Trans. Autom. Sci. Eng., vol. 4, no. 2, pp. 233–251, Apr. 2007.

[7] F. Chu, C. Chu, and X. Liu, “Lot sizing models with backlog or out-

sourcing,” in Proc. IEEE Int. Conf. Syst., Man, Cybern., The Hague,

The Netherlands, Oct. 10–13, 2004, pp. 4342–4347.

[8] C. Chung and C. Lin, “An ��� � algorithm for the NI/G/NI/ND ca-

pacitated lot size problem,” Manage. Sci., vol. 34, pp. 420–426, 1988.

[9] M. Florian and M. Klein, “Deterministic production planning with con-

cave cost and capacity constraints,” Manage. Sci., vol. 1, no. 1, pp.

12–20, 1971.

[10] C. Van Hoesel and A. Wagelmans, “Fully polynomial approximation

schems for single-item capacitated economic lot-sizing problems,”

Math Oper. Res., vol. 26, no. 2, pp. 339–357, 2001.

[11] E. T. Iakovou, “An interactive multiobjective model for the strategic

maritime transportation of petroleum products: Risk analysis and

routing,” Safety Sci., vol. 39, no. 1–2, pp. 19–29, 2001.

[12] S. F. Love, “Bounded production and inventory models with piecewise

concave costs,” Manage. Sci., vol. 20, no. 3, pp. 313–318, 1973.

[13] D. Shaw and A. Wagelmans, “An algorithm for single-item capacitated

economic lot sizing with piecewise linear production costs and general

holding costs,” Manage. Sci., vol. 44, pp. 831–838, 1998.

[14] S. D. Hanif, M. A. Salem, and H. M. Merza, “Fleet management models

and algorithms for an oil-tanker routing and scheduling problem,” IIE

Trans., vol. 31, no. 5, pp. 395–406, 1999.

[15] C. Swoveland, “A deterministic multi-period production planning

model with piecewise concave production and holding-backorder

costs,” Manage. Sci., vol. 21, no. 9, pp. 1007–1013, 1975.

[16] United Nations Annual Reviw of Maritime Logistics 1998. Geneva,

Switzerland: United Nation Press, 1999, United Nations.

[17] N. Wu, M. C. Zhou, and F. Chu, “Short-term scheduling for refinery

process: Bridging the gap between theory and applications,” Int. J. In-

tell. Control Syst., vol. 10, no. 2, pp. 162–174, Jun. 2005.

[18] N. Wu, M. C. Zhou, and F. Chu, “A Petri net based heuristic algo-

rithm for realizability of target refining schedules in oil refinery,” Trans.

Autom. Sci. Eng., vol. 5, no. 4, pp. 661–676, Oct. 2008.

[19] N. Wu, F. Chu, C. Chu, and M. C. Zhou, “Short-term schedulability

analysis of crude oil operations in refinery with residency time con-

straint using Petri nets,” IEEE Trans. Syst., Man, Cybern.: Part C, vol.

38, no. 6, pp. 765–778, Nov. 2008.

[20] N. Wu, F. Chu, C. Chu, and M. C. Zhou, “Short-term schedulability

analysis of multiple distiller crude oil operations in refinery with oil

residency time constraint,” IEEE Trans. Syst., Man, Cybern.: Part C,

vol. 39, no. 1, pp. 1–16, Jan. 2009.

[21] N. Wu, F. Chu, C. Chu, and M. C. Zhou, “Hybrid Petri Net Mod-

eling and schedulability analysis of high fusion point oil transporta-

tion under tank grouping strategy for crude oil operations in refinery,,”

IEEE Trans. Syst., Man, Cybern.: Part C, vol. 40, no. 2, pp. 159–175,

Mar. 2010.

13



[22] N. Wu, F. Chu, C. Chu, and M. C. Zhou, “Tank cycling and scheduling

analysis of high fusion point oil transportation for crude oil operations

in refinery,” Comput. Chem. eng., vol. 34, no. 4, pp. 529–543, Apr.

2010.

[23] N. Wu, F. Chu, C. Chu, and M. C. Zhou, “Schedulability analysis

of short-term scheduling for crude oil operations in refinery with oil

residency time and charging-tank-switch-overlap constraints,” IEEE

Trans. Autom. Sci. Eng., vol. 8, no. 1, pp. 190–204, Jan. 2011.

14


