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horizon inventory routing problem in a three-level distribution system with a
d multiple geographically dispersed retailers. In this problem, each retailer faces
istic, retailer-specific rate for a single product. The demand of each retailer is
the vendor through the warehouse or directly from the vendor. Inventories are

rs and the warehouse. The objective is to determine a combined transportation
strategy minimizing a long-run average system-wide cost while meeting the

without shortage. We present a decomposition solution approach based on a fixed
e retailers are partitioned into disjoint and collectively exhaustive sets and each

on a separate route. Given a fixed partition, the original problem is decomposed
. Efficient algorithms are developed for the sub-problems by exploring important
al solutions. A genetic algorithm is proposed to find a near-optimal fixed partition
tational results show the performance of the solution approach.
1. Introduction

Nowadays, more and more companies are aware that great cost
savings can be achieved by integrating inventory control and vehi-
cle routing into a cost-effective strategy for their distribution sys-
tems, especially for Vendor Managed Inventory (VMI) systems
(Kleywegt et al., 2002; Raa and Aghezzaf, 2009). Determining such
a cost-effective distribution strategy is known as Inventory Routing
Problem (IRP).

This paper considers an infinite-horizon deterministic IRP for a
three-level distribution system with a single outside vendor, a sin-
gle warehouse and multiple geographically dispersed retailers. In
this problem, each retailer faces an external demand for a single
product with a deterministic, retailer specific rate. The demand
of each retailer is replenished either from the vendor through the
warehouse or directly from the vendor by vehicles of limited
capacity. Inventories are kept not only at the retailers but also at
the warehouse. The objective is to determine an integrated inven-
tory and routing strategy minimizing a long-run average system-
wide cost while meeting each retailer’s demand without shortage.

Our research is partially motivated by work done with a leading
French automobile equipment company. This company delivers
ic Control, Beijing Institute of
4506.

1

products to its clients in two ways: direct shipping and multi-stop
shipping through warehouse. In fact, IRPs arise in various industries,
such as supermarket chain (Gaur and Fisher, 2004), gases company
(Campbell and Savelsbergh, 2004), and vending machine chain
(Huang and Lin, 2010). IRPs also have been attracting the attention
of academic communities. Currently most papers in the IRP litera-
ture focus on two-level distribution systems, also called one-ware-
house multi-retailer distribution systems, see e.g., Anily (1994),
Anily and Bramel (2004), Anily and Federgruen (1990), Bramel
and Simchi-Levi (1995), Burns et al. (1985), Campbell and Savels-
bergh (2004), Chan et al. (1998), Gaur and Fisher (2004), Moin and
Salhi (2007), Jung and Mathur (2007), and Zhao et al. (2007). The lit-
erature on IRPs for three-level distribution systems is rather limited.
To the best of our knowledge, only Chan and Simchi-Levi (1998) and
Zhao et al. (2008) are exceptional. Zhao et al. (2008) consider a
three-level distribution system where the inventory of the ware-
house is replenished from the vendor by a single train with a large
capacity. They propose a solution strategy integrating a Fixed Parti-
tion Policy (FPP) for transportation and a Power-Of-Two (POT) pol-
icy for inventory replenishment. In their strategy, firstly an FPP is
determined, in which the retailers are partitioned into disjoint
and collectively exhaustive sets and each set of retailers is served
on a separate route (Bramel and Simchi-Levi, 1995), and then a
POT policy is determined, in which each set of retailers and the
warehouse are restricted to be visited at a replenishment interval
which is power of two times a basic planning period (Roundy,



1985). A tabu search algorithm is developed to improve fixed parti-
tions. The distribution system considered in Chan and Simchi-Levi
(1998) is identical to the one considered in this paper although it in-
cludes multiple warehouses, because in their study the retailers
served by each warehouse are determined with a pre-processing
procedure. To solve the complex IRP in the three-level distribution
system, they present a solution approach that decomposes the
problem into two sub-problems: the warehouse-retailer transpor-
tation and inventory sub-problem, and the vendor-warehouse
transportation and inventory sub-problem. The former is solved
based on an FPP. The latter is then solved under a cross-docking
strategy in which the warehouse acts as a coordinator of incoming
orders from the vendor and outgoing orders to the retailers but does
not keep inventory. The authors prove that the cross-docking strat-
egy is asymptotically optimal.

As pointed out by Jung and Mathur (2007), however, if the num-
ber of retailers is finite and the inventory holding cost rate at the
warehouse is relatively small compared with that at the retailers,
it may be profitable to keep inventory also at the warehouse. More-
over, in Chan and Simchi-Levi (1998), it is assumed that all ship-
ments are delivered from the vendor to the retailers through the
warehouse. In Li et al. (2007), we prove that under certain condi-
tions a strategy in which shipments are delivered directly from
the vendor to the retailers has a higher asymptotic optimality,
and conclude that a hybrid strategy, which consists of the direct
shipping strategy and the multi-stop shipping strategy through
the warehouse, should be used in three-level distribution systems
with a limited number of retailers.

In this study, the restriction to the cross-docking strategy is re-
laxed, i.e., the warehouse is allowed to keep inventory. The restriction
that all shipments are through the warehouse is also relaxed, i.e., each
retailer is allowed to be delivered directly from the vendor bypassing
the warehouse. Moreover, the POT restriction is relaxed, i.e., the
replenishment intervals of each retailer set and the warehouse are
not confined to power of two times a basic planning period.

We propose a decomposition solution approach based on a fixed
partition policy. Given a fixed partition, the original problem is
decomposed into three sub-problems: the first is to identify the
retailers whose inventories are replenished directly from the vendor
and to determine their corresponding direct shipping strategies; the
second is to determine a combined routing and inventory strategy
for the remaining retailers; the third is to determine an optimal plan
for shipments from the vendor to the warehouse given the partition
policy. Important properties are discovered for the optimal solutions
of the sub-problems and efficient algorithms are developed for them
based on the properties. A genetic algorithm is proposed to evolve
fixed partitions for the problem.

The remainder of this paper is organized as follows. The infinite
horizon inventory routing problem for the three-level distribution
system is formally defined in Section 2, and a lower bound on the
long-run average cost of any feasible distribution strategy of the
system is proposed in Section 3. The FPP-based decomposition
solution approach to the IRP is outlined in Section 4, and the reso-
lution of the three sub-problems and the genetic algorithm used in
the approach are discussed in Sections 5 and 6, respectively. Sec-
tion 7 presents computational experiments and results of the ap-
proach, followed by the concluding Section 8.
Fig. 1. The three-level distribution system.
2. The inventory routing problem and its formulation

In the three-level distribution system considered, there are a
single outside vendor, a single warehouse and n geographically
dispersed retailers (see Fig. 1 for illustration). Each retailer faces
an external demand for a single product with a deterministic, retai-
ler specific rate Di. The vendor with an unlimited supply of the
2

product serves the warehouse using big vehicles of capacity Q.
The warehouse serves the retailers using small vehicles of capacity
q. The vendor can also directly serve the retailers using big vehicles.
Each time a big (resp. small) vehicle is used to replenish the inven-
tory of the warehouse or the inventories of a set of retailers, it incurs
a fixed cost C (resp. c) plus a variable cost proportional to the total
distance travelled. A linear inventory holding cost at a constant rate
h (resp. h0) is charged at each retailer (resp. the warehouse) when-
ever inventories are kept there. The frequency in which a given re-
tailer can be visited is bounded from above by a real number f. For
simplicity, we assume all retailers have the same upper bound for
their delivery frequencies, but the results in this paper can be easily
extended to the case with different upper bounds for the delivery
frequencies. The objective of the problem is to determine a com-
bined transportation (routing) and inventory strategy minimizing
the long-run average system-wide cost including the transporta-
tion cost from the vendor to the warehouse, the transportation cost
from the vendor to the retailers, the transportation cost from the
warehouse to the retailers, the inventory cost at the warehouse
and the inventory costs at the retailers, while meeting each retai-
ler’s demand without shortage or backlogging.

The following assumptions are made for the problem. Firstly, it
is assumed that split deliveries are not allowed. This implies that:
(1) the inventory of each retailer is replenished either through the
warehouse or directly from the vendor; (2) the inventory replen-
ishment of retailers through the warehouse applies a fixed parti-
tion policy; (3) each retailer is served by a single route. This
assumption in fact has been widely adopted in the infinite horizon
IRP literature. More discussion about split delivery can be found in
Dror and Trudeau (1989) and Bolduc et al. (2010). Secondly, it is as-
sumed that each direct shipment from the vendor to the retailers
serves only one retailer. This assumption is reasonable when a re-
tailer is far from the vendor and/or the retailer has a relatively high
demand rate. In practice, direct shipping is usually used for long-
distance, high-volume delivery whereas multi-stop shipping is
used for short-distance, low-volume delivery.

For the three-level distribution system with constant demand
rates at the retailers, when the shipments from the warehouse to



the retailers use a fixed partition policy, it is a periodic system
(cyclic system) whose behaviour is repeated after a certain number
of periods corresponding to a cycle of the system. Let T denote the
number of periods in each cycle of the system (the determination
of T will be discussed later in Section 5.3.4), the IRP can be formu-
lated only for one cycle since it is repetitive.

Indexes and parameters
N set of all retailers, N = {1,2, . . . ,n}
Di demand rate of retailer i
h0 inventory holding cost rate at the warehouse
h inventory holding cost rate at each retailer
d0 distance between the vendor and the warehouse
di distance between the warehouse and retailer i
ri distance between the vendor and retailer i
Q capacity of each big vehicle
q capacity of each small vehicle
C fixed cost of using a big vehicle
c fixed cost of using a small vehicle
U variable transportation cost per unit distance of each big

vehicle
u variable transportation cost per unit distance of each small

vehicle
f maximal delivery frequency of each retailer
l index of region in a fixed partitioning policy for all retail-

ers, where each region is a subset of retailers
t index of time period, t = 0,1, . . ., T � 1
Variables
Sw Set of retailers whose inventory is replenished by the

warehouse
Sp Set of retailers whose inventory is directly replenished by

the vendor (Sw [ Sp = N and Sw \ Sp = U)
v A fixed partition of the retailers replenished from the

warehouse under an FPP, v = {X1,X2, . . . ,XL}, where
[L

i¼1Xi ¼ Sw;Xi \ Xj ¼ U for i – j (i, j = 1, 2, . . ., L)
hl The length of the TSP route for region l, i.e., the ‘shortest’

route on which all retailers within the region are visited
Ti Time interval of delivery from the vendor or the ware-

house to retailer i
Tl Time interval of delivery for region l,Ti = Tl whenever i 2 Xl

Dl Total demand rate of the retailers within region l
D(t) Demand of the warehouse in period t (derived from the

FPP for the retailers replenished by the warehouse)
Q(t) Replenishment quantity from the vendor to the warehouse

in period t
I(t) Inventory level of the warehouse at the end of period t

With the above notations, the IRP can be formulated as the fol-
lowing mathematical programming model:

Model P:

min z¼ 1
T

XT�1

t¼0

QðtÞ
Q

� �
ðCþ 2d0UÞ þ Ið0Þ

2
þ
XT�1

t¼1

IðtÞ
" #

h0

( )

þ
X
l # Sw

cþ hlu
Tl

þ1
2

Tl

X
i2Xl

Dihi

 !

þ
X
i2Sp

Cþ2riU
Ti

þ1
2

TiDihi

� �
ð1Þ

s:t: Tl P 1=f ; 8l¼ 1;2; . . . ;L ð2Þ
Tl

X
i2Xl

Di 6 q; 8l¼ 1;2; . . . ;L ð3Þ

Ti P 1=f ; 8i 2 Sp ð4Þ
TiDi 6 Q ; 8i 2 Sp ð5Þ

IðtÞ ¼
Xt

s¼0

QðsÞ �
XL

l¼1

1þ t
Tl

� �� �
DlTl; t ¼ 0;1; . . . ;T �1 ð6Þ

QðtÞ; IðtÞP 0; t ¼ 0;1; . . . ;T �1; ð7Þ
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In the model, constraints (2) and (4) are the delivery frequency con-
straints ensuring that the frequency of delivery to each retailer does
not exceed a given upper bound; constraints (3) and (5) are the
vehicle capacity constraints ensuring that the load of each vehicle
(big vehicle or small vehicle) is less than or equal to the vehicle
capacity; constraints (6) ensure the flow balance at the warehouse,
i.e., the inventory level of the warehouse equals the cumulative
quantity delivered to the retailers minus the cumulative total de-
mand of the retailers; constraints (7) are variable domain
constraints.

The objective function (1) is to minimize the total cost of the
system which includes three parts: the first part is the transporta-
tion cost from the vendor to the warehouse and the inventory cost
of the warehouse, the second part is the transportation cost for
shipments from the warehouse to retailers and the inventory cost
of the retailers associated with this type of shipping, the third part
is the transportation cost for direct shipments from the vendor to
retailers and the inventory cost of the retailers associated with this
type of shipping.

3. A lower bound on the long-run average cost of any feasible
distribution strategy

To evaluate the performance of the solution found by our FPP-
based decomposition approach to be presented in next section, a
lower bound on the long-run average cost of any feasible distribu-
tion strategy is required so that the performance can be evaluated
by the relative gap between the cost associated with the solution
(the upper bound) and the lower bound.

Theorem 1.

B�� ¼
Xn

i¼1

minð2riU þ C;2d0U þ C þ 2diU þ cÞDi

Q
þ Dih

2f

� 	
; ð8Þ

is a lower bound on the long-run average cost of the three level distri-
bution system over all feasible distribution strategies.
Proof. The inventory of a retailer is replenished either directly
from the vendor or from the vendor via the warehouse. For those
retailers whose inventories are replenished directly from the ven-
dor, i.e.," i 2 Sp, the total transportation and inventory holding

costs B1 P
P

i2Sp

ð2riUþCÞDi
Q þ Dih

2f

h i
. For those retailers whose invento-

ries are replenished from the vendor via the warehouse, i.e.,

8i 2 Sw;B2 P
P

i2Sw

ð2d0UþCÞDi
Q þ ð2diuþcÞDi

Q þ Dih
2f

h i
according to the proof

of Lemma 3.1 in Chan and Simchi-Levi (1998). Therefore,

B1 þ B2 P
Xn

i¼1

minð2riU þ C;2d0U þ C þ 2diuþ cÞDi

Q
þ Dih

2f

� 	
:

Let B�� ¼
Pn

i¼1
minð2riUþC;2d0UþCþ2diuþcÞDi

Q þ Dih
2f

n o
, clearly B** is a lower

bound on the long run average cost over all feasible strategies. h

Observe that the lower bound B** is less than

B� ¼
Xn

i¼1

Dið2d0U þ C þ 2diuþ cÞ
Q

þ Dih
2f


 �
; ð9Þ

which is a lower bound on the average cost over all feasible cross-
docking strategies developed in Chan and Simchi-Levi (1998).

4. A solution approach to the IRP

The IRP studied is NP-hard since one of its sub-problems – Vehi-
cle Routing Problem (VRP) – is NP-hard. It is therefore impossible
to find an algorithm that can solve the problem to optimality in
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a reasonable computation time. As an alternative, we propose a
decomposition solution approach based on a fixed partition policy
because of its relative easiness for implementation and practical
popularity. Given a fixed partition, the original problem is decom-
posed into three sub-problems: (1) sub-problem 1: the direct ship-
ping sub-problem which determines which retailers are
replenished directly from the vendor and their corresponding di-
rect shipping strategy; (2) sub-problem 2: the warehouse-retailer
transportation and inventory sub-problem which determines a
routing strategy for the shipments from the warehouse to the
remaining retailers and the inventories at these retailers; (3)
sub-problem 3: the vendor-warehouse transportation and inven-
tory sub-problem which determines the shipment plan from the
vendor to the warehouse. The three sub-problems are solved in or-
der. Sub-problem 1 tells sub-problem 2 the set of the retailers to be
replenished from the warehouse. Sub-problem 2 tells sub-problem
3 the demand mode of the warehouse.

A genetic algorithm (GA) is proposed to find a near-optimal
fixed partition for the IRP. In the GA, at the first iteration, multiple
fixed partitions are generated and the fixed partitions in the next
iterations are obtained by crossover and/or mutation operations.
The solution procedure of the GA is repeated until no further
improvement is possible or a specified number of iteration has
been achieved. In the GA, for each new solution (fixed partition)
generated, three sub-problems are solved to calculate the cost of
the system and then evaluate the fitness of the solution. The frame-
work of the FPP-based decomposition approach is illustrated in
Fig. 2. The approach will be presented in detail in the rest of this
paper.

It should be noted that we can also use meta-heuristics other
than the genetic algorithm to optimize the fixed partition policy
in the framework of our proposed solution approach. For example,
we can use a local search based meta-heuristic, e.g., a tabu search
algorithm like the one designed in Zhao et al. (2008), to find a near-
optimal partition starting from an initial partition by applying local
move operators such as exchanging two retailers between two re-
gions or moving a retailer from one region to another.
Fig. 2. Framework of the proposed solution approach.
5. Resolution of the sub-problems

This section discusses the three sub-problems and their solu-
tion algorithms by exploring important properties of their optimal
solutions.
5.1. The direct shipping sub-problem (sub-problem 1)

The task of this sub-problem is to determine whether or not a
retailer is replenished directly from the vendor bypassing the
warehouse. If a retailer is not replenished directly from the vendor,
then it is replenished from the vendor through the warehouse.
Based on the findings in Li et al. (2010), it is reasonable to specify
that a retailer is replenished directly from the vendor whenever its
corresponding region in a given fixed partition contains only itself
and its demand rate is large enough, for example, when its demand
rate is larger than qf or close to Qf. If the demand rate of a retailer
exceeds qf, it has to be replenished by direct shipping. If the de-
mand rate of the retailer is larger than 0.85 Qf, according to Li
et al. (2010), the effectiveness of the direct shipping exceeds 92%,
and hence the direct shipping is good enough. Particularly when
Q P 2q, using the formulas developed by Li et al. (2010) we can
also determine whether or not a retailer is replenished directly
from the vendor. In the case, for any retailer with a demand rate
larger than qf, its demand must be satisfied by direct shipping from
the vendor, whereas for any retailer with a demand rate less than
or equal to qf, its demand must be replenished from the warehouse
4

because the effectiveness of direct shipping is less than 70%. In
summary, with little loss of accuracy, sub-problem 1 can be simply
integrated into the generation of fixed partitions. That is, for each
fixed partition generated by the GA, if a region in the partition con-
tains only one retailer, whether or not the retailer is replenished
directly from the vendor is determined by the following standard:
if and only if the demand rate of the retailer is larger than qf or
0.85Qf, direct shipping is adopted.

Once the retailers to be replenished directly from the vendor are
determined, the optimal replenishment interval Ti and replenish-
ment quantity TiDi for each of the retailers can be easily computed
using the following Model P1, so can be the long-run average
transportation and inventory cost Z1 associated with sub-problem.

Model P1:
min Z1 ¼
X
i2Sp

C þ 2riU
Ti

þ 1
2

TiDihi

� �
; ð10Þ
s.t. (4), (5)
The computation procedure for Ti and Z1 is as follows.

By setting dZ1/dTi = �(C + 2riU)/(Ti)2 + Dihi/2 = 0, we have
Ti ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðC þ 2riUÞ=Dihi

p
. If Ti P 1/f, then the right value of Ti is ob-

tained already, otherwise Ti = 1/f. Substitute each Ti into the objec-
tive function (10), we can obtain the value of Z1.



5.2. The warehouse-retailer transportation and inventory sub-problem
(sub-problem 2)

Under a given fixed partition, this sub-problem is to determine
the optimal replenishment interval Tl (and replenishment quantity
TlDl) for each region l to be replenished from the warehouse, and
the optimal route within the region. It can thus be described as
the following model.

Model P2:

min Z2 ¼
X
l # Sw

c þ hlu
Tl

þ 1
2

Tl

X
i2Xl

Dihi

!
; ð11Þ

s.t. (2), (3)

where hl is calculated by solving the corresponding Travelling Sales-
man Problem (TSP). Various effective algorithms for the TSP are
available in the literature, e.g., Lin and Kernighan (1973) and Gend-
reau et al. (1992). In this paper, rather than finding an optimal route
for the sub-problem by using an exact algorithm, we use the nearest
insertion heuristic plus 2-opt heuristic to find a high quality near-
optimal route. In our computational experiments, with the com-
bined heuristics, optimal solutions for multiple TSP benchmark
problems were obtained within 1 second. This proves the quality
of the heuristics and verifies our choice. Once hl is determined, Tl

and Z2 can be calculated in the same way as provided in Section 5.1.

5.3. The vendor-warehouse transportation and inventory sub-problem
(sub-problem 3)

This sub-problem is to determine simultaneously the shipment
plan from the vendor to the warehouse and the inventory decision
at the warehouse, i.e., to determine the delivery quantity from the
vendor to the warehouse and the inventory level at the warehouse
in each period, with the objective to minimize the long-run aver-
age transportation and inventory costs while meeting the retailers’
demands without shortage. The results of sub-problem 2 are input
parameters of this sub-problem. That is, when the replenishment
interval and the replenishment quantity in each replenishment
interval for each retailer region are known, the demand of the
warehouse in each period t, i.e., D(t), is determined. D(t) can be
computed by Eq. (12).

DðtÞ ¼
XL

l¼1

1þ t
Tl

� �� �
DlTl �

XL

l¼1

1þ t � 1
Tl

� �� �
DlTl;

t ¼ 0;1; . . . ; T � 1: ð12Þ
To solve this sub-problem, Chan and Simchi-Levi (1998) and Zhao
et al. (2008) consider a specific strategy, cross-docking strategy
and power-of-two policy respectively, and thus obtain only a sub-
optimal solution of the sub-problem. In this paper, we solve the
sub-problem to optimality based on the following important find-
ing: the sub-problem can be reduced to a C/C/C/Z capacitated dy-
namic lot sizing problem under certain condition. The notation a/
b/c/d introduced by Bitran and Yanasse (1982) represents a specific
family of dynamic lot sizing problems, where a, b, c, d specify
respectively the time structure of the setup costs, holding costs,
production costs, and production capacities, and may take the fol-
lowing letters: G, C, ND, NI, Z to indicate arbitrary pattern, constant,
nondescreasing, nonincreasing, and zero. The detailed derivation of
this result is described as follows.

Let T be the number of periods in a cycle, i.e., T is the minimum
positive integer number such that D(t + T) = D(t), Q(t + T) = Q(t),
I(t + T) = I(t) for any t. Without loss of generality, only the states
of the distribution system during the first T periods are needed
to be considered for the vendor-warehouse transportation and
inventory sub-problem. Given a fixed partitionv = {X1,X2, . . . ,XL},
5

the vendor-warehouse transportation and inventory sub-problem
can be formulated as the following model:

Model P3:

min Z3 ¼
XT�1

t¼0

QðtÞ
Q

� �
ðC þ 2d0UÞ þ

XT�1

t¼0

IðtÞh0

" #,
T: ð13Þ

S.t. (6), (7)

Note that constraints (6) can be written as

Iðt þ 1Þ ¼ IðtÞ þ Qðt þ 1Þ � Dðt þ 1Þ; t ¼ 0;1; . . . ; T � 1; ð60Þ

where D(t + 1) is the demand of the warehouse in period t + 1,
Q(t + 1) is the quantity delivered from the vendor to the warehouse
in period t + 1, I(t + 1) is the inventory level of the warehouse at the
end of period t + 1.

In what follows we explore properties of optimal solutions of
the model and prove that the problem (P3) can be reduced to a
C/C/C/Z capacitated dynamic lot sizing problem.

5.3.1. Properties of optimal solutions
Without loss of generality, let D(t) = ktQ + qt, kt P 0 and integer,

0 6 qt < Q, "t.

Proposition 1. Iðt � 1Þ � ðQðtÞ%QÞ ¼ 0; 8t.
Proof (By contradiction). Assume there is an optimal solution such
that I(s � 1) > 0 for some s and Q(s) = kQ + q, where k P 0 and inte-
ger, 0 < x < Q. It is clear that a part of the demand after period s � 1 is
replenished before periods. Let y = min{I(s � 1),Q � x} > 0. We can
construct a new solution with I0(s � 1) = I(s � 1) � y, which means
that y units of I(s � 1) is no longer delivered before period s, instead
they are delivered in period s, i.e., Q0(s) = Q(s) + y 6 (k + 1)Q. This
solution change does not incur additional transportation costs but
does reduce the inventory cost by at least yh0. This implies that the
original solution is not an optimal solution. h
Proposition 2. 0 6 IðtÞ < Q ; 8t:
Proof (By contradiction). Assume there is an optimal solution such
that I(s) = kQ + x for somes, where k P 1 and integer, 0 6 x < Q. We
can construct a new solution: S0(s) = S(s) � kQ and thus
I0(s) = I(s) � kQ = x, i.e., 0 6 I0(s) < Q; Q0(g) = Q0(g) + kQ and thus
I0(g) = I(g), where g(>s) is the earliest period when the delivery
quantity of the vendor is larger than zero. This solution change does
not incur additional transportation costs but does reduce the inven-
tory cost by (g � s)kQh0. This implies that the original solution is not
an optimal solution. h
Proposition 3. ktQ 6 Q(t) 6 (kt + 1)Q, "t, where D(t) = ktQ + qt,kt

P 0 and integer, 0 6 qt < Q, "t
Proof. (i). Firstly, we prove Q(t) P ktQ. Case 1: kt = 0. The conclusion
is obvious. Case 2: kt P 1. (By contradiction) Assume there is an opti-
mal solution such that Q(s) < ksQ for some s. Without loss of gener-
ality, let ksQ � Q(s) = nQ + x > 0, n P 0 and integer, n 6 ks � 1,
0 6 x < Q, we haveD(t) � Q(s) P nQ + x. This implies that the
demand in period s has at least nQ + x to be satisfied before periods,
i.e., I(s � 1) P nQ + x. If n P 1, we can construct a new solution:
I0(s � 1) = I(s � 1) � nQ, Q0(s) = Q(s) + nQ. This solution change does
not incur additional transportation costs but does reduce the inven-
tory cost by at least nQh0. This implies that the original solution is not
an optimal solution. If n = 0, i.e., Q(s) = ksQ � x and 0 < x < Q, i.e.,
Q(t)%Q = Q � x > 0. At the same time we have I(s � 1) P x > 0.
According to Proposition 1, it is impossible. (ii). Now we prove
Q(t) 6 (kt + 1)Q. (By contradiction) The proof of (i) implies that we
need to consider only qt for D(t), "t. That is, the original proposition
turns to prove Q(t) 6 Q whenever D(t) = qt,0 6 qt < Q, "t. Assume
there is an optimal solution, Q(s) > Q for some s. It is clear that a part



of the demand after period s is satisfied in period s. Therefore,
q0s þ qþs ¼ nQ þ x ¼ QðsÞ, n P 1,0 6 x < Q, where q0s is the whole or
part of the demand in period s to be satisfied in period s, and
q0s 6 qs because a part of the demand in period s may be satisfied
before period s; qþs is the total demand after period s that is satisfied
in period s. Observe that qt þ qt0 < 2Q for "t, t0. This implies that the
demands of at least n � 1 periods after periods are satisfied in period
s. Without loss of generality, let g(>s) is the earliest period in these
periods. If n = 1, q0s þ qþs ¼ Q þ x and 0 < x < Q, and then qþs > x since
q0s 6 qs < Q . We can construct a new solution: Q0(s) = Q(s) � x = Q
(decreasing the number of vehicles by one); Q0(g) = Q(g) + x (increas-
ing the number of vehicles by at most one). This solution change does
not incur additional transportation costs but does reduce the inven-
tory cost by at least (g � s)xh0. If n P 2, QðsÞ ¼ q0s þ qþs ¼ nQ þ x and
0 6 x < Q, and then qþs > ðn� 1ÞQ þ x since q0s 6 qs < Q . We can con-
struct a new solution: Q0(s) = Q(s) � (n � 1)Q, Q(g) = Q(g) + (n � 1)Q.
This solution change does not incur additional transportation cost
and does reduce the inventory cost by at least (n � 1)(g � s)Qh0. This
implies that the original solution is not an optimal solution. h
Proposition 4. Q(t) = ktQ whenever D(t) = ktQ, kt P 0 and integer.
Proof (By contradiction). Assume there is an optimal solution such
that Q(s) = ksQ + x for some s, where ks P 0 and integer,0 < x 6 Q.
Note that ksQ 6 Q(s) 6 (ks + 1)Q according to Proposition 3. Similar
to the proof of Proposition 3, we can construct a new solution:
Q0(s) = Q(s) � x = ksQ(decreasing the number of vehicles by one),
Q0(g) = Q(g) + x (increasing the number of vehicles by at most
one). This solution change does not incur additional transportation
costs but does reduce the inventory cost by at least (g � s)xh0. h

It is important to note that, according to Proposition 4, Q(t) = 0
whenever D(t) = 0, "t.

5.3.2. The reduced problem P4
Let P4 be a special case of P3 with D(t) = qt, 0 6 qt < Q, "t, i.e., the

following condition holds: the demand of the warehouse at any
time is less than the capacity of a big vehicle.

Theorem 2. P3 can be reduced to P4.
Proof. According to Propositions 3 and 4, the portion ktQ of D(t) is
always replenished by kt vehicles in period t. Therefore, only the
replenishment of the portion qt of D(t) needs to be decided. h
Proposition 5. Given a planning horizon T, P4 is a C/C/C/Z capaci-
tated dynamic lot sizing problem.
Proof. In P4, if Q(t) is viewed as the production (or order) quantity
in period t to be decided, Q corresponds to the production capacity
bound, C + 2dU corresponds to the setup cost, h0 is the inventory
holding cost per unit item per unit time, and the production cost
per unit item is zero and hence is omitted. P4 is therefore a C/C/
C/Z capacitated dynamic lot sizing problem. h
5.3.3. Resolution of P4
According to Proposition 5, given a planning horizon, P4 is a C/C/

C/Z capacitated dynamic lot sizing problem. Consequently, all
algorithms for the C/C/C/Z capacitated dynamic lot sizing problem
without backlog can be used to solve P4.

Theorem 3. Given a planning horizonT, there is an algorithm to solve
P4 in O(T2) time.
Proof. In Chung and Lin (1988), the authors propose a dynamic
programming algorithm to solve the NI/G/NI/ND capacitated
dynamic lot sizing problem in O(T2) time. It is clear that the C/C/
C/Z problem is a special case of the NI/G/NI/ND, therefore the algo-
rithm can also be used to solve the C/C/C/Z problem in no more
than O(T2) time. h
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5.3.4. Determination of the cycle time T
For solving P4, the remaining problem is to determine its plan-

ning horizon T which is the number of periods in each cycle of the
IRP, referred to as its cycle time. It is clear that T is the minimum
positive integer number such that D(t + T) = D(t), Q(t + T) = Q(t),
I(t + T) = I(t) for any t. Without loss of generality, we assume that
D(t), Q(t), "t and Q are integers, see also Chan et al. (1998) for this
assumption. Let M be the least common multiple of T1, T2, . . ., TL,
where Ti, 1 6 i 6 L, is the time interval of delivery from the vendor
or the warehouse to retailer i, then M is the minimum positive inte-
ger number satisfying D(t + M) = D(t) for any t.

Theorem 4. M 6 T 6 QM.
Proof. According to Proposition 2, 0 6 I(t) < Q, "t. This implies that
I(t) has at most Q different possible values since I(t) is an integer.
Therefore, for any s with 0 6 s 6M � 1, there exists two periods,
denoted by iM + s and jM + s respectively, in s, M + s, 2M + s, . . .,
QM + s within the planning horizon of length (Q+1)M, such tha-
tI(iM + s) = I(jM + s) is satisfied, 0 6 i < j 6 Q. In addition,
D(iM + s + 1) = D(jM + s + 1) for any s with 0 6 s 6M � 1 from the
definition of M. For the distribution system considered, its behavior
when it starts from period iM + s + 1 with the initial inventory level
I(iM + s) and its behavior when it starts from period jM + s + 1 with
the initial inventory level I(jM + s) should be the same in its optimal
solution, since I(iM + s) = I(jM + s) and D(iM + s + 1) = D(jM + s + 1)
for any s with 0 6 s 6M � 1. This implies that Q(iM + s + 1) =
Q(jM + s + 1) for any s with 0 6 s 6M � 1. From (8’), we have
I(iM + s + 1) = I(jM + s + 1) for any s with 0 6 s 6M � 1. This implies
that T = (j � i)M satisfying D(t + T) = D(t), Q(t + T) = Q(t), I(t + T) = I(t).
Consequently,

M 6 T ¼ ðj� iÞM 6 QM: �

To obtain the exact value of T, one way is to solve P4 and obtain
its optimal solution for T = M, 2M, . . ., QM respectively, and then se-
lect the best one from them.

6. Genetic algorithm

One key issue for our solution approach is to find a fixed partition
(of the retailers) that minimizes the long run average total cost of the
distribution system studied. As this problem is NP-hard, it is impos-
sible to develop an exact algorithm that can solve the problem to
optimality in a reasonable time. Instead, a genetic algorithm is devel-
oped in this section to find a near-optimal fixed partition.

6.1. Coding and decoding of each individual in the population

Each solution, called an individual, in the population of the GA
at each iteration, is represented by a chromosome whose length is
equal to the number of retailers. Each gene of the chromosome is
related to a retailer and is assigned to an integer number between
1 and the number of available vehicles. If the ith gene is assigned to
integer m, for instance, then it means that retailer i is served by
vehicle m (the mth vehicle). To get the corresponding fixed parti-
tion from a chromosome, it must be decoded. If multiple genes
in the chromosome are assigned to the same integer, the corre-
sponding retailers form a fixed region, and their inventories are
replenished from the warehouse by using a small vehicle. The opti-
mal replenishment interval, replenishment quantity in each inter-
val and long-run average cost of this region can be calculated
according to Model P2 as discussed in Section 5.2. If only one gene
has a particular integer value, that is, only one retailer is assigned
to a particular vehicle, we have to determine whether the inven-
tory of this retailer is replenished directly from the vendor or
through the warehouse. As discussed in Section 5.1, if the demand



rate of the retailer is larger than qf or 0.85Qf, then it is replenished
directly from the vendor by using a big vehicle. Otherwise, the re-
tailer demand rate is not large enough to justify the replenishment
directly from the vendor. The retailer itself then forms a fixed re-
gion and is replenished from the warehouse by using a small vehi-
cle. For any direct shipping, the optimal replenishment interval,
replenishment quantity in each interval and the corresponding
long-run average cost can be calculated according to Model P1 as
discussed in Section 5.1.

6.2. Generation of the initial population

70% individuals (solutions) in the initial population are pro-
duced in random, i.e., each gene of each chromosome is assigned
to a random integer number between 1 and the number of avail-
able vehicles. The remaining 30% individuals are produced as struc-
tural chromosomes using a heuristic method. The heuristic to
produce the structural chromosomes is described as follows. First,
take the warehouse as the centre of the coordinates of the plane on
which all retailers are situated and sort the retailers in terms of
their polar angles with the x-axis of the plane; open the first vehi-
cle; pack retailers one by one to the currently opened vehicle fol-
lowing their sorted order until the capacity of the current packet
(current vehicle) is used up. A new vehicle is opened if there are
retailers which cannot be packed to the current vehicle. Let the
capacity of each packet is qf. If the difference between the total de-
mand rate of the retailers that have been packed to the current
packet and qf is larger than a designated tightness factor multiplied
by qf, then the next retailer is still packed into the packet. Other-
wise pack the retailer to a new opened vehicle. Here the tightness
factor defines how much percentage of the packet capacity can be
exceeded. If a retailer that is going to be packed into a vehicle has a
demand rate larger than qf, then the vehicle serves only the retai-
ler. In this way, a structural chromosome (solution) is produced.
With different tightness factors, different structural chromosomes
are generated. Note that some initial solutions generated may be
infeasible because they violate the capacity constraint of a vehicle.
We allow some degree of infeasibility (capacity violation) in gener-
ating the initial solutions in order to diversify the search space of
our GA. The readers can refer to Barrie et al. (2003) for a more de-
tailed introduction of the generation of structural chromosomes.

6.3. Genetic operations

Standard two-point crossover is adopted as the crossover oper-
ator of our GA. For the mutation, the value of each gene is changed
with a given probability to an arbitrary integer number between 1
and the number of available vehicles.

6.3.1. Selection and replacement
Fitness proportionate selection (roulette-wheel selection) based

on the value of every chromosome is used to generate a new gen-
eration. For the replacement, the best 25% chromosomes in the
pool comprising both the parent and child chromosomes are first
selected; they then replace the best 50% of the parent chromo-
somes. In this way, good chromosomes are obtained, and at the
same time premature convergence is avoided.

6.3.2. Evaluation of the fitness of each individual in the population
The fitness of each individual (chromosome) in the current pop-

ulation is defined as a big number minus the long-run average cost
of the distributed system considered minus the infeasibility pen-
alty of the individual (solution), where the long-run average cost
is calculated without considering the vehicle capacity constraints,
the infeasibility penalty is defined as a penalty rate multiplied by
the amount by which the vehicle capacity is exceeded. In our GA,
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the penalty rate is taken as 2h(C + 2Ud0). Since the fitness of each
chromosome is positive, the big number in its definition must be
larger than the sum of the long-run average cost and the infeasibil-
ity penalty of any chromosome. To make the fitness proportionate
selection work well, however, the big number should not be too
large. In our GA, the big number is set to a very big number ini-
tially, e.g. 100*RAND_MAX, where RAND_MAX is a built-in-num-
ber of C++ programs. In the next generation, the big number is
set to 3 times the sum of the long-run average cost and the infea-
sibility penalty of the worst chromosome. As crossover and muta-
tion operations may produce a very bad chromosome, to ensure
that no negative fitness will be produced for any chromosome,
our GA program includes a check statement. Once a negative fit-
ness happens, our program will be interrupted and a new multiple
large than 3 will be manually set. In our numerical experiments,
the multiple 3 works well.
6.3.3. Parameter settings of the GA
After testing a few groups of their values, the parameters of our

GA are chosen as follows. Population size = 100, the probability of
crossover = 0.7, the probability of mutation = 0.02, and the maxi-
mum number of generations (iterations) = 2000.
7. Computation results

The performance of the FPP-based decomposition approach
proposed and the corresponding genetic algorithm is evaluated
on randomly generated instances by comparing the lower bound
found in Section 3 for the long-run average cost of any feasible dis-
tribution strategy with the cost of the distribution strategy (an
upper bound) found by the approach. We generate the instances
based on the parameters provided by Chan and Simchi-Levi
(1998) but with necessary modifications. f is larger than 1 in Chan
and Simchi-Levi (1998). In this paper f is defined as the maximal
number that each retailer can be visited per period. Since in each
period at most one delivery is performed to each retailer, it is nat-
urally assumed that f 6 1 as in Li et al. (2010) and Zhao et al.
(2008). In order to keep the scale among the modified parameters
as same as that among the original parameters, the demand rates
are scaled down 10 times when f is reduced 10 times. When f is
scaled down only 5 times, then q and Q are scaled up two times
at the same time. The rest can be deduced by analogy. Moreover,
in the implementation of the FPP-based decomposition approach,
all time intervals of delivery involved are rounded to their nearest
positive integers as they would be in practice.

All numerical experiments were done with a PC of RAM 2G, CPU
1.7G. We randomly generate a few instances in a square of size
100 � 100. The number of retailers is respectively 75, 100, 120
and 150 while their locations are uniformly distributed in the
square. The locations of the warehouse and the vendor are also
randomly generated in the square. The retailer demand rates are
uniformly distributed on the integer set {3, 4,5,6,7,8}. The inven-
tory holding cost at the warehouse and at each retailer is taken
respectively as h0 = 3, h = 6. The unit transportation costs of vehi-
cles are taken as u = U = 1. For each instance, we generate 11 prob-
lems with different parameters f, q, Q, c and C, which are given in
Table 1. Different from Chan and Simchi-Levi (1998), we do not
consider the case that q > Q, i.e., the parameter set 3 provided by
them, since the case rarely happens in practice. Usually the vehi-
cles with bigger capacities are used to longer distance
transportation.

The computational results are reported in Table 2. From the ta-
ble, we can see that the minimal, maximal, and average value of ZH/
B* for all instances are 101.3%, 164.0% and 120.3%, respectively,
whereas the minimal, maximal, and average value of ZH/B** are



Table 1
List of parameter values for each instance.

Parameter set f q Q c C

1 0.24 54 120 2 10
2 0.24 54 120 2 500
3 0.24 54 400 2 10
4 0.16 54 120 2 10
5 0.20 54 120 2 10
6 0.46 54 120 2 10
7 1.00 54 120 2 10
8 1.00 108 240 2 10
9 1.00 270 600 2 10

10 0.24 454 4500 2 10
11 0.24 1129 1200 2 10
101.5%, 222.3% and 139.0%, respectively. It indicates that the aver-
age performance of our decomposition approach in terms of ZH/B*

is better than that reported in Chan and Simchi-Levi (1998). Also
our algorithm is more robust in respect of the solution quality,
since the performance measure ZH/B* of the algorithm is within
164.0% for any instance, whereas ZH/B* reported in the reference
is more than 300% for some cases. The maximal percentage devia-
tion of the cost found by our approach from the lower bound B** is
120.8%, which is relatively large. Therefore, more precise evalua-
tion of the performance of our decomposition approach and its fur-
ther improvement is necessary in future research. It should be
noted that it is impossible to make a fair comparison between
our results and those of Chan and Simchi-Levi (1998), since their
approach does not allow inventory at the warehouse and our def-
inition of the maximal delivery frequency f is different from theirs.

Note that Chan and Simchi-Levi (1998) did not mention the
locations of the warehouses and vendor and the values of u and
U in their experimental report. For the instances in Table 2, the
locations of the warehouse and the vendor are generated randomly
Table 2
Computation results 1.

Parameter set n = 75 n = 100

ZH/B* ZH/B** Time ZH/B* ZH/B** T

1 1.084 1.221 91 1.068 1.191
2 1.306 1.438 103 1.289 1.407
3 1.140 1.289 99 1.104 1.235
4 1.069 1.167 85 1.051 1.138
5 1.114 1.254 155 1.097 1.223
6 1.126 1.354 3055 1.096 1.300 2
7 1.474 2.223 81 1.402 2.074
8 1.459 1.882 175 1.384 1.754
9 1.640 1.847 685 1.493 1.665

10 1.037 1.053 2372 1.026 1.041 2
11 1.027 1.033 13751 1.018 1.024 8

Table 3
Computation results 2.

Parameter set n = 120, h = 6

f q Q c C

1 0.25 54 120 2 10
2 0.25 54 120 2 10
3 0.25 54 120 2 10
4 0.25 54 54 2 2
5 0.50 120 120 2 2
6 0.75 54 54 2 2
7 1.00 54 54 2 2
8 1.00 30 30 2 2
9 1.00 30 30 2 2

10 1.00 30 30 2 2
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in a square of size 100 � 100 as the retailers and u = U = 1. In prac-
tice, however, U should be larger than u and the vendor is usually
far from the warehouse and retailers. It is therefore reasonable to
expect that the transportation cost from the vendor to the ware-
house and retailers tends to have a bigger proportion in the total
cost. As a result, it is reasonable to conclude that relaxing the
restrictions made to the problem by the existing studies and opti-
mally solving sub-problem 3 contribute greatly to total cost
savings.

The results in Table 3 are obtained on a set of instances with
more reasonable parameters, where the warehouse is located at
the centre of the square with the coordinates [0,0] and the coordi-
nates of the vendor are [�200,0]. The demand retailer rates are dis-
tributed uniformly on the integers between 1 and 10 instead of
between 3 and 8. It can be seen that our algorithm also performs
well in these cases.

Regarding the computational time, for some instances in Tables
2 and 3 our GA algorithm is time consuming. This is because the
running time of the dynamic programming algorithm for sub-
problem 3 depends on the vehicle capacity Q and the least com-
mon multiple M of the delivery time intervals of all regions in a
fixed partition. Sometimes M is so big that the dynamic program-
ming involves a quite large number of iterations. In this case, one
possible way to significantly reduce the computational time with-
out sacrificing much the solution quality is, instead of using the
real value of M to set the planning horizon (time cycle) T in the
algorithm, a reasonable large number, for instance 10000, can be
used as the planning horizon for the dynamic programming. It is
important to note that for almost all time-consuming instances
in Tables 2 and 3, a good solution with little deviation of the cost
from that found after the termination of our GA algorithm can be
found by the algorithm in 100 seconds. For example, a solution
of 106.7%B* is found within 100 seconds for the instance with
parameter set 11 and n = 75 in Table 2.
n = 120 n = 150

ime ZH/B* ZH/B** Time ZH/B* ZH/B** Time

115 1.203 1.309 135 1.080 1.222 180
122 1.427 1.523 138 1.302 1.439 201
113 1.215 1.370 138 1.132 1.296 183
101 1.137 1.205 183 1.061 1.163 146
163 1.058 1.136 182 1.249 1.623 86
554 1.315 1.524 772 1.089 1.319 405
107 1.256 1.637 179 1.371 2.082 160
200 1.313 1.537 374 1.460 1.897 347
785 1.351 1.452 1318 1.364 1.544 1492
098 1.016 1.029 2512 1.029 1.047 3653
407 1.014 1.015 9940 1.013 1.019 16119

u U h0 ZH/B* ZH/B** Time

1 1.2 3 1.322 1.435 6673
1 1.5 3 1.371 1.480 5273
1 2 3 1.446 1.548 5949
1 1 3 1.034 1.103 6546
1 1 3 1.094 1.163 12987
1 1 3 1.018 1.116 4275
1 1 3 1.120 1.259 300
1 1 3 1.109 1.226 486
1 1 1 1.069 1.221 103
1 1 6 1.067 1.219 104



8. Conclusion

In this paper we investigate the three-level inventory routing
problem in which each retailer can either get its inventory replen-
ishment from the vendor directly or through the warehouse. We
relax a couple of restrictions made to the problem in the existing
studies by allowing inventory at the warehouse, direct shipment
from the vendor, and general replenishment interval of each retai-
ler. For this more general problem, we have proposed an FPP-based
decomposition solution approach which decomposes the problem
into three sub-problems under a given fixed partition. Efficient
algorithms are developed for the sub-problems by exploring
important properties of their optimal solutions. In particular, the
vendor-warehouse transportation sup-problem, which is reduced
to a C/C/C/Z capacitated dynamic lot sizing problem based on some
important properties of the sub-problem, is optimally solved by
using a dynamic programming algorithm.

For evaluating the performance of the proposed approach and
its corresponding genetic algorithm, we develop a lower bound
of the long-run average cost of any feasible distribution strategy
for the three-level distribution system. Like other lower bounds
for infinite horizon inventory routing problems, however, the low-
er bound is only asymptotically optimal. Therefore, our approach
should have a better performance than that reported in our com-
putational experiments. To more precisely evaluate the perfor-
mance of the approach, a tighter lower bound on the long-run
average cost of any feasible distribution strategy must be found,
this is one of our future research directions. In addition, we only
use typical operations in our genetic algorithm. It is an interesting
direction to apply more sophisticated GA operations in our GA
algorithm in future research.
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