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Abstract

In this paper, we consider the classical NP-complete vertex cover problem in large graphs.

We assume that the size and the access to the input graph impose the following constraints:

(1) the input graph must not be modified (integrity of the input instance), (2) the computer

running the algorithm has a memory of limited size (compared to the graph) and (3) the result

must be sent to an output memory once a new piece of solution is calculated. Despite the

severe constraints of the model, we propose three algorithms that satisfy them. We derive exact

formulas giving the expected size of the solution they return. This allows us to compare them,

in an analytic way. Then, we consider their complexities. We give exact formulas expressing

the expected number of requests they perform on the input graph. Again, we compare them

analytically. For both comparisons, we show that none of them is better than the two others.

The formulas we give can help users to estimate the best balance between quality of the

solution and performance.

Key words: large graphs, vertex cover, mean analysis of algorithms

1 Introduction

Most of the known optimization algorithms need to explore, mark, modify, etc. the instance

given as input before producing their results. To do that, the instance is entirely loaded into the

memory of the computer and is manipulated by the algorithm. Often, “extra” data structures are

also necessary to memorize parameters useful all along the computation or to update the current

solution that will be returned as the final product of the program.

However, this classical model is no more adapted for many new computing applications. Indeed,

nowadays, many fields such as biology, meteorology, finance, etc. produce very large amount of

∗Work partially supported by the projects ToDo (French ANR) and Approximation rapide of GDR-RO.

1



data. These data are usually stored on large databases, called data warehouses, in order to be

exploited and analyzed. These data are collected by a source that can be a laboratory (collection of

experimental results or physical measures) or a company (collection of financial values for example).

This source can open the access of its collected data to external partners1. However, as the data

often result from heavy and/or costly experimental process, they must not be corrupted by the

manipulations of the partners. This means that the data must be read-only and must be preserved

from modifications.

However, a partner does not always have a machine with the capacity to load the whole data

and as the treatment of such huge data takes time and it cannot in general allocate all its computers

during such a long period. For simplicity here, we suppose that it allocates only one computer with

standard memory capacities.

Our General Model of Access to Data. With the previous discussions, we model the

situation as follows (we give an illustration in Fig. 1). We assume there is one standard computer,

called the “Processing Unit”, for accessing data and running algorithms. The input data are stored

on a data warehouse called “Input data”. As the solution of the computation can be large, we

suppose that it is stored on an external memory (e.g. a hard disk or a data warehouse) called

“Result”. We enumerate now the main constraints of our general model.

C1. The input data cannot be modified; the integrity of input data must be preserved.

C2. The processing unit has a “small” memory space (compared to the huge size of the data/instance).

C3. The solution must be sent piece by piece to an external memory, called here “Result”, as soon

as it is produced.

Constraint C2 implies that the instance cannot be loaded into the memory of the processing unit

(see hypothesis above). The constraint C3 comes from the fact that in many cases, the solution

is (in order of magnitude) as large as the input data, i.e. impossible to be stored in the memory

of the processing unit. Because of memory constraints, the solution cannot fit in memory of the

processing unit. Hence, using intermediate solutions to construct the final one can here be complex,

take time and memory since this imply to reload the appropriated part of the current solution from

the result machine. To avoid such complex mecanisms, we adopt here a radical point of view in

proposing methods that scan data and send final results as soon as they are produced, without

keeping in memory trace of past computation and without modifying past part of the solution.

Processing Unit
Input data Result

Input Output

Figure 1: Overview of the model

1We do not treat at all here problems related to rights of access to these data. We suppose that the partners have

all the appropriated rights to read the data.
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The Vertex Cover Problem. We have chosen to study in this paper the well-known vertex

cover problem, a classical NP-complete optimization graph problem [5], that has received a

particular attention for the last few decades. In particular, this problem occurs in many concrete

applications, such as the network monitoring [12, 17] or the resolution of biological conflicts [12, 15],

and many approximation algorithms have been proposed (see for example the section of [3] devoted

to this problem).

Notations. Graphs G = (V, E) considered throughout this paper are undirected, simple,

unweighted and represent the instance to be treated here. We denote by n the number of vertices

(n = |V |) and by m the number of edges (m = |E|). For any vertex u ∈ V , we denote by N(u) the

set of neighbors of u (i.e. the set of vertices sharing an edge with u), d(u) = |N(u)| the degree of u

(i.e. the number of neighbors) and ∆ the maximum degree of vertices of G.

Definition of the Vertex Cover Problem. A cover C of G is a subset of vertices such that

every edge contains (or is covered by) at least one vertex of C, that is C ⊆ V and ∀e = uv ∈ E,

one has u ∈ C or v ∈ C (or both). The vertex cover problem is to find a cover of minimum size.

Example of Application on the Vertex Cover Problem in Our Model. Let us consider the

Single Nucleotide Polymorphism (SNP2, pronounced “snip”) Haplotype Assembly Problem [8]. In

this problem, geneticists are interested to the genetic differences among individuals. More precisely,

they want to determine haplotypes for large numbers of individuals, i.e. sets of variants genetically

linked because of their proximity on the genome.

Let G = (S, C) be a SNP conflict graph, constructed from DNA sequences, SNPs and exper-

imental values. In this graph, each vertex si ∈ S represents a SNP and each edge {si, sj} ∈ C

represents a conflict between two distinct SNPs si and sj (for more details about this notion, see

[14]). The SNP Assembly Problem is to maximize the number of SNPs which are not in conflict.

In other words, the goal is to remove the smallest subset S ′ of S from G, such that the induced

subgraph G \ S ′ contains no edge; that is to find a cover of minimum size in G.

From massive experimental measures, one can generate very large DNA sequences and very large

number of SNPs (in a DNA Sequencing Center for example) and then easily create a (very large)

SNP conflict graph stored on a data warehouse. These data/graphs can be shared, via read-only

access, with scientists for various computational experiments, measures, etc.

A geneticist, who wants to resolve biological conflicts in such a particular graph, does not

necessarily have powerful computers to make the work. Therefore, he has limited possibilities, e.g.

he cannot copy the whole graph into the memory of its computer (but he can let a software run

for several days). Thus, a simple process of computation must be implemented on its machine,

getting the SNP conflict graph piece by piece by sending requests to the data warehouse, perform

processing on each of these pieces and send the result to an external local hard disk for example.

In this paper, we propose and compare algorithms that have all the features to run under such

particular constraints and low powerful environments.

2A SNP is a single base mutation in DNA.
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Quick Overview of Existing Algorithms for Vertex Covering. Many algorithms have been

proposed for the vertex cover problem. As it is NP-hard, most of the methods are approximation

algorithms or heuristics. Here, we give a rapid overview of these methods.

A well-known heuristic is to select a vertex of maximum degree and delete this vertex and its

incident edges from the graph, until all edges have been removed [10]. It has an approximation

ratio in O(log ∆). Another popular algorithm, with the best known constant approximation ratio,

2, is to construct a maximal matching of the input graph and return the vertices of the matching

(see [3]). To compute such a solution, an edge is randomly chosen, and its two endpoints with their

incident edges are deleted from the graph, until all edges have been removed. For these algorithms,

in order to delete a vertex and its incident edges, we have to modify the input graph or store

information on deleted elements into the memory of the processing unit, and that does not satisfy

constraints C1 and C2. Another well-known algorithm is to construct a DFS spanning tree and

select its internal nodes [13]. It has an approximation ratio of 2. During the computation of a DFS

spanning tree, we have to keep several vertices into memory (those which are being explored and

those which have been explored) or to mark these vertices in the input graph, and again that does

not satisfy our constraints.

The best known algorithm has an approximation ratio of 2−Θ
(

1√
log n

)

. It is based on semidef-

inite programming relaxation (see [7]). This kind of method requires to fit entirely the graph into

memory, that does not satisfy C2.

Thus, there are many algorithms for the vertex cover problem but there does not seem to be

a way to implement them in order to satisfy the constraints C1, C2 and C3 given in the introduction.

Organization of the Paper. Despite the very severe constraints of the model and the intrinsic

difficulty of the vertex cover problem (NP-complete), we describe in Sect. 2 three algorithms

adapted to our model.

To compare them, we propose in Sect. 3 general analytical formulas giving the exact expected

size of the vertex cover produced. This leads us to show that none of them is better than the two

others.

To go further in the comparison, we give in Sect. 4 general formulas giving the maximum number

and the expected number of requests made by the algorithms on the “Input data” warehouse. This

is a measure of complexity of our algorithms. We show that based on this measure, none of the

algorithm is better than the two others.

We conclude and give perspectives in Sect. 5.

2 The Algorithms LL, SLL and
←−−
SLL

We describe in this section three algorithms suitable to our model: LL (ListLeft), SLL (Sorted-LL)

and
←−−
SLL (Anti Sorted-LL).

Labeling of Nodes, Left and Right Neighbors. In real applications, the vertices have

labels (depending on the applications domain) which are assumed to be pairwise distinct and can
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be ordered (e.g. by lexicographic order). We formalize this as follows. In a labeled graph, denoted

by G = (V, L, E), the vertices of G are labeled by a given function L such that for each vertex

u ∈ V , a unique label L(u) ∈ {1, . . . , n}. We denote by L(G) the set of all possible labelings L for

a graph G = (V, E). Given a labeled graph G = (V, L, E) and a vertex u ∈ V , v is called a right

neighbor (resp. left neighbor) of u if v ∈ N(u) and if v has a label larger (resp. smaller) than u.

Description of the Algorithms. We give now a basic description of our algorithms, based

on the previous notions. We give later the way they can be implemented in the model of Fig. 1 to

satisfy constraints C1, C2, C3.

Algorithm 1 (LL). Let G = (V, L, E) be a labeled graph. For each vertex u ∈ V , u is added to the

cover if it has at least one right neighbor.

Algorithm 2 (SLL). Let G = (V, L, E) be a labeled graph. For each vertex u ∈ V , u is added to

the cover if ∃v ∈ N(u) such that d(v) < d(u) or if u has at least one right neighbor with the same

degree.

Algorithm 3 (
←−−
SLL). Let G = (V, L, E) be a labeled graph. For each vertex u ∈ V , u is added to the

cover if ∃v ∈ N(u) such that d(v) > d(u) or if u has at least one left neighbor with the same degree.

Approximation Ratios. It can be easily seen that these algorithms always return a vertex

cover of the input graph. LL and
←−−
SLL have an approximation ratio of at least ∆. Indeed, on stars

LL can return all the leaves, if the center is labeled by n, and
←−−
SLL returns all the leaves. It has

been proved in [4] that SLL (presented as a list algorithm) has an approximation ratio of at most√
∆
2 + 3

2 .

Details on the Model and Satisfaction of the Constraints C1, C2 and C3. We suppose

that the data warehouse stores the labeled graph G = (V, L, E) in the form of an adjacency list in

which vertices and their neighbors are stored in an arbitrary order (not necessarily following the

labels).

If the degrees of the vertices are not stored in the input data unit, only LL can be used. If we

suppose that, in addition, the degrees are stored in a table (with direct access in the input unit),

SLL and
←−−
SLL can also be executed. The table of degrees must have been stored and computed

when the graph has been constructed; we suppose here that it is available.

The processing unit (running LL, SLL or
←−−
SLL) sends requests to the data warehouse to scan

G vertex by vertex and for each current vertex u (its label and its degree if needed), scans its

neighbors (their labels and their degrees if needed) one by one. When the processing unit decides

that a vertex u belongs to the solution (applying the conditions given in the descriptions of the

algorithms above), u is put immediately and definitively into the cover (it is sent to “Result”).

Then, the processing unit asks for the next vertex (and its neighbors) from the data warehouse;

otherwise, it must scan all the neighbors of u (and, at the end, require the next vertex like in

the previous case). We suppose that the “Input data” warehouse has the ability to do all these
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operations in an efficient way (returning the labels and the degrees, going to the next neighbor, the

next vertex, etc.).

In this model, the three algorithms satisfy the constraints C1 (the instance is not loaded), C2

(at any moment the processing unit only has two labels in memory and two degrees) and C3 (the

current piece of the solution is sent as soon as it is produced).

It is worth to notice that LL can be adapted to the streaming model (see [9] for a survey), since

it requires only labels of vertices to compare them.

3 Mean Analysis about Quality of Solutions

These three algorithms work deterministically on any given labeled graph. However, the labels of

vertices are often totally arbitrary and only come from the application domains. Different labelings

can give different results, i.e. covers of different sizes. In this section, we compare these algorithms

with respect to the size of the vertex cover they return. Since there are n! possible labelings in

L(G), we assume that each one can occur with a probability 1
n! .

We give in Theorem 3.1 exact formulas corresponding to the expected size of solution constructed

by LL, SLL and
←−−
SLL on any graph G. For that, we introduce additional notations.

Let S = V \{u | ∃v ∈ N(u), d(v) < d(u)} (resp.
←−
S = V \{u | ∃v ∈ N(u), d(v) > d(u)}) be the set of

vertices with no neighbor of lower (resp. greater) degree. Let σ(u) = |{v | v ∈ N(u)∧d(v) = d(u)}|

be the number of neighbors of u having the same degree as that of u.

Theorem 3.1. Let G = (V, E) be any graph. Let E
[

A(G)
]

be the expected size of the solution

constructed by algorithm A on G. By considering all the labelings of L(G) with equiprobability

assumption, we have

E
[

LL(G)
]

= n−
∑

u∈V

1

d(u) + 1
, (1)

E
[

SLL(G)
]

= n−
∑

u∈S

1

σ(u) + 1
, (2)

E
[←−−
SLL(G)

]

= n−
∑

u∈←−S

1

σ(u) + 1
. (3)

Proof. We give the proof for LL and for SLL. The proof for
←−−
SLL is similar to the SLL one.

Proof for LL. Let G = (V, L, E) be any labeled graph. Let CLL be a cover constructed by

LL on the labeled graph G. Let us consider a vertex u of G. u is not selected by LL if and only

if it has no right neighbor, which means that all its neighbors have labels smaller than it. Since

we consider a uniform distribution over the set of n! possible labelings, this event appears with a

probability of d(u)!
(d(u)+1)! . Indeed, if we sort u and the d(u) vertices of N(u) by increasing order of

labels, there are (d(u) + 1)! possible permutations, and the number of permutations such that u

is in the last position is d(u)!. Thus, P
[

u ∈ CLL
]

= 1 − 1
d(u)+1 and the result follows by summing

those probabilities for each vertex u of G.
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Proof for SLL. Let G = (V, L, E) be any labeled graph. Let CSLL be a cover constructed

by SLL on the labeled graph G. Let us consider a vertex u of G. If u 6∈ S, it means that

there exists a vertex v ∈ N(u) such that d(v) < d(u). So, for all the vertices of V \ S, we have

P
[

u ∈ CSLL | u 6∈ S
]

= 1. Also, if u ∈ S, then it is selected by SLL if it has at least one right

neighbor with the same degree. By following the same principle as for LL, for all the vertices of

V \S, we have P
[

u ∈ CSLL | u ∈ S
]

= 1− 1
σ(u)+1 . The result follows by summing those probabilities

for each vertex u of G.

One can note similarities between the proof of Theorem 3.1 for LL and a result of Caro and

Wei on the size of an Independent Set in a graph (see [1]).

Theorem 3.2. Among LL, SLL and
←−−
SLL, no algorithm can be elected as the best one: there exist

graphs for which each algorithm returns, in expectation, a cover smaller than the two others.

Proof. We show that, for each algorithm, there exist graphs for which it is the best in expectation.

• Let Sn be a star with n vertices. If we apply resp. (1), (2) and (3) on Sn, for all n > 2, we

have

E
[

LL(Sn)
]

= n−
n− 1

2
−

1

n
=

n

2
−

1

n
+

1

2
.

For SLL, the set S contains all the leaves of Sn. Thus, we have

E
[

SLL(Sn)
]

= n− n + 1 = 1 .

For
←−−
SLL, the set

←−
S only contains the center of Sn. Hence, we have

E
[←−−
SLL(Sn)

]

= n− 1 .

We can easily see that E
[

SLL(Sn)
]

< E
[

LL(Sn)
]

< E
[←−−
SLL(Sn)

]

. Note that SLL is

optimal for Sn.

• Let GRp×q be a grid graph with n = p× q vertices. ∀p, q > 2, we have

E
[

LL(GRp×q)
]

= n−
(p− 2)(q − 2)

5
−

2(p + q − 4)

4
−

4

3
=

4n

5
−

p + q

10
−

2

15
.

For SLL, the set S contains all the vertices which are neighbors to the border and the corner

vertices of GRp×q. So, we have

E
[

SLL(GRp×q)
]

= n−
(p− 4)(q − 4)

5
−

2(p + q − 8)

3
− 4 =

4n

5
+

2(p + q)

15
−

28

15
.

For
←−−
SLL, the set

←−
S contains all the border and corner vertices of GRp×q. Therefore, we have

E
[←−−
SLL(GRp×q)

]

= n−
(p− 4)(q − 4)

5
−

2(p + q − 8)

4
−

4

3
=

4n

5
+

3(p + q)

10
−

8

15
.

Thus, we can see that LL is better in expectation than SLL and
←−−
SLL on grid graphs.
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• Let AI+
a be a special bipartite graph with n = 2a2 +a−1 vertices. In AI+

a , the set of vertices

is X1 ∪X2 ∪ Y1 ∪ Y2, with X1 = {v1, . . . , va2−2}, Y1 = {w1, . . . , wa2}, X2 = {z1, . . . , za} and

Y2 = {t}. The set of edges is viwj ∀i, j, ziwa(i−1)+k for k = 1, . . . , a and i = 1, . . . , a; and

tzi ∀i. An example is given in Fig. 2. Note that an AI+
a graph is an extension of graphs

presented in [4].

We consider that a > 2. The set of vertices V = X1 ∪ Y1 ∪X2 ∪ Y2 is constituted as follows:

X1 contains a2− 2 vertices of degree a2, Y1 contains a2 vertices of degree a2− 1, X2 contains

a vertices of degree a + 1, and Y2 contains 1 vertex of degree a. Thus, for LL, we have

E
[

LL(AI+
a )
]

= n−
a2 − 2

a2 + 1
−

a2

a2 − 1 + 1
−

a

a + 2
−

1

a + 1

= n− 1−
a2 − 2

a2 + 1
−

a

a + 2
−

1

a + 1
.

For SLL, the set S only contains the vertex t of Y2. Thus, we have

E
[

SLL(AI+
a )
]

= n− 1 .

For
←−−
SLL, the set

←−
S contains the a2 − 2 vertices of X1. Therefore, we have

E
[←−−
SLL(AI+

a )
]

= n− a2 + 2 .

We can see that LL is better than SLL. We compare
←−−
SLL with LL:

E
[

LL(AI+
a )
]

− E
[←−−
SLL(AI+

a )
]

= a2 − 3−
a2 − 2

a2 + 1
−

a

a + 2
−

1

a + 1
> 0

when a > 3, because a2−2
a2+1 < 1, a

a+2 < 1 and 1
a+1 < 1, that implies a2−2

a2+1 + a
a+2 + 1

a+1 < 3.

Hence, E
[←−−
SLL(AI+

a )
]

< E
[

LL(AI+
a )
]

< E
[

SLL(AI+
a )
]

. Note that SLL always returns a

worst solution (of size n− 1) on any AI+
a graph.

b bb b bb b bb

b b b

b b bb b

b

X1

X2

Y2

Y1

X1

Y1

X2

b b

Figure 2: Example of AI+
a graph with a = 3

Applications of (1), (2) and (3) on another classes of graphs can be found in [2].
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Special Properties of LL. We show here that for any graph G, LL can construct an optimal

cover for any graph G in the best case or a very large cover in the worst case.

Lemma 3.1. For any graph G, there exists a labeling function L∗ ∈ L(G) such that LL returns an

optimal solution on the labeled graph G = (V, L∗, E).

Proof. Let C∗ be an optimal cover. It is easy to show that V \ C∗ is an independent set and that

each u ∈ C∗ has at least a neighbor in V \ C∗ (otherwise, u and all its neighbors would be in C∗,
thus C∗ would not be optimal). The labeling function L∗ we propose is one such that vertices of C∗

get labels between 1 and |C∗| and vertices of V \C∗ get labels between |C∗|+ 1 and n. If algorithm

LL is executed on such a labeled graph, it returns all the vertices of C∗ (since each vertex u of C∗

has at least a neighbor in V \C∗ with a higher label) and no vertex of V \C∗ (because V \C∗ is an

independent set and thus each vertex in this set only has neighbors in C∗, i.e. “on its left”).

Lemma 3.2. For any graph G, there exists a labeling function Lw ∈ L(G) such that LL returns a

cover of size n− c on the labeled graph G = (V, Lw, E), with c the number of connected components

of G (c = 1 if G is connected). This bound is tight: LL cannot construct a cover of size more than

n− c.

Proof. First, we consider a graph G with c = 1 connected component. Let T be any spanning tree

of G. Let r be any vertex of T . The labeling function Lw ∈ L(G) labels the vertices as follows.

Vertex r gets label n. The d1 neighbors/children of r in T get the d1 labels (n− d1, . . . , n− 1); the

d2 vertices at distance 2 get the d2 preceding labels (n − d1 − d2, . . . , n − d1 − 1), etc. until each

vertex receives a label, level by level (see Fig. 3 for an illustration). With this labeling, since T is a

spanning tree, each vertex u 6= r has at least one right neighbor: its parent v in the tree T rooted

in r. Hence, the execution of LL on this labeled graph G = (V, Lw, E) will return all the vertices,

except the root r, which is the vertex labeled with the maximum value. This is the maximum size

achievable, since LL never put in a cover the vertex with the larger label (since it cannot have a

right neighbor).

1 2 3

45

67(r)

b

b

r

b

b

b

b

Figure 3: Example of a labeled spanning tree of a graph. Dotted lines correspond to edges which

are present in the graph but not in the spanning tree.

If G is not connected, we can apply the previous labeling and analysis on each connected

component of G.

4 Analysis of the Number of Requests

In Sect. 2, we have seen that, during the execution of algorithms, the processing unit gets vertices

one by one, in any order of labels (not necessarily from 1 to n). Moreover, the neighbors of a vertex

u are also obtained one by one, in any order. That implies two situations.
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1. If u is not sent to the cover by examining the current neighbor, the processing unit retrieves a

neighbor of u which has not yet been scanned. If there is no remaining neighbor, i.e. when u

has been compared with all of its neighbors, it decides definitively that u is not in the cover.

2. If u is sent to the cover because of the examination of the current neighbor, the system doesn’t

need to go further and to compare u with its remaining neighbors. Hence, the processing unit

is not required to retrieve all the neighbors of a vertex.

We call request the action of getting a neighbor (its label, and its degree, if needed) which has not

yet been scanned. In this section, we evaluate the number of requests made by the three algorithms

to construct their solutions. Given a labeled graph, this number depends on the order in which

neighbors of vertices are sent to the algorithm.

In our model, the processing unit takes longer to get a neighbor from the “Input data” warehouse

than to compare two vertices (their labels and/or their degrees) stored in its memory. Hence, the

number of requests determines the running time of the algorithms. So, we study precisely in this

section the worst time complexity and the average time complexity of our three algorithms.

Note that this kind of study is similar to the query complexity approach presented in [11]. It has

a finer granularity than the complexity analysis in I/O-efficient algorithms or streaming algorithms.

Indeed, in the I/O-efficient model (see [16] for a survey), we focus on the number of access disk,

while in the streaming model [9], we focus on the number of passes through the data stream.

In Subsect. 4.1, we study the maximum number of requests, by considering for each vertex the

worst order in which its neighbors can be retrieved.

In Subsect. 4.2, we study the average number of requests, by considering that for each vertex

u ∈ V , its d(u) neighbors can be retrieved in any one of the d(u)! possible orders with a uniform

probability. Then, we assume that all the n! labelings of a graph G (in L(G)) can occur with a

uniform probability.

Notations. We denote by d+(u) (resp. d−(u)) the number of right (resp. left) neighbors

of u. We denote by dinf(u) (resp. dsup(u)) the number of neighbors of u having a degree smaller

(resp. greater) than that of u. We denote by σ+(u) (resp. σ−(u)) the number of right (resp. left)

neighbors of u having the same degree.

4.1 The Maximum Number of Requests

In this subsection, we give exact formulas for the maximum number of requests performed by the

three algorithms.

Lemma 4.1. Let G = (V, L, E) be any labeled graph. We denote by W
{

qA(G, L)
}

(resp. CA)

the maximum number of requests made (resp. the cover constructed) by algorithm A on the labeled

10



graph G. One has

W
{

qLL(G, L)
}

=
∑

u 6∈CLL

d(u) +
∑

u∈CLL

(d−(u) + 1) , (4)

W
{

qSLL(G, L)
}

=
∑

u 6∈CSLL

d(u) +
∑

u∈CSLL

(dsup(u) + σ−(u) + 1) , (5)

W
{

q←−−SLL(G, L)
}

=
∑

u 6∈C←−−
SLL

d(u) +
∑

u∈C←−−
SLL

(dinf(u) + σ+(u) + 1) . (6)

We give the proof for LL. Proofs for SLL and
←−−
SLL are similar.

Proof. Let G = (V, L, E) be a labeled graph. Let CLL be a cover constructed by LL on G. Let us

consider a vertex u of G. u ∈ CLL if and only if it has at least one right neighbor. In the worst

case, the processing unit gets all the left neighbors of u before getting a right neighbor. Hence, it

makes exactly d−(u) + 1 requests to decide that u is in the cover; otherwise, if u 6∈ CLL, then we

have to get all the neighbors of u to decide finally that u is not in the cover (we don’t know it has

no right neighbor a priori), which generates exactly d(u) requests. The result follows by summing

those values for each vertex u of G.

Theorem 4.1. Let G be any graph. Let W
{

qA(G)
}

= maxL∈L(G)W
{

qA(G, L)
}

be the maximum

number of requests made by algorithm A on G. One has

W
{

qA(G)
}

= m + |Cmax
A | , (7)

where |Cmax
A | is the maximum size of cover returned by algorithm A on G.

Proof. We give the proof for LL and for SLL. The proof for
←−−
SLL is similar to the SLL one.

Proof for LL. Let G = (V, L, E) be any labeled graph and CLL the cover constructed by LL

on G. We can simplify (4) as follows.

∑

u 6∈CLL

d(u) +
∑

u∈CLL

(d−(u) + 1) = m + |CLL| (8)

since, ∀u 6∈ CLL, d(u) = d−(u) and
∑

u∈V d−(u) = m. Now, if we maximize (8) by considering

all the n! possible labelings of L(G), we need to maximize the size of CLL. Hence, we obtain

W
{

qLL(G)
}

= m + |Cmax
LL |.

Proof for SLL. Let G = (V, L, E) be any labeled graph and CSLL the cover constructed by

SLL on G. We can simplify (5) as follows.

∑

u 6∈CSLL

d(u) +
∑

u∈CSLL

(dsup(u) + σ−(u) + 1) = m + |CSLL| (9)

since, ∀u 6∈ CSLL, d(u) = dsup(u) + σ−(u) and
∑

u∈V (dsup(u) + σ−(u)) = m. Now, if we maximize

(9) by considering all the n! possible labelings of L(G), we need to maximize the size of CSLL.

Hence, we obtain W
{

qSLL(G)
}

= m + |Cmax
SLL|.

11



Corollary 4.1. The maximum number of requests made by LL on any graph G (over all its labelings

L(G)) having c connected components is

W
{

qLL(G)
}

= m + n− c . (10)

Moreover, W
{

qA(G)
}

≤ m + n− 1 for A = SLL or
←−−
SLL.

Proof. The results for LL are derived from Theorem 4.1 and Lemma 3.2. For SLL and
←−−
SLL, note

that any cover CA cannot contain all the vertices of G.

4.2 The Expected Number of Requests

In this subsection, we give exact formulas expressing the expected number of requests for the three

algorithms.

Lemma 4.2. Let G = (V, L, E) be any labeled graph. We note E
[

qA(G, L)
]

(resp. CA) the expected

number of requests made (resp. the cover constructed) by algorithm A on the labeled graph G. One

has

E
[

qLL(G, L)
]

=
∑

u 6∈CLL

d(u) +
∑

u∈CLL

d(u) + 1

d+(u) + 1
, (11)

E
[

qSLL(G, L)
]

=
∑

u 6∈CSLL

d(u) +
∑

u∈CSLL

d(u) + 1

dinf(u) + σ+(u) + 1
, (12)

E
[

q←−−SLL(G, L)
]

=
∑

u 6∈C←−−
SLL

d(u) +
∑

u∈C←−−
SLL

d(u) + 1

dsup(u) + σ−(u) + 1
. (13)

We give the proof for LL. Proofs for SLL and
←−−
SLL are similar.

Proof. Let G = (V, L, E) be any labeled graph. Let CLL be a cover constructed by LL on G. Let

us consider a vertex u of G. If u 6∈ CLL, then the algorithm has to get all of its d(u) neighbors;

otherwise, it makes d(u)+1
d+(u)+1 requests in expectation before getting one of the d+(u) right neighbors

of u. This value can be explained as follows. If a player is to draw balls from a bag containing

a white balls and b black balls until he draws a black ball, not replacing the ball drawn, then the

expected number of white balls he will draw is a
b+1 (see for example [6]). Now, suppose that the

d(u) neighbors of u are balls in a bag, with d−(u) (resp. d+(u)) white (resp. black) balls. Using

a = d−(u) and b = d+(u), we obtain a
b+1 + 1 = d−(u)

d+(u)+1 + 1 = d(u)+1
d+(u)+1 requests in average (including

the one giving the “black ball”). The result follows by using linearity of expectation.

Theorem 4.2. Let G be any graph. Let E
[

qA(G)
]

= 1
n!

∑

L∈L(G) E
[

qA(G, L)
]

be the expected

number of requests made by algorithm A on G, assuming that all the labelings of L(G) occur with

the same probability. For LL and SLL, we have

E
[

qLL(G)
]

=
∑

u∈V

H(d(u)) . (14)
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E
[

qSLL(G)
]

=
∑

u∈V

d(u) + 1

σ(u) + 1

(

H(dinf(u) + σ(u) + 1)−H(dinf(u))
)

−
∑

u|dinf(u)=0

1

σ(u) + 1
,

(15)

where H(n) = 1 + 1
2 + 1

3 + · · · + 1
n

and H(0) = 0.

E
[

q←−−SLL(G)
]

is obtained by replacing dinf(u) by dsup(u) in (15).

Proof. We give the proof for LL and for SLL. The proof for
←−−
SLL is similar to the SLL one.

Proof for LL. Let G = (V, E) be any graph. We calculate the contribution of each vertex

u ∈ V in E
[

qLL(G)
]

. Let L ∈ L(G) be any labeling on G and CLL the cover constructed by LL

on the labeled graph G = (V, L, E). Notice that for each vertex u ∈ V , u 6∈ CLL if and only if

d+(u) = 0. Let βk(u) be the proportion of labelings L ∈ L(G) for which d+(u) = k. Using (11),

the contribution of vertex u in E
[

qLL(G)
]

is

β0(u) · d(u) +

d(u)
∑

k=1

βk(u) ·
d(u) + 1

k + 1
. (16)

Let us compute the value of βk(u). The value of d+(u) depends only on the label of vertex u

compared to those of its neighbors. There are exactly
(

n

d(u) + 1

)

· d(u)! × (n− (d(u) + 1))! (17)

labelings in which d+(u) = k. Indeed, we assign labels to vertices of G as follows. First, we choose

d(u)+1 labels among n and u gets the (k+1)th largest label in order to have d+(u) = k. Then, there

remain d(u)! possibilities for labeling neighbors of u and (n− (d(u) + 1))! possibilities for the other

vertices of G. We obtain βk(u) by dividing (17) by n!. Thus, ∀k ∈ {0, . . . , d(u)}, βk(u) = 1
d(u)+1 .

Now, we simplify (16) and we get

β0(u) · d(u) +

d(u)
∑

k=1

βk(u) ·
d(u) + 1

k + 1
=

d(u)

d(u) + 1
+

d(u)
∑

k=1

1

k + 1

=
d(u)

d(u) + 1
+

d(u)+1
∑

k=2

1

k
= 1 +

d(u)
∑

k=2

1

k
= H(d(u)) .

The result follows by using the linearity of expectation.

Proof for SLL. Let G = (V, E) be any graph. We calculate the contribution of each vertex

u ∈ V in E
[

qSLL(G)
]

. Let L ∈ L(G) be any labeling on G and CSLL the cover constructed by SLL

on the labeled graph G = (V, L, E). Notice that for each vertex u ∈ V , u 6∈ CSLL if and only if

dinf(u) = 0 and σ+(u) = 0. Also, note that if dinf(u) > 0, whatever the labeling of vertices of G, u

is always selected by SLL. Let β′k(u) be the proportion of labelings L ∈ L(G) for which σ+(u) = k.

1. If dinf(u) > 0, whatever the value of σ+(u) (between 0 and σ(u) and denoted k by the

following), the contribution of vertex u in E
[

qSLL(G)
]

is

β′k(u) ·
d(u) + 1

dinf(u) + k + 1
. (18)
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2. If dinf(u) = 0, then the fact that u is in the cover returned by SLL or not depends only

on label of u compared to those of its neighbors having the same degree. In this case, the

contribution of vertex u in E
[

qSLL(G)
]

is







β′k(u) · d(u)+1
k+1 with k = 1, . . . , σ(u) if u ∈ CSLL,

β′0(u) · d(u) otherwise.
(19)

We obtain the value of β′k(u) by using the same reasoning as for LL. We replace d(u) in βk(u)

by σ(u) and thus we have, for any vertex u, β′k(u) = 1
σ(u)+1 , ∀k ∈ {0, . . . , σ(u)}. So, in order to

simplify (18), we apply this result for each vertex u such that dinf(u) > 0:

σ(u)
∑

k=0

1

σ(u) + 1
·

d(u) + 1

dinf(u) + k + 1
=

d(u) + 1

σ(u) + 1

σ(u)+1
∑

k=1

1

dinf(u) + k

=
d(u) + 1

σ(u) + 1

(

H(dinf(u) + σ(u) + 1)−H(dinf(u))
)

,

(20)

and we apply this result on (19), for each vertex u such that dinf(u) = 0:

d(u)

σ(u) + 1
+

σ(u)
∑

k=1

1

σ(u) + 1
·

d(u) + 1

k + 1
=

d(u)

σ(u) + 1
+

d(u) + 1

σ(u) + 1





σ(u)+1
∑

k=1

1

k
− 1





=
−1

σ(u) + 1
+

d(u) + 1

σ(u) + 1

σ(u)+1
∑

k=1

1

k

=
d(u) + 1

σ(u) + 1
·H(σ(u) + 1)−

1

σ(u) + 1
.

(21)

The result follows by summing (20) and (21) for each vertex of G.

Corollary 4.2. The expected number of requests made by LL, SLL and
←−−
SLL on a ∆-regular graph

is n ·H(∆), that tends to n · log ∆ when ∆ tends to +∞.

Proof. As in G for all u ∈ V we have d(u) = ∆, the result for LL immediately follows and we also

get dinf(u) = dsup(u) = 0 and σ(u) = d(u). Using these values, we can simplify (15) and get the

result for SLL and
←−−
SLL.

Theorem 4.3. Among LL, SLL and
←−−
SLL, no algorithm can be elected as the best one: there exist

graphs for which each algorithm makes an expected number of probes to the instance smaller than

the two others.

Proof. Here, we apply formulas given in Theorem 4.2 to show that, for each algorithm, there exist

graphs for which it can be the best in expectation.

• Let Sn be a star with n vertices. If we apply resp. (14), (15) and (15) by replacing dinf(u) by

dsup(u), for all n > 2, we have

E
[

qLL(Sn)
]

= H(n− 1) + n− 1 .
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In a star Sn such that n > 2, no vertex has a neighbor having the same degree as it.

For SLL, the n − 1 leaves of Sn have no neighbor with a smaller degree. The center of Sn

has n− 1 neighbors (the leaves) having a degree smaller than it. Thus, we have

E
[

qSLL(Sn)
]

= (n− 1) · 2 + n
(

H(n)−H(n− 1)
)

− (n− 1) = n .

For
←−−
SLL, the center of Sn has no neighbor having a degree greater than it. Each leaf of Sn

has a neighbor (the center) with a greater degree. Thus, we have

E
[

q←−−SLL(Sn)
]

= n + (n− 1) · 2
(

H(2) −H(1)
)

− 1 = 2n− 2 .

Thus, we can easily see that E
[

qSLL(Sn)
]

< E
[

qLL(Sn)
]

< E
[

q←−−SLL(Sn)
]

.

• Let Ka,b = (X ∪ Y, E) be a complete bipartite graph with n = a + b vertices (where a = |X|

and b = |Y |). Assuming that a > b > 4, we have

E
[

qLL(Ka,b)
]

= a ·H(b) + b ·H(a) .

In a complete bipartite graph Ka,b such that a 6= b, no vertex has a neighbor having the same

degree as it.

For SLL, the a vertices of X have no neighbor with a smaller degree. Each vertex of Y has

a vertices (those of X) having a degree smaller than it. thus, we have

E
[

qSLL(Ka,b)
]

= a(b + 1) + b(a + 1)
(

H(a + 1)−H(a)
)

− a = ab + b .

For
←−−
SLL, the b vertices of Y have no neighbor with a greater degree. Each vertex of X has

b vertices (those of Y ) having a degree greater than it. thus, we have

E
[

q←−−SLL(Ka,b)
]

= b(a + 1) + a(b + 1)
(

H(b + 1)−H(b)
)

− b = ab + a .

We can easily see that SLL is better than
←−−
SLL (because a > b). We compare LL with SLL:

E
[

qSLL(Ka,b)
]

− E
[

qLL(Ka,b)
]

= ab + b− a ·H(b)− b ·H(a)

=
ab

2
− a ·H(b) +

ab

2
− b ·H(a) + b > 0

because b
2 > H(b) when b > 4 and a

2 > H(a) when a > 4.

Therefore, when a > b > 4, LL produces, in expectation, a smaller number of requests than

SLL and
←−−
SLL.

• Let CKl,w be a necklace with n = l × w vertices. A necklace CKl,w is a cycle of l complete

graphs where each complete graph Ki (i ∈ {1, . . . , l}) has w vertices: w− 2 vertices of degree

w− 1 and 2 distinct vertices ai and bi of degree w, called connectors, which connect Ki to its

previous and to its following neighbors in the cycle (see Fig. 4 for an illustration).
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Assuming that l > 1 and w > 4, we have

E
[

qLL(CKl,w)
]

= l(w − 2) ·H(w − 1) + 2l ·H(w) = n ·H(w − 1) +
2l

w
.

In a necklace CLl,w, each vertex belonging to the l complete graphs except the 2l connectors

ai and bi has w − 3 neighbors having the same degree as it. Each connector has 2 neighbors

having the same degree as it.

For SLL, the l(w − 2) different vertices of the connectors have no neighbor with a smaller

degree. Each connector has w − 2 neighbors (the vertices of the complete graph it belongs)

having a degree smaller than it. Thus, we have

E
[

qSLL(CKl,w)
]

= l(w − 2) ·
w

w − 2
·H(w − 2) + 2l ·

w + 1

3

(

H(w + 1)−H(w − 2)
)

−
l(w − 2)

w − 2

= n ·H(w − 2) +
2l

3
·

3w2 − 1

w(w − 1)
− l .

For
←−−
SLL, the 2l connectors have no neighbor with a greater degree. Each vertex (except the

connectors) has 2 neighbors (the connectors of the complete graph it belongs) having a degree

greater than it. Thus, we have

E
[

q←−−SLL(CKl,w)
]

= 2l ·
w + 1

3
·H(3) + l(w − 2) ·

w

w − 2

(

H(w) −H(2)
)

−
2l

3

= n ·H(w)−
5n

18
+

5l

9
.

We compare them:

E
[

qLL(CKl,w)
]

− E
[

q←−−SLL(CKl,w)
]

=
5n

18
+

2l

w
−

14l

9

=
l(5w2 − 28w + 36)

18w
> 0

when w > 3, because the polynomial 5w2− 28w + 36 has two roots: 2 and 3.6; and is positive

∀w ≤ 2 and ∀w ≥ 3.6.

E
[

qSLL(CKl,w)
]

− E
[

q←−−SLL(CKl,w)
]

=
5n

18
+

n

w − 1
−

2l

3w(w − 1)
−

23l

9

=
l(5w3 − 33w2 + 46w − 12)

18w(w − 1)
> 0

when w > 4, because the polynomial 5w3 − 33w2 + 46w − 12 has three roots: 0.34, 1.48 and

4.78; and is positive ∀w ∈ [0.34, 1.48] and ∀w ≥ 4.78.

Hence, when l > 1 and w > 4,
←−−
SLL produces, in expectation, a number of requests smaller

than LL and SLL.
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Figure 4: Example of a necklace with l = 3 and w = 6

5 Conclusion

We have presented and analyzed three algorithms for the vertex cover problem, which are

suitable to the severe constraints of our model: they don’t need to modify the input graph, they

don’t need a large memory on the processing unit, and they don’t need to read and/or modify the

solution computed during the execution. They are adapted to the construction of a vertex cover in

huge graphs on a basic computer.

If the degrees of the vertices are directly available, the three algorithms can be used; otherwise,

only LL can be applied. To compare these three methods, in Sect. 3, we have given exact (analyt-

ical) formulas for the expected size of the cover returned by these algorithms (we also proved that

for any graph there exist labelings for which LL give the optimal cover). We proved that, based

on this measure, no algorithm among these three can be elected as the best one for all graphs.

To go further in the analysis, in Sect. 4, we have given exact formulas expressing the maximum

and the expected number of requests made by the three algorithms (to the system containing the

input data) to construct the solution. Again, based on this running time complexity measure, we

have proved that none of the three algorithms can be elected has the best (i.e. fastest) one.

All our analytical formulas can help a user to choose among our three algorithms based on

potential knowledges on the input graph (that may be given by the domain of application). They

can be used to balance between precision and complexity.

We can also remark that the three algorithms can easily be executed in parallel if each process-

ing unit manages a subset (not necessarily consecutive) of vertices.

We believe that SLL is the algorithm constructing the smallest vertex cover in average for

“almost all” graphs3 if the degrees are available. A perspective is to prove that; this is probably

hard for all graphs; some experiments results could also be helpful.
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