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QCD
A

from Renormalization Group Optimized Perturbation

Jean-Loic Kneur and André Neveu
CNRS, Laboratoire Charles Coulomb UMR 5221, F-34095, Montpellier, France and
Université Montpellier 2, Laboratoire Charles Coulomb UMR 5221, F-34095, Montpellier, France

A recent extension of a variationally optimized perturbation, combined with renormalization group
properties in a straightforward way, can provide approximations to nonperturbative quantities such
as the chiral symmetry breaking order parameters typically. We apply this to evaluate, up to third
order in this modified perturbation, the ratio Fr/A-—, where F; is the pion decay constant and

MS>

A= the basic QCD scale in the M .S scheme. Using experimental F; input value we obtain A%z ~

MS

2551“%2 MeV, where quoted errors are estimates of theoretical uncertainties of the method. This
compares reasonably well with some recent lattice simulation results. We briefly discuss prospects
(and obstacles) for extrapolation to as(u) at perturbative p values.

In the chiral symmetric, massless quarks limit, the
strong coupling ag(u) at some reference scale p is the
only QCD parameter. Equivalently the Renormalization-
Group (RG) invariant scale

A= e (Byas) P (), (1)

in a specified renormalization scheme, is the fundamental
QCD scale. In (1) o, 1 are (scheme-independent) one-
and two-loop RG beta function coefficients, and ellipsis
denote higher orders scheme-dependent RG corrections
as will be specified below. As indicated AZY_ also de-
pends on the number of active quark flavors n s, with non-
trivial (perturbative) matching relations at the quark
mass thresholds (see e.g. the QCD chapter in ([1]) for
a recent review and original references). ag has been ex-
tracted from many different observables confronted with
theoretical predictions, and its present World average is
impressively accurate [1]: ag(mz) = .118 +.001 (though
there are long-standing tensions with values from struc-
ture functions [2]: ag(myz) ~ .114 £ .002). In any case,
it is still of great interest to estimate Az from other
observables, and other theoretical methods, specially to
access the deep infrared, nonperturbative QCD regime
for ny = 2(3), where a perturbative extrapolation from
as(myz) is unreliable. Indeed for several years determi-
nations of AnIL for ny < 2(3) from Lattice simulations
have been the subject of much activities.

In this letter we explore a different route to estimate
such quantities, more rooted in perturbation theory, and
where the dynamically broken chiral symmetry due to the
light «, d (and s) quarks plays a crucial role. The main
order parameters of chiral symmetry breaking, namely
the chiral quark condensate (g¢) and pion decay con-
stant F, should be entirely determined by the unique
scale Ag;= in the strict chiral limit. Well-established ar-
guments usually consider hopeless to calculate the above
order parameters from QCD first principle, except on
the lattice. First, most obviously because of the men-
tioned nonperturbative regime at the relevant scale close
to A5, implying a priori large ag values invalidating

reliable perturbative expansions. Second, standard per-
turbative series of those quantities at arbitrary orders
are anyhow proportional to the quark masses m, (up to
powers of Inmy), so trivially vanish in the strict chiral
limit m, — 0. Moreover, general arguments, related to
the problem of resumming presumed factorially divergent
perturbative series at large orders[3], seem to further in-
validate any perturbative approach to calculate the order
parameters. We will see how to circumvent at least the
first two arguments above, by a peculiar modification of
the ordinary perturbative expansion in ag, with possi-
ble improvements of the convergence and resummation
properties of such a modified series. In this letter we con-
centrate on determining Fy/ Am at successive orders of
this modified perturbation, thus extracting Az values
from the pion decay constant value Fj.

Our method has been recently applied[4] to the D = 2
Gross Neveu (GN) O(2N) model[5], which shares many
properties with D = 4 QCD: it is asymptotically free,
has a (discrete) chiral symmetry for m = 0, dynamically
broken with a fermion mass gap. The exact mass gap
is known for arbitrary N, from Thermodynamic Bethe
Ansatz[6], allowing accurate tests of our method. Using
only the two-loop ordinary perturbative information, we
obtained approximations to the exact mass gap at the
percent or less level [4], for any N values.

The basic framework[7] is to introduce an unphysical
parameter 0 < § < 1, interpolating between Ly, and
Linteraction, such that the relevant fermion (quark) mass
mg becomes an arbitrary “variational” parameter:

LQCD (TTL(I, Ozs) — EQCD(m(l = 5)“, as(S) (2)

where Loeop(as) stands for the standard complete QCD
Lagrangian, and my originally is a current quark mass
relevant for chiral symmetry breaking. In the following
we shall mainly consider two quark flavors u,d and the
corresponding SU(2)r, x SU(2)r — SU(2)y chiral sym-
metry breakdown, with m = (m.,, + mq4)/2 neglecting as
usual the m, — mq difference. The extra parameter ¢ in
(2) reflects the large freedom in the modified interpolat-
ing Lagrangian, and will allow imposing further physical



(or technical) constraints, as we shall specify later.

The procedure is fully consistent with renormalizability
and gauge invariance, provided that the above redefini-
tion of the QCD coupling ag — dag is performed consis-
tently for all interaction terms appropriate for gauge in-
variance and renormalizability. Working with the above
Lagrangian is perturbatively equivalent to taking any
standard renormalized series in g = 47wag for a physical
quantity, re-expanded in powers of § after substitution:

m—m(l—0)% g—0dg. (3)

One takes afterwards the § — 1 limit to recover the
original massless theory. This expansion gives, how-
ever, a remnant m-dependence at any finite §*-order,
and m can be fixed conveniently by an optimization
(OPT) prescription[8]. The convergence of such a pro-
cedure, which may be viewed as a particular case of
“order-dependent mapping”[9], has been proven[10] for
the D = 1 A¢* oscillator model. In renormalizable D > 1
models, the situation is more involved and it is difficult to
make statements on the possible convergence properties
(see however [11] for a particular case). But at least the
method allows to obtain approximations to nonperturba-
tive quantities beyond the mean field approximation in
various models, which (empirically) appear to converge
rather quickly at the first few perturbative orders.
Previous attempts to use this approach in QCD gave
rough estimates of the order parameters (dynamical
mass gap”, Fr, (3g))[12]. But it involved a cum-
bersome manner of incorporating renormalization group
(RG) properties within such modified perturbative series,
difficult to generalize beyond the first or second RG order
and to other physical quantities defined by their pertur-
bative series. Our new proposal introduces in contrast
a much simpler marriage of OPT and RG properties[4]:
consider an ordinary perturbative expansion for a phys-
ical quantity P(m,g), after applying (3) and expanding
in ¢ at order k. In addition to the OPT equation:

%P(k) (m, 9,0 = 1D)|m=m =0, (4)

we require the (d-modified) series to satisfies a standard
RG equation:

p% (P(k)(m,g, §= 1)) =0 (5)

where the usual RG operator

i 8@y~ (@ m (©)

M@ =H EN
gives zero to O(gF*!) when applied to RG-invariant
quantities. (NB our normalization is 8(g) = dg/dlnp =
—2bog”® —2b1g®+- - - and Y (9) = Y09 +719° +- - - The b;
and ~y; known up to 4-loop are given in [13]). Note that,

combined with Eq. (4), the RG equation takes a reduced
form:

i+ B0 PP =1 =0 ()

and Egs. (7), (4) completely fix [for given a values in
Eq. (3)] optimized values m =/ and g = §.

We shall now illustrate the method concretely on a
well-defined perturbative series relevant for the pion de-
cay constant Fy;. One very convenient definition of F is
via the axial current correlator, known at present up to
4-loop orders [14, 15]. More precisely:

i{0IT A}, (p) AL (0)|0) = 6 g, F + Opupy)  (8)

where the axial current is A/, = §y,75% ¢, and in this
normalization Fr ~ 92.3 MeV [1].

Our starting point is thus the perturbative expansion of
(8) in the M S scheme:

F2(pert) = 3;’;2 [div(e,as) — L+ $£(8L* + 3L+ )
+(52)[f30L? + fa1L? + fsoL + fas] + O(a%)] (9)
where L = In 2, f35 = 304 — —nf, f31 = —m + —nf,

and f3o and the non—RG coefﬁment f33 have more lengthy
expressions easily extracted from related calculations in
[14] valid for arbitrary numbers of quark flavors. Re-
cently even the O(a3) coefficients fy;,i = 0,---,4 were
obtained [15], that we also use in our analysis [16].

There is however one subtlety at this stage: as is
well-known, at this level the calculation e.g. in dimen-
sional regularization of (8) actually still contains diver-
gent terms after mass and coupling renormalization in
MS scheme, formally indicated as div(e, ag) in Eq. (9).
This simply reflects the extra additive renormalization
needed for such a composite operator. But to obtain a
RG-invariant finite expression from (9) the subtraction of
those divergences should be performed consistently with
RG properties. Now to fix this subtraction at order k
needs knowledge of the coefficient of the L term (equiva-
lently the coefficient of 1/e in dimensional regularization)
at order k+1. We define the needed subtraction as a per-
turbative series:

sub(g, m) 2ZS,g -1 (10)

>0

with coefficients determined order by order by

/L%[sub(g, m)] = Remnant(g, m) (11)
where the remnant part is obtained by applying the RG
operator Eq. (6) to the finite part of (9), as the latter is
not separately RG-invariant. Thus the (finite) quantity
F2(pert)(finite) — sub(g,m) is RG-invariant at a given
order. Note that (10) does not contain any L terms



and necessarily starts with a sp/g term to be consis-
tent with RG invariance properties. (This reflects the
fact that the one-loop contribution in Eq. (9) is of order
g°). Completely equivalent results are obtained [12] more
formally by working with bare expressions and establish-
ing the required RG properties. We obtain for instance

7 3 o 237417ng .

So = In2(bo—70) 81 = m, and hlgher order S;
have more lengthy expressions not given here.

We thus apply to (9)-(10) the procedure (3) and ex-
pand at order §*, then solving OPT and RG Eqs.(4),
(7). Before coming to numerical results, some important
remarks are in order. First, Eqgs.(4), (7) being polyno-
mial in (L, g), one serious drawback is that at increasing
0-orders there are (too) many solutions, most being com-
plex (complex conjugate in fact since all coefficients of
(4), (7) are real). Now an important selection comes
about if one imposes an additional constraint that the
solutions should obey asymptotically the standard per-
turbative RG behavior for g — 0:

3(u>m) ~ (2boln £)71. (12)

This is a very natural requirement, otherwise optimal
solutions do not match standard perturbative behavior.
An important related remark is that, after OPT, the
optimized mass 1 is consistently O(A37g) (rather than
m ~ 0). Thus m plays the role of a mass gap, such
that the OPT-modified expansion F, o m is a pertur-
bation around a 'Born-level’ value of O(Ag75) in con-
trast with the original standard perturbative expansion,
Fr(m — 0) — 0. In fact, at 6*-order, Eq. (7) is a polyno-
mial of order k+1 in L, thus exactly solvable up to third
order, with full analytical control of the different solu-
tions. However, unlike the GN mass gap case[4], to have
at least one of the RG OPT F; solutions behaving as
(12) at any d*-orders, requires a critical value of the pa-
rameter a in the interpolation (3), namely a = 7o/ (2bg).
This connection with RG anomalous dimensions is not
too surprising: similarly in other theories, e.g. ®* in
D = 3, specific a values occur, consistent with RG crit-
ical exponent properties, as emphasized in [17], at the
same time matching real optimal solutions [18].

We thus fix a = 70/(2by) to determine solutions at suc-
cessive d-orders. Most solutions exhibit very odd depen-
dence in g incompatible with (12), as also observed very
similarly in the GN model case [4]. This perturbative RG
criteria appears to give unique solutions (at least up to
third order here considered), given in Table I.

But those unique well-behaving RG solutions remain
complex (conjugates) for Fi. It can always be that other
models, other physical quantities [4, 18] (or very different
ny values) give real solutions, but not for Fr at k& < 3
orders here explored. Since this is unphysical, we can
only expect acceptable solutions of behavior (12) to have
at least Re(g) > 0 and Im(Fy) <« Re(F;), the imaginary
part indicating an intrinsic theoretical uncertainty of the

TABLE I. Combined OPT+RG results at successive d-order

Oy
S-order k —LA—F A}f_m’g> L as
A
1 0.372 £ 0.164|—0.45 £ 0.117|1.01 4 0.08%
2 0.353 +0.032]—0.52 F 0.697|0.73 £+ 0.02:
3 (84, faa = 0) |[0.351 +0.08i|—0.13 F 0.04¢|0.61 + 0.33¢
3 (s4 = PA[L, 2))[[0.341 = 0.07:| —0.23 F 0.047]0.59 + 0.314

method, as will be specified below.
To compare our results with other (principally Lattice)
calculations, one should be careful to use the same con-
ventions for Aq7s. We mainly use a convenient (Padé
Approximant) 3-loop form, cf. [19]:

b

1 bog 2b(z)
APA = ¢ 2171]-‘7 - 7 . 13
s I+ E-B)g "

We also compare with a more standard 4-loop perturba-
tive form [1], with b3 # 0, which gives a systematic ~ 2
% lower Agpg values for our optimal ag values.

Comparing second and first d-orders in Table I, one
observes that the solution has a much smaller imaginary
part, and also Re é&ug decreases to reasonably perturbative
values as the d-order increases. At third order, the g3s4
term in (10) needs knowledge of the presently unknown
5-loop coefficient of L. We have thus estimated s4 either
with a Padé Approximant PA[L, 2] from lower orders, or
alternatively simply ignoring sg, fa4a = 0, retaining only
4-loop RG In?(m/p) coefficients. The difference between
those two choices in Table I gives one estimate of higher
order uncertainties. We also incorporate additional theo-
retical uncertainties by solving Eq. (7) truncated to lower
g orders, or neglecting b3, etc (since RG-invariance is
only required up to O(g**!) terms at order k). Op-
timal RG solutions are remarkably stable with respect
to such approximations on 4-loop order and RG trun-
cations, with at most ~ 2-3% differences on AZ/ILS:Q. In
addition, as above mentioned we take into account a more
intrinsic error: given the (unphysical) imaginary parts of
the solutions, we empirically take the range spanned by
Re(Fy(§, L)) — Fr(Re(§),Re(L)), as this tends to maxi-
mize the uncertainty for increasing Im(g, E) This gives
only about a 1-2% variation on Az at O(62); but a
larger ~ 10% one at O(4%) due to the larger imaginary
part of the solutions, perhaps an artefact of the unknown
exact sy4 coefficient at this order. Since optimal solutions
are complex conjugates, another estimate could be sim-
ply to compare their real parts with their modulus, which
gives a much more moderate difference (2% at O(5%)).
Clearly the occurrence of complex solutions is our main
source of theoretical uncertainties, so there is potentially
room for improvements, e.g. from other more general
prescriptions [18]. However, we prefer to keep a conser-
vative estimate of theoretical errors at this stage.



Finally we can subtract out the explicit chiral symme-
try breaking effects from small m,,, mq # 0: it is in princi-
ple possible to incorporate those effects within the varia-
tional framework [12], but for the time being we shall sim-
ply rely on other known results. Defining F' as usual as
the F; value in the strict chiral limit m,,, mqg — 0, Lattice
simulations recently obtained [20]: £z ~ 1.073 & 0.015,

ny=2

that we accordingly take into account in the final AW

numerical value. With all theoretical uncertainties (lin-
early) combined we obtain:

AZIZ? ~ 955+ 15727 MeV (14)
The central value corresponds to Re F2(§, IN/), the first er-
rors encompass both higher order and Fy./F above men-
tioned uncertainties, while the upper bound corresponds
to F2(Re(§), Re(L)).
One may compare this with three main classes of lattice
calculations based on very different methods. First in
the Schréodinger functional scheme[21], A;\Z;z = 245 +
16(stat) £ 16(syst) MeV. Next for Wilson fermions [19]:

AZIZ? = 961417426 MeV. Finally for twisted fermions

(including nonperturbative power corrections in analysis)
[22]: AX;SZQ = 330 £ 23 £ 22_33 MeV. Those differences
are presumably related to different dynamical quark mass
values in different Lattice calculations, and also differ-
ent chiral extrapolation methods (see e.g. the discussion
in [22]).

Finally we could in principle extrapolate to ag(p) at
high (perturbative) scale y. A main obstacle however is
going from ny = 2 to ny = 3, crossing the strange quark
my threshold in the deep infrared regime, where one can-
not use standard perturbative extrapolation. But (9) be-
ing known for arbitrary ny, we can calculate similarly
F./ A% % The details are skipped for elsewhere, but the
outcome is a mild variation, with F/ A%SZS > F./ A?MLS: 2
by only a few percent. However, the final value of

%S: % is much dependent also on the ratio F/Fp, where
Fy = Fr(my,mg, ms — 0). The amount of explicit chiral
symmetry breaking from mg, # 0 is clearly more impor-
tant than in the ny = 2 case, and indeed still subject to
intense debates, with still large uncertainties even from
Lattice results [20]. Moreover, since our RG-improved
OPT modifies perturbative expansions, it should also be
used consistently to extrapolate to higher scales, which
can differ substantially from a standard perturbative ex-
trapolation. For both those reasons we refrain from giv-
ing a precise prediction of ag(myz) at this stage, mainly
due to the large uncertainties involved in subtracting out
explicit chiral symmetry breaking from m,. We plan in
the next future to implement those effects directly within
the OPT framework.

In conclusion, a straightforward implementation of RG
properties within a variationally optimized perturbation
was proposed, using only perturbative information at the
first few orders. In QCD, calculations at first d-order give
already very reasonable approximations to Fr /Agrg, and
second and (approximate) third order results exhibit a
remarkable stability. These results compare reasonably
well with recent lattice calculations of Agrz, though the
best with those in [19]. We conjecture that the remain-
ing discrepancies (with other lattice results, and possibly
with the World average ag(mz) values) could be due to
the interplay with explicit quark mass effects, which are
in principle implementable in our framework. The precise
extrapolation to ag(mz) is however beyond the present
scope and postponed for a future work.
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