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Abstract

The Greer, Pujo-Menjouet and Webb model [Greer et al., J. Theoret. Biol., 242 (2006), 598–606]

for prion dynamics was found to be in good agreement with experimental observations under

no-flow conditions. The objective of this work is to generalize the problem to the framework of

general polymerization-fragmentation under flow motion, motivated by the fact that laboratory

work often involves prion dynamics under flow conditions in order to observe faster processes.

Moreover, understanding and modelling the microstructure influence of macroscopically moni-

tored non-Newtonian behaviour is crucial for sensor design, with the goal to provide practical

information about ongoing molecular evolution. This paper’s results can then be considered

as one step in the mathematical understanding of such models, namely the proof of positivity

and existence of solutions in suitable functional spaces. To that purpose, we introduce a new

model based on the rigid-rod polymer theory to account for the polymer dynamics under flow

conditions. As expected, when applied to the prion problem, in the absence of motion it reduces

to that in Greer et al. (2006). At the heart of any polymer kinetical theory there is a configura-

tional probability diffusion partial differential equation (PDE) of Fokker-Planck-Smoluchowski

type. The main mathematical result of this paper is the proof of existence of positive solutions

to the aforementioned PDE for a class of flows of practical interest, taking into account the flow

induced splitting/lengthening of polymers in general, and prions in particular.
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1 Introduction

1.1 Taking space into account for our problem: what is new in biology,

what is new in mathematics?

In 1999, Masel et al. [12] introduced a new model of polymerization in order to quantify some

kinetic parameters of prion replication. This work was based on a deterministic discrete model

developed into an infinite system of ordinary differential equations, one for each possible fibril

length. In 2006, Greer et al. in [6] modified this model to create a continuum of possible

fibril lengths described by a partial differential equation coupled with an ordinary differential

equation. This approach appeared to be “conceptually more accessible and mathematically

more tractable with only six parameters, each of which having a biological interpretation” [6].

However, based on discussions with biologists, it appeared that these models were not well

adapted for in vitro experiments. In these experiments, proteins are put in tubes and shaken

permanently throughout the experiment to induce an artificial splitting in order to accelerate the

polymerization-fragmentation mechanism. To the best of our knowledge, dependence of polymer

and monomer interaction on the shaking orientation and strength, space competition and fluid

viscosity had never been taken into account until now. Thus, it seemed natural to propose a

model generalizing the Greer model and adapt it to the specific expectations of the biologists.

We therefore introduce a new model of polymer and monomer interacting in a fluid, with the

whole system subjected to motion. A large range of in vitro experiments involving this protein

refers to this protocol in order to accelerate the polymerization-fragmentation process. Moreover,

even as our model could be well adapted to other polymer-monomer interaction studies, we give

here a specific application to prion dynamics to make an interesting link with the previous Masel

et al. [12] and Greer et al. [6] models. On the other hand, due to the complexity of the model, any

mathematical analysis becomes a challenge. We adapt here a technique of semi-discretization in

time for proving the main result of existence of positive solutions, we also provide the basis for the

numerical approximation of the problem. The mathematical novelty of this paper resides in the

choice of the ad hoc function spaces and the appropiate modification of the existing techniques

to this new type of problem. Also this work presents an alternative way for proving the existence

of positive solutions as compared to the one given by Engler et al. in [5], Laurençot and Walker

in [11] and Simonett and Walker in [17]. It is then useful to those who consider which techniques

to use when proving the existence of positive solutions of this class of equations.

The objective of this paper is twofold: not only to make a step forward in mathematical

modelling of a class of polymer-monomer interaction models, but also to propose, within a new

framework, how to adapt an existing mathematical technique that will prove the existence of

positive solutions to the problem. The biological implications (e.g. quantitative and qualitative

comparison with experimental data) of this paper model will be addressed in a subsequent work.
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1.2 The polymer-monomer interaction model: an application to prion

dynamics

Prion proliferation is challenging at both the biological and mathematical levels. Prions are re-

sponsible for several diseases such as bovine spongiform encephalopathy, Creutzfeld-Jacob disease,

Kuru and it is now commonly accepted that prions are proteins [14].

For the sake of clarity, we present several fundamental morphological features of prions with

relevance to the mathematical modelling of this paper (i.e. molecular dynamics of a low enough

concentration prion solution).

There are two types of prions: the Prion Protein Cellular also called PrPC and Prion Protein

Scrapie denoted by PrPSc. It has been proven that PrPC proteins are naturally synthesized by

mammalian cells and consist only of monomers. On the other hand, the infectious PrPSc proteins

are present only in pathologically altered cells and exist only in “polymer”-shape. The conversion

process of a non-pathological into a pathologically modified one consists in attaching the former to

an already existing polymer (for details see e.g. [10]). As a consequence, the polymers lengthen.

However the sized-up new polymers are fragile, and shorten down their size by splitting whenever

the polymer solution is subjected to some flow conditions. The size lengthening/shortening

process takes place continuously, its kinetics being dependent on monomer concentration, flow

intensity, polymer size, etc.

Polymers may be seen as string-like molecules [16]. When polymer proliferation occurs, they

do interact to form fibrils; these latter exhibit a (physically speaking) more stable structure and

appear as rod-like molecules (see figure 1). In this paper we deal with idealized rod-like PrPSc, a

realistic choice taking into account the flow-related experiments we investigate. We consider the

presence of a finite amount of PrPC(free monomers) and PrPSc proteins, as well as of “seeding”

rod-like PrPSc at initial condition, and fibril lengthening/splitting (i.e. fragmentation). It is

also important to note that our model is related to in vitro experiments: neither source terms of

monomers and polymers nor degradation rates are taken into account.

We propose a comprehensive molecular model that accounts for the flow behavior as observed

in in vitro experiments, focusing on the dynamics of monomers and fibrils. A good deal of

experimental laboratory work involves complex flows (e.g. diffusion, mixing, etc.). Raw data

are provided by sensors designed to acquire macroscopically observable properties like stresses,

flow rates, etc. The latter can strongly be influenced by the microscopic interactions. Our

model does provide an understanding of how various polymers-monomer and polymer-solvent

relationship result in a configurational probability diffusion equation, with the help of which one

can investigate the stress tensor and related quantities. Therefore, it is of use for flow pattern

monitoring sensors.

The current approach is at an early stage of development. The scission (breakage) process -

the most important mechanism in the in vitro development/proliferation of infectious proteins

- is taken three-dimensionally. While prior models such as those of [6, 12] (for mathematically

in nature aspects related to, see [2, 5, 7, 11, 15, 16, 17, 18]) neglect the flow influence on prion

3



Figure 1: View of prion fibrils, Transmission Electron Microscopy image (Courtesy of Prof. J.-P.
Liautard, inserm Université Montpellier 2, France).

dynamics, the one in [6] was rather succesful in predicting prion molecular dynamics in the in

vivo rest state, and our model is a generalization of [6].

The prion fiber is modelled as a rigid rod polymer molecule the length of which is time

dependent; see figure 2.

The dynamics of rigid rod molecular fluids has been initiated by Kirkwood [9] and signifi-

cantly enriched and brought to fruition by Bird and his school [1] (see also [8] for a more succinct

presentation). As in any kinetical theory, the cornerstone is the probability of the configurational

diffusion equation, which is of a Fokker-Planck-Smoluchowski type. The latter is the key ingre-

dient for calculating (the macroscopic) stress tensor and related quantities. In the following we

shall derive a suitable generalization of equations 14.2-8 in [1] that account for prion dynamics

as observed in experiments [3, 14, 19].

This paper begins by first presenting the constitutive assumptions which later lead to the

probability configurational diffusion equation in its general form. We give a mathematical con-

ceptual framework and a presentation of the main result: the existence of global weak non-

negative solution. To achieve this, we obtain a variational formulation of the corresponding

boundary value problem, and the proof is based on a semi-discretization in time technique. The

uniqueness of the solution will be proved in a subsequent paper.
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Figure 2: Prion fibril modelized as rigid rod polymer under flow.

1.3 The general model

1.3.1 Polymers

Let a fiber be modeled as a rod-like molecule here represented by a vector in R3. For convenience,

we use separate symbols for the length r ∈ R+ = (0,+∞), and for the angle-vector η ∈ S
2, with

S2 being the unit sphere of R3. Contrary to the assumption made in [6] and for simplicity,

we assume here that polymers could be arbitrary small, that is no critical (lower) length is

considered (this assumption is explained in [4]). For technical reasons and without any loss of

realistic assumptions, we suppose that fibers are contained in a bounded, smooth open set Ω

in R3, and the position of each fiber center of mass is denoted by the vector y. We assume a

velocity vector field u : Ω× R+ → R3 such that

∇y · u = 0 in Ω, and u · ~n = 0 on ∂Ω. (1)

with ~n the outward normal. The polymer configurational probability distribution function

ψ(r, η,y, t), at any time t > 0, solves the following equation

∂

∂t
ψ + u · ∇yψ +

∂

∂r
(τ(φ,u, r, η)ψ) = Bψ + Fψ. (2)

with (r, η,y) ∈ R+×S2×Ω. Fibers are transported by the velocity vector field u and lengthening

occurs at a rate τ ≥ 0 that depends on the free monomers density, φ. In dilute regime, the

microscopic hydrodynamics is accounted for by the term B as in [13] and defined by

[Bψ](r, η,y, t) = A(r) ∇η ·
[
D1∇ηψ − Pη⊥ (∇yu η) ψ

]
, (3)
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where ∇η and (∇η·) denote the gradient and divergence on S2. A ≥ 0 is a weight function

that accounts for the influence of the length increase upon the motion and D1 > 0 the diffusion

coefficient on the sphere. Moreover, the transport on the sphere due to the velocity field is given

by Pη⊥ (∇yu η), with Pη⊥z = z− (z · η)η, for all z ∈ R
3, denoting the projection of the vector

z on the tangent space at η.

The fragmentation (scission) process takes place at rate β(∇yu,u, r, η) ≥ 0 and is described by

F following [6] and given by

[Fψ](r, η,y, t) = −βψ + 2

∫ ∞

r

β(∇yu,u, r
′, η)κ(r, r′)ψ(r′, η,y, t) dr′. (4)

The size redistribution kernel κ accounts for the fact that a polymer breaks into smaller

fibers. It is symmetric, since a polymer of size r′ breaks with equal probability into a fiber of

size r′ − r and r; moreover, the fragmentation/recombination is mass preserving process. We

assume here that upon splitting, given the pecularity of the motion process, and its impact on

the scission, the resulting clusters of fibrils have the same center of mass as the initial polymer.

It seems reasonable to assume that the orientation remains unchanged right after the scission.

Therefore: κ(r, r′) ≥ 0, κ(r, r′) = 0 if r > r′, κ(r′ − r, r′) = κ(r, r′) and

∫ r′

0

κ(r, r′) dr = 1. (5)

The probability configurational function ψ must be a non-negative solution, satisfying the non-

zero size boundary condition

ψ(0, η,y, t) = 0, (6)

and the initial condition

ψ(r, η,y, 0) = ψ0(r, η,y), (7)

with ψ0 a known non-negative initial probability.

1.3.2 Monomers

The concentration of free monomers, given by the distribution φ(y, t) at time t > 0 at any y ∈ Ω,

solves
∂

∂t
φ+ u · ∇yφ−D2∆φ = −

∫

S2×R+

τ(φ,u, r, η)ψ(r, η,y, t) dr dη, (8)

with D2 > 0 the diffusion coefficient. The integral term is due to polymerization of monomers,

being transconformed (misfolded), into fibers. Moreover, monomer concentration φ must be a

non-negative solution satisfying the (no transport across) boundary condition

∇yφ · ~n = 0 on ∂Ω, (9)
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with ~n the outward normal vector on the boundary ∂Ω, as well as the initial condition

φ(y, 0) = φ0(y), (10)

with φ0 an initially non-negative given concentration. We adjoin to these equations the balance

equation for the total number of monomers contained in the domain Ω:

∫

Ω

[
φ(y, t) +

∫

R+×S2

r ψ(r, η,y, t) dη dr

]
dy = ρ, for all t ≥ 0, (11)

where ρ is (experimentally) known from the outset. The above balance equation is formally

satisfied, as a consequence of equations (2)–(8) using also (1).

1.3.3 Velocity vector field and momentum balance equations

As an aside, notice the velocity vector field, u(t,y) ∈ R3, for all t > 0 and y ∈ Ω, satisfies the

Navier-Stokes equations (for incompressible fluids)





∂

∂t
u+ (u · ∇)u = −∇p+ ν∆u−∇ · S,

∇ · u = 0,

u · ~n = 0.

(12)

p is the pressure , ν the viscosity of the Newtonian solvent within which the prions (i.e. rigid-rod

molecules) are dissolved, and S is the non-Newtonian extra stress tensor contribution (to the

total stress) due to the presence of rigid rods. The latter is given by [1] as

S(y, t) =

∫

R+

r2
∫

S2

η ⊗ η ψ dηdr. (13)

In this paper, we suppose that u is given and the unknown functions are only ψ and φ. The

existence and uniqueness of the solutions to the full system with the Navier-Stokes equations

introduced above (that is u, ψ and φ) will be the topic of a subsequent paper.

1.4 Constitutive assumptions

Assume the velocity vector field satisfies the regularity

u ∈ C1
(
[0,∞),W 1,∞(Ω)

)
(14)

such that

∇y · u = 0 and u · ~n = 0 on ∂Ω. (15)
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Next, we adhere to the view on prion proliferation expressed in [6, 7, 12, 15]. The splitting

(scission) rate of fibers, given by β, is assumed to be linear in r. Therefore let g :M3(R)×R3 ×

S2 → R+ be continuous with respect to the first and second variable, such that β(σ,v, r, η) =

g(σ,v, η) r, for all σ ∈ M3(R), v ∈ R
3, r > 0 and η ∈ S

2. Moreover, we assume that for all

bounded subsets B ⊂ R3 and O ⊂M3(R) there exist positive constants gB,O ≥ g
B,O

such that

g
B,O

≤ g(σ,v, η) ≤ gB,O, for every (σ,v, η) ∈ O ×B × S
2. (16)

Let T > 0 be fixed. Then, due to the smoothness of u, there exists g ≥ g > 0 such that

for every (t,y, η) ∈ [0, T ]× Ω× S
2, g ≤ g(∇yu,u, η) ≤ g. (17)

We consider the polymerization rate τ linear in (the free monomers density) φ, i.e. there exists

τ0 > 0 such that

τ(φ,v, r, η) = τ0φ. (18)

This assumption had been already evoked by Greer et al. [6] and corresponds to a mass action

binding. The splitting kernel κ accounts for the probability of a polymer with initial length r,

to split into a polymer with a shorter length r′ as described in [6], and is given by

κ(r, r′) =




1/r′ if 0 < r ≤ r′,

0 else.
(19)

This expression is compatible with (5) (and the conservation law (11)). Then the length weight

function A ≥ 0 is supposed to be in L∞(R+) and there exists CA > 0 such that

‖A‖L∞(Ω) = CA <∞ (20)

We remark that, by virtue of u being sufficiently smooth and for fixed T > 0, there exists CP > 0

such that

‖Pη⊥ (∇yu η) ‖L∞([0,T]×Ω×S2) = CP <∞, (21)

Using the result stated in the Appendix, there exists CD > 0 such that

‖∇η · Pη⊥ (∇yu η) ‖L∞([0,T]×Ω×S2) = CD <∞. (22)
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Thanks to the assumptions given in this section, the problem can be re-written as:

∂

∂t
ψ + u · ∇yψ + τ0φ

∂

∂r
ψ −A(r) ∇η ·

[
D1∇ηψ − Pη⊥ (∇yu η) ψ

]

= −g(∇yu,u, η)rψ + 2g(∇yu,u, η)

∫ ∞

r

ψ(r′, η,y, t) dr′,
(23a)

∂

∂t
φ+ u · ∇yφ−D2∆φ = −τ0φ

∫

S2×R+

ψ(r, η,y, t) dr dη, (23b)

ψ(r = 0, η,y, t) = 0, (23c)

∇yφ · ~n = 0, on ∂Ω (23d)

ψ(t = 0) = ψ0 and φ(t = 0) = φ0, (23e)

1.5 Particular case: zero velocity field, as in the Greer’s model

Consider u = 0, and assume that g is such that g(0, η) = g0, a constant, for any η. In fact,

even in the absence of flow the prion-fibrils can undergo scission and re-combination. Suppose

that φ is independent of y, then let f(t, r) =
1

|Ω|

∫
Ω×S2

ψ(r, η,y, t) dηdy be the average of ψ.

Integrating equations (23) leads to





∂

∂t
f + τ0φ(t)

∂

∂r
f + g0rf = 2g

∫ ∞

r

f(r′, t) dr′ over (t, r) ∈ R
2
+,

d

dt
φ(t) = −τ0φ(t)

∫

R+

f(r, t) dr,

f(0, t) = 0.

(24)

Note that the above system of equations is the one proposed in [6] where it was produced under

the assumption of prion conservation mass (no protein synthesis, no metabolic degradation).

2 Variational formulation and main result

First we present the functional framework one of the main mathematical novelty of this paper,

next the definition of weak solutions to the system (23), and eventually the proof of the existence

of a weak solution of this system.

9



2.1 Functional framework

Let a : R+ → R+ be defined by a(r) = eαr for a α > 0. Denote Q = S2×R+ and dq = a(r)drdη.

Let the following Hilbert spaces be defined as

L2
α =

{
ψ ∈ L1

loc (Ω×Q) ,

∫

Ω×Q

ψ2 dqdy <∞

}
. (25)

Then,

V =

{
ψ ∈ L1

loc (Ω×Q) ,

∫

Ω×Q

(
A(r)|∇ηψ|

2 + (1 + r)ψ2
)
dqdy <∞

}
, (26)

and

V1 =

{
ψ ∈L1

loc (Ω×Q) ,

∫

Ω×Q

(∣∣∣∣
∂

∂r
ψ

∣∣∣∣
2

+A(r)|∇ηψ|
2 + (1 + r)ψ2

)
dqdy <∞

}
.

(27)

Recall the Sobolev space H1(Ω) endowed with the norm

‖φ‖H1 = ‖φ‖L2(Ω) + ‖∇yφ‖L2(Ω). (28)

We also use the canonical embedding

V1 ⊂ V ⊂ L2
α = (L2

α)
′ ⊂ V ′ ⊂ (V1)

′
. (29)

For any θ ∈ R, let L1
θ =

{
ψ ∈ L1

loc (Ω×Q) ,
∫
Ω×Q

|ψ| rθdrdηdy <∞
}
. Then we have the

canonical embedding

L2
α ⊂ L1

θ, for any α > 0 and θ ≥ 0, (30)

which makes sense in regard to the mass conservation and the total quantity of polymers when

θ = 0 or θ = 1.

2.2 Variational formulation

To begin with, we introduce test function spaces. Let T > 0. First, for the polymer ψ-equation,

let X1 be the completion of C∞
c ((−T, T )× Ω× S2 × [0,+∞)) with respect to the norm ‖ · ‖X1

‖ψ̃‖X1
=

∫ T

0

(∥∥∥∥
∂

∂t
ψ̃

∥∥∥∥
2

L2
α

+ ‖∇yψ̃‖
2
L2

α

+ ‖ψ̃‖2V1

)
dt (31)

In particular, this implies that, if ψ̃ ∈ X1, then ψ̃(t = T ) = 0. Second, the test functions for the

φ-equation are elements of X2, the latter space being the completion of C∞
c ((−T, T )× Ω) with

respect to the norm H1((0, T )×Ω). In particular this implies that if φ̃ ∈ X2, then φ̃(t = T ) = 0.
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In order to obtain a variational formulation of (23) we first assume that we have a strong solution

which is smooth enough. Then we multiply (23a) by ψ̃(r, η,y, t)a(r), with ψ̃ ∈ X1, and integrate

over (0, T )× Ω×Q, next we multiply (23b) by φ̃ ∈ X2 and integrate over (0, T )× Ω. We note

∫

R+

τ0φ
∂

∂r
ψ ψ̃ a(r)dr = −

∫

R+

τ0φψ
∂

∂r

(
ψ̃a(r)

)
dr,

= −

∫

R+

τ0φψ

(
∂

∂r
ψ̃ + αψ̃

)
a(r)dr,

(32)

since ψ̃ ∈ X1. One also has:

∫

S2

∇η · (D1∇ηψ) ψ̃ dη = −

∫

S2

D1∇ηψ ·
(
∇ηψ̃ − 2ηψ̃

)
dη, (33)

and ∫

S2

∇η ·
(
Pη⊥ (∇yu η)ψ

)
ψ̃ dη = −

∫

S2

Pη⊥ (∇yu η)ψ ·
(
∇ηψ̃ − 2ηψ̃

)
dη,

= −

∫

S2

Pη⊥ (∇yu η)ψ · ∇ηψ̃ dη,

(34)

since Pη⊥ (∇yu η) · η = 0 (see for instance Appendix II in [13] for calculation details on the

sphere). Moreover, by assumption (15) on u,

∫

Ω

(u · ∇yψ) ψ̃ dy = −

∫

Ω

ψ
(
u · ∇yψ̃

)
dy, (35)

and ∫

Ω

(u · ∇yφ) φ̃ dy = −

∫

Ω

φ
(
u · ∇yφ̃

)
dy. (36)

Then a variational formulation of (23a) is

−

∫

Ω×Q

ψ0 ψ̃(t = 0) dqdy −

∫ T

0

∫

Ω×Q

ψ

(
∂

∂t
ψ̃ + u · ∇yψ̃

)
dqdy dt

+

∫ T

0

∫

Ω×Q

A(r)
(
D1∇ηψ

(
∇ηψ̃ − 2ηψ̃

)
− Pη⊥ (∇yu η)ψ · ∇ηψ̃

)
dqdy dt

+

∫ T

0

∫

Ω×Q

ψ

(
g(∇yu,u, η)rψ̃ − τ0φ

(
∂

∂r
ψ̃ + αψ̃

))
dqdy dt

= 2

∫ T

0

∫

Ω×Q

g(∇yu,u, η)

(∫ ∞

r

ψ dr′
)
ψ̃ dqdy dt,

for any ψ̃ ∈ X1,

(37)
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and for (23b),

−

∫

Ω

φ0 φ̃(t = 0) dy −

∫ T

0

∫

Ω

φ

(
∂

∂t
φ̃+ u · ∇yφ̃

)
dy dt

+

∫ T

0

∫

Ω

[
D2 ∇yφ · ∇yφ̃+ τ0φ φ̃

(∫

S2×R+

ψ drdη

)]
dy dt = 0,

for any φ̃ ∈ X2.

(38)

2.3 Main result: existence of non-negative solutions of the problem

At this point we are prepared to introduce our main result. It gives the existence of non-negative

weak solution to our problem under the general assumptions of section 1.4.

Theorem 2.1 (Main result). Let φ0 ∈ L∞(Ω) be non-negative and ψ0 ∈ L2
α non-negative such

that there exists a constant C0 > 0 with

ψ0 ≤ C0e
−αr.

Then, for any T > 0, there exists at least one solution (ψ, φ) to the weak formulation (37)-(38) of

the problem (23), with ψ and φ non-negative. Moreover we have ψ ∈ L∞(0, T ;L2
α) ∩L

2(0, T ;V )

and φ ∈ L∞(0, T ;L2(Ω)) ∩ L2(0, T ;H1(Ω)).

Remark 1. Proving the uniqueness of the solution is a rather lengthy undertaking and will be

done in a follow up paper.

Remark 2. : Weak solutions to the above variational formulation with stronger regularity than

the one implied by the theorem above satisfy the problem (23) in a strong sense. Moreover,

this variational formulation complies weakly with the mass conservation principle. Therefore, let

ϕ ∈ H1(0, T ), with ϕ(t = T ) = 0, and take ψ̃(r, η,y, t) = re−αrϕ(t) ∈ X1 and φ̃(t,y) = ϕ(t) ∈ X2

in the variational formulations. Using the fact that, for any real value function f

∫

S2

η · ∇ηf dη = 0. (39)

we obtain

−ϕ(t = 0)

∫

Ω

[
φ0 +

∫

R+×S2

r ψ0 dη dr

]
dy

−

∫ T

0

d

dt
ϕ(t)

∫

Ω

[
φ+

∫

R+×S2

r ψ dη dr

]
dy dt = 0.

(40)

If the solution is smooth enough we have then the mass conservation result

d

dt

∫

Ω

[
φ+

∫

R+×S2

r ψ dη dr

]
dy = 0. (41)
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3 Proof of the main result

The proof consists of three main steps. First (subsection 3.1), a semi-discretization in time of

the problem to obtain an approximation of the solution. Second, we get appropriate estimates

(subsection 3.2), and third we obtain a solution by passing to the limit (subsection 3.3).

3.1 Semi-discretization in time

Let N > 0 and {tn}
N
n=0 a subdivision of [0, T ] such that t0 = 0, tN = T and tn − tn−1 = ∆t > 0.

We denote by ψn and φn the approximations of ψ and φ at tn. Denote un(y) = u(tn,y). First,

for any s ∈ [0, T ], consider the following problem on [0, T ]:





d

dt
χn(t) = un(χn(t)),

χ(s) = y.

(42)

We recall that the regularity of u is C1(0, T ;W 1,∞), therefore un ∈W 1,∞(Ω) so that there exists a

unique solution χn which will be denoted in the following by χn(t; s,y). The map y → χn(t; s,y)

is a homeomorphism from Ω onto Ω, and since u is divergence-free, we have

det∇yχ
n(t; s, ·) = 1, a.e. in Ω× [0,T]. (43)

Define the function

xn : Ω → Ω, by xn(y) = χn(tn; tn−1,y). (44)

This map xn is invertible. Let us denote zn as its inverse. We remark that

zn(y) = χn(tn−1; tn,y). (45)

Assume now that ψn−1 ∈ V and φn−1 ∈ H1 are known. We consider two problems:

find ψn ∈ V such that

∫

Ω×Q

ψn(r, η,y) − ψn−1(r, η, zn(y))

∆t
ψ̂ dqdy

+

∫

Ω×Q

A(r)
(
D1∇ηψ

n ·
(
∇ηψ̂ − 2ηψ̂

)
− Pη⊥ (∇yu

nη)ψn · ∇ηψ̂
)
dqdy

+

∫

Ω×Q

ψn

(
g(∇yu

n,un, η)rψ̂ − τ0φ
n−1

(
∂

∂r
ψ̂ + αψ̂

))
dqdy

= 2

∫

Ω×Q

g(∇yu
n,un, η)

(∫ ∞

r

ψn−1 dr′
)
ψ̂ a(r)drdηdy,

(46)
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for any ψ̂ ∈ V1, and find φn ∈ H1 such that

∫

Ω

(
φn(y) − φn−1(y)

∆t
+ un · ∇yφ

n

)
φ̂ dy dt

+

∫

Ω

[
D2 ∇yφ

n · ∇yφ̂+ τ0φ
n

(∫

S2×R+

ψn−1 drdη

)
φ̂

]
dy = 0,

(47)

for any φ̂ ∈ H1. Problem (46) is re-written as

an(ψn, ψ̂) = lna (ψ̂), for any ψ̂ ∈ V1 (48)

with

an = a1n + a2n (49)

where a1n, a2n are defined on V × V1 by

a1n(ϕ1, ϕ2) =

∫

Ω×Q

A(r)D1∇ηϕ1 · (∇ηϕ2 − 2ηϕ2) dqdy

−

∫

Ω×Q

A(r)Pη⊥ (∇yu
nη)ϕ1 · ∇ηϕ2 dqdy

− τ0

∫

Ω×Q

φn−1ϕ1

(
∂

∂r
ϕ2 + α ϕ2

)
dqdy

+

∫

Ω×Q

g(∇yu
n,un, η)rϕ1ϕ2 dqdy

(50)

and

a2n(ϕ1, ϕ2) =
1

∆t

∫

Ω×Q

ϕ1ϕ2 dqdy, (51)

respectively, and lna is defined on L2
α by

lna (ϕ) = 2

∫

Ω×Q

g(∇yu
n,un, η)

(∫ ∞

r

ψn−1 dr′
)
ϕ dqdy

+
1

∆t

∫

Ω×Q

ψn−1 ◦ zn ϕ dqdy.

(52)

The problem (47) is re-written as

bn(φn, φ̂) = lnb (φ̂), for any φ̂ ∈ H1, (53)
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with bn defined on H1 ×H1 such that

bn(ϕ1, ϕ2) =

∫

Ω

(
1

∆t
ϕ1 ϕ2 + (un · ∇yϕ1)ϕ2 +D2 ∇yϕ1 · ∇yϕ2

)
dy

+

∫

Ω

τ0ϕ1 ϕ2

(∫

S2×R+

ψn−1 drdη

)
dy,

(54)

and lnb defined on L2 by

lnb (ϕ) =
1

∆t

∫

Ω

φn−1ϕ dy. (55)

Lemma 3.1. Let N ∈ N∗, φ0 ∈ L∞(Ω), φ0 ≥ 0 and ψ0 ∈ L2
α such that

0 ≤ ψ0 ≤ C0e
−αr a.e in Q

with C0 > 0 a constant.

Then there exist two sequences {ψn}Nn=1 ⊂ V and {φn}Nn=1 ⊂ H1(Ω) satisfying (48) and (53).

Moreover, for ∆t small enough, we have that:

0 ≤ ψn ≤ C∞e
−αr, for every n ∈ {0, 1, · · ·N}, (56a)

0 ≤ φn ≤ ‖φ0‖L∞ , for every n ∈ {0, 1, · · ·N}, (56b)

and

max
n=0,···N

[∫

Ω×Q

|ψn|2 dqdy +D1∆t
N∑

n=1

∫

Ω×Q

A(r)|∇ηψ
n|2 dqdy

+2g∆t

N∑

n=1

∫

Ω×Q

r|ψn|2 dqdy +

N∑

n=1

∫

Ω×Q

|ψn − ψn−1 ◦ zn|
2 dqdy

]

≤ 4ek3T ‖ψ0‖2L2
α

,

(57)

and

max
n=0,···N

[∫

Ω

|φn|2 dy +

N∑

n=1

∫

Ω

|φn − φn−1|2 dy + 2D2∆t

N∑

n=1

∫

Ω

|∇yφ
n|2 dy

]

≤ 2‖φ0‖2L2(Ω),

(58)
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where in the above we denoted

k1 =
2g

α
,

k2 = ατ0‖φ
0‖L∞ + CDCA,

C∞ = 2C0e
(k1+k2)T ,

and

k3 = ατ0‖φ
0‖L∞ +

C2
PCA

D1
+ 4ḡα−3/2C∞

√
|Ω||S2|.

(Recall CD and CA are given by equations (20) and (22)).

Proof of Lemma 3.1

Let us consider the sequence of numbers {Cn}
N
n=0 defined by induction as

Cn =
1 + k1∆t

1− k2∆t
Cn−1, for every n = 1, · · ·N. (59)

with C0 as in the hypothesis of the Lemma.

We proceed by induction. Suppose that ψn−1 and φn−1 are defined as elements of V and L∞(Ω),

respectively. Suppose also that

0 ≤ ψn−1 ≤ Cn−1e
−αr, (60a)

0 ≤ φn−1 ≤ ‖φ0‖L∞ . (60b)

We shall prove the existence of ψn ∈ V and φn ∈ H1(Ω) solutions of (48) and (53), respectively.

We also prove that they satisfy

0 ≤ ψn ≤ Cne
−αr, (61a)

0 ≤ φn ≤ ‖φ0‖L∞ . (61b)

The above inequalities give (56a) and (56b) since we have

Cn = C0

(
1 + k1∆t

1− k2∆t

)n

≤ C∞ (62)

for ∆t small enough.

Step 1. Regularization and existence.

We introduce a regularization of an, denoted anε defined on V1 × V1,

anε (ϕ1, ϕ2) = ε

∫

Ω×Q

∂

∂r
ϕ1

∂

∂r
ϕ2 dqdy + an(ϕ1, ϕ2). (63)
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We shall first prove the existence of a sequence (ψn
ε )ε in V1 solutions of

anε (ψ
n
ε , ψ̂) = lna (ψ̂), for any ψ̂ ∈ V1 (64)

Clearly anε is bilinear and continuous on V1 ×V1. Next we prove the coercivity of anε . Indeed, let

ϕ ∈ V1 and we remark that

∫

S2

2η · ∇ηϕ ϕ dη =

∫

S2

η · ∇ηϕ
2 dη = 0 (65)

since ∇η · η = 2 and η · η = 1. One has

∫

S2

|A(r)Pη⊥ (∇yu η)ϕ · ∇ηϕ| dη ≤
1

2

∫

S2

(
D1A(r)|∇ηϕ|

2 +
C2

PCA

D1
ϕ2

)
dη. (66)

Finally,

τ0

∫

R+

φn−1ϕ
∂

∂r
ϕ a(r)dr ≤ −

1

2
ατ0

∫

R+

φn−1ϕ2 a(r)dr. (67)

We remark that this inequality can be proved by using a regularized sequence (ϕm)m that

converges to ϕ in V1 and the fact that the remaining term in the right-hand side of (67) can

be dropped according to its appropriate sign. Then, invoking (60b) and the above remarks, it

follows that

a1nε (ϕ, ϕ) ≥
D1

2

∫

Ω×Q

A(r)|∇ηϕ|
2 dqdy + g

∫

Ω×Q

rϕ2 dqdy

−
1

2D1

(
ατ0D1‖φ

0‖L∞ + C2
PCA

) ∫

Ω×Q

ϕ2 dqdy,

(68)

which in turn implies

anε (ϕ, ϕ) ≥ ε

∫

Ω×Q

∣∣∣∣
∂

∂r
ϕ

∣∣∣∣
2

dqdy +
D1

2

∫

Ω×Q

A(r)|∇ηϕ|
2 dqdy

+ g

∫

Ω×Q

rϕ2 dqdy

+
1

2D1

(
2D1

∆t
− ατ0D1‖φ

0‖L∞ − C2
PCA

)∫

Ω×Q

ϕ2 dqdy,

(69)

The coercivity of anǫ follows for ∆t small enough.

Next, due to the inequality (60a), we have

∫ ∞

r

ψn−1 dr′ ≤
Cn−1

α
(70)

which implies that, for any ϕ ∈ L2
α,

∫

Ω×Q

g(∇yu
n,un, η)

(∫ ∞

r

ψn−1 dr′
)

|ϕ| dqdy ≤
ḡ

α

∫

Ω×Q

|ϕ| drdηdy. (71)
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One also obtains ∫

Ω×Q

ψn−1 ◦ zn |ϕ| dqdy ≤ Cn−1

∫

Ω×Q

|ϕ| drdηdy. (72)

We deduce that lna ∈ (L2
α)

′ ⊂ (V1)
′ by the continuous embedding of L2

α in L1. Applying the

Lax-Milgram theorem, for all ε > 0 there exists a unique ψn
ε ∈ V1 solution of (64). Next we will

prove the existence of solutions to (53). First, bn is clearly a bilinear and continuous function on

H1 ×H1. To prove its coercivity, let ϕ ∈ H1. Since

∫

Ω

un · ∇yϕ ϕ =
1

2

∫

Ω

un · ∇yϕ
2 = 0 (73)

we have

bn(ϕ, ϕ) ≥
1

∆t

∫

Ω

ϕ2 dy +D2

∫

Ω

|∇yϕ|
2 dy, (74)

using the positivity of ψn−1, and thus bn is coercive. Moreover, lnb ∈ (H1)′ since φn−1 ∈ L∞. As

a consequence of the Lax-Milgram theorem, there exists a unique φn ∈ H1 satifying (53).

Step 2. L∞ - Estimates

To begin we first prove two estimates for ψn
ε : for its V -norm and for its derivative with respect

to r. It follows from (69) and the continuity of lna that there exists a constant C > 0, dependent

of ∆t, such that ∫

Ω×Q

(
A(r)|∇ηψ

n
ε |

2 + (1 + r)|ψn
ε |

2
)
dqdy ≤ C,

ε

∫

Ω×Q

∣∣∣∣
∂

∂r
ψn
ε

∣∣∣∣
2

dqdy ≤ C.

(75)

Next we prove the non-negativity of ψn
ε and φn. Let us denote [·]+ and [·]− respectively the

positive and negative part, both positive valued. Then, φn = [φn]+ − [φn]− and these two parts

belong to H1. We have

lnb ([φ
n]−) = bn(φn, [φn]−) = −bn([φn]−, [φ

n]−) (76)

and invoking (55) and (60b), lnb ([φ
n]−) ≥ 0. Therefore

bn([φn]−, [φ
n]−) ≤ 0, (77)

hence φn ≥ 0. Next, ψn
ε = [ψn

ε ]+ − [ψn
ε ]−, the positive and negative parts belong V1, and

lna ([ψ
n
ε ]−) = anε (ψ

n
ε , [ψ

n
ε ]−) = −anε ([ψ

n
ε ]−, [ψ

n
ε ]−), (78)

Invoking (52) and (60a), lna ([ψ
n
ε ]−) ≥ 0. Thus

anε ([ψ
n
ε ]−, [ψ

n
ε ]−) ≤ 0, (79)
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hence ψn
ε ≥ 0. Let us now obtain L∞ estimates . We have, according to (60b) and using the

above notation, that

bn([φn−‖φ0‖L∞ ]+, [φ
n − ‖φ0‖L∞ ]+)

= bn(φn − ‖φ0‖L∞ , [φn − ‖φ0‖L∞ ]+)

= bn(φn, [φn − ‖φ0‖L∞]+)− bn(‖φ0‖L∞, [φn − ‖φ0‖L∞ ]+)

= lnb ([φ
n − ‖φ0‖L∞ ]+)− bn(‖φ0‖L∞ , [φn − ‖φ0‖L∞ ]+)

≤
1

∆t

∫

Ω

(
φn−1 − ‖φ0‖L∞

)
[φn − ‖φ0‖L∞ ]+ dy,

(80)

Then by (60b)

bn([φn − ‖φ0‖L∞]+, [φ
n − ‖φ0‖L∞ ]+) ≤ 0, (81)

hence φn ≤ ‖φ0‖L∞ . Let Cn as defined in (59); then

anε ([ψ
n
ε −Cne

−αr]+, [ψ
n
ε − Cne

−αr]+)

= anε (ψ
n
ε − Cne

−αr, [ψn
ε − Cne

−αr]+)

= anε (ψ
n
ε , [ψ

n
ε − Cne

−αr]+)− anε (Cne
−αr, [ψn

ε − Cne
−αr]+)

= lna ([ψ
n
ε − Cne

−αr]+)− anε (Cne
−αr, [ψn

ε − Cne
−αr]+).

(82)

Next, for any ϕ ∈ V1 positive,

anε (Cne
−αr, ϕ) =− ε

∫

Ω×Q

αCn
∂

∂r
ϕ drdηdy

−

∫

Ω×Q

CnA(r)Pη⊥ (∇yu
nη) · ∇ηϕ drdηdy

−

∫

Ω×Q

Cnτ0φ
n−1

(
∂

∂r
ϕ+ α ϕ

)
drdηdy

+

∫

Ω×Q

Cng(∇yu
n,un, η)rϕdrdηdy + Cn

1

∆t

∫

Ω×Q

ϕ drdηdy.

(83)

We remark that

ε

∫

Ω×Q

αCn
∂

∂r
ϕ drdηdy = −ε

∫

Ω×S2

αCnϕ(r = 0, η,y) dηdy ≤ 0,

∫

Ω×Q

Cnτ0φ
n−1 ∂

∂r
ϕ drdηdy = −

∫

Ω×S2

Cnτ0φ
n−1ϕ(r = 0, η,y) dηdy ≤ 0.

(84)
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Then, by (20), (22), (60b) and the positivity of ϕ,

anε (Cne
−αr, ϕ) ≥

∫

Ω×Q

CnA(r)∇η ·
(
Pη⊥ (∇yu

nη)
)
ϕ drdηdy

+ Cn

(
1

∆t
− ατ0‖φ

0‖L∞

)∫

Ω×Q

ϕ drdηdy

≥ Cn

(
1

∆t
− k2

)∫

Ω×Q

ϕ drdηdy.

(85)

Moreover, by (52), (71) and (72)

lna (ϕ) ≤ Cn−1

(
2g

α
+

1

∆t

)∫

Ω×Q

ϕ drdηdy. (86)

Now, replacing ϕ by [ψn
ε − Cne

−αr]+ and using (82) (85) and (86) one gets

anε ([ψ
n
ε−Cne

−αr]+, [ψ
n
ε − Cne

−αr]+)

≤

[
Cn−1

(
k1 +

1

∆t

)
− Cn

(
1

∆t
− k2

)]∫

Ω×Q

ϕ drdηdy.
(87)

Using now the particular form of Cn gives

anε ([ψ
n
ε − Cne

−αr]+, [ψ
n
ε − Cne

−αr]+) ≤ 0, (88)

hence

ψn
ε ≤ Cne

−αr. (89)

Step 3. Convergence and positivity

The sequence (ψn
ε )ε obtained for all ε > 0 is uniformly bounded in V by (75), so it weakly

converges to an element ψn ∈ V up to a subsequence. Moreover,
(
ε1/2 ∂

∂rψ
n
ε

)
ε
is bounded in L2

α,

then for ε → 0, ψn solves (48).The positivity of ψn
ε yields the positivity of ψn. Moreover, by

virtue of (89), ψn for ε→ 0, and inequalities (56a) are satisfied.

Step 4. Additional estimates

From (69), (52) and (56a) one gets

0 = anε (ψ
n
ε , ψ

n
ε )− lna (ψ

n
ε ) ≥

D1

2

∫

Ω×Q

A(r)|∇ηψ
n
ε |

2 dqdy

+ g

∫

Ω×Q

r|ψn
ε |

2 dqdy

−
k3
2

∫

Ω×Q

|ψn
ε |

2 dqdy

+
1

∆t

∫

Ω×Q

(
ψn
ε − ψn−1 ◦ zn

)
ψn
ε dqdy.

(90)
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Remarking that 2s1(s1 − s2) = s21 + (s1 − s2)
2 − s22 for any reals s1, s2, leads to

D1

∫

Ω×Q

A(r)|∇ηψ
n
ε |

2 dqdy + 2g

∫

Ω×Q

r|ψn
ε |

2 dqdy

+
1

∆t

∫

Ω×Q

[
|ψn

ε |
2 + |ψn

ε − ψn−1 ◦ zn|
2 − |ψn−1 ◦ zn|

2
]
dqdy

≤ k3

∫

Ω×Q

|ψn
ε |

2 dqdy.

(91)

Then, taking the lim inf for ε→ 0, multiplying by ∆t and using the fact that∫
Ω
|ψn−1 ◦ zn|

2 =
∫
Ω
|ψn−1|2, gives

D1∆t

∫

Ω×Q

A(r)|∇ηψ
n|2 dqdy + 2g∆t

∫

Ω×Q

r|ψn|2 dqdy

+ (1− k3∆t)

∫

Ω×Q

|ψn|2 dqdy +

∫

Ω×Q

|ψn − ψn−1 ◦ zn|
2 dqdy

≤

∫

Ω×Q

|ψn−1|2 dqdy.

(92)

Multiply the last inequality by (1 − k3∆t)
n−1 and sum over n from n = 1 to n = N . Use the

inequality

(1 − k3∆t)
n ≥ (1 − k3∆t)

N ≥
1

2
e−k3T

to get (57). Taking φ̂ = φn in (47) and using (56b) and (73) we obtain

1

2∆t

∫

Ω

(
|φn|2 + |φn − φn−1|2 − |φn−1|2

)
dy +D2

∫

Ω

|∇yφ
n|2 dy ≤ 0 (93)

Summing over n from 1 to N produces (58), which ends the proof.

3.2 Construction of a solution

We now define, for any N large enough, the following functions

ψN (·, t) =
t− tn−1

∆t
ψn(·) +

tn − t

∆t
ψn−1(·), t ∈ [tn−1, tn] (94)

and

ψ+
N (·, t) = ψn(·), ψ−

N (·, t) = ψn−1(·), t ∈ (tn−1, tn] (95)

for n = 1, · · ·N .

We shall use analogous notations for φN and uN . Let ψ̃ ∈ X1, φ̃ ∈ X2, both be test functions
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and set ψ̂ =
∫ tn
tn−1

ψ̃ dt and φ̂ =
∫ tn
tn−1

φ̃ dt. It is clear that ψ̂ ∈ V1 and φ̂ ∈ H1(Ω). Then

∫ tn

tn−1

an(ψn, ψ̃(·, t)) dt =

∫ tn

tn−1

lna (ψ̃(·, t)) dt,

∫ tn

tn−1

bn(ψn, ψ̃(·, t)) dt =

∫ tn

tn−1

lnb (ψ̃(·, t)) dt.

(96)

Adding these inequalities, we obtain, for any ψ̃ ∈ X1,

∫ T

0

∫

Ω×Q

ψ+
N (r, η,y, t)− ψ−

N (r, η, zN (y, t), t)

∆t
ψ̃(r, η,y, t) dqdy

+D1

∫ T

0

∫

Ω×Q

A(r)∇ηψ
+
N ·
(
∇ηψ̃ − 2ηψ̃

)
dqdy

−

∫ T

0

∫

Ω×Q

A(r)Pη⊥

(
∇yu

+
Nη
)
ψ+
N · ∇ηψ̃ dqdy

+

∫ T

0

∫

Ω×Q

ψ+
N

(
g(∇yu

+
N ,u

+
N , η)rψ̃ − τ0φ

−

N

(
∂

∂r
ψ̃ + αψ̃

))
dqdy

= 2

∫ T

0

∫

Ω×Q

g(∇yu
+
N ,u

+
N , η)

(∫ ∞

r

ψ−

N dr′
)
ψ̃ dqdy,

(97)

where in the above,

xN (y, t) = xn(y) and zN (y, t) = zn(y), for any t ∈ (tn−1, tn). (98)

Proceeding likewise, for any φ̃ ∈ X2,

∫ T

0

∫

Ω

φ+N (y, t)− φ−N (y, t)

∆t
φ̃(y, t) dydt +

∫ T

0

∫

Ω

(
u+N · ∇yφ

+
N

)
φ̃ dydt

+

∫ T

0

∫

Ω

D2 ∇yφ
+
N · ∇yφ̃ dydt + τ0

∫ T

0

∫

Ω

φ+N

(∫

S2×R+

ψ−

N drdη

)
φ̃ dydt

= 0.

(99)

However, to evaluate the limit ∆t → 0, we need some additional convergence results about the

approximations. First, let us define the maps,

Λ1[ψ](y, t) =

∫

S2×R+

ψ(r, η,y, t) drdη,

Λ2[ψ](r, η,y, t) =

∫ ∞

r

ψ(r′, η,y, t) dr′, for any ψ ∈ L2(0, T ;L2
α).

(100)

We have the following lemma:

Lemma 3.2. Let φ0 ∈ L∞(Ω), φ0 ≥ 0 and ψ0 ∈ L2
α such that
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0 ≤ ψ0 ≤ C0e
−αr a.e in Q

with C0 > 0 a constant. For {ψN}N and
{
ψ±

N

}
N
, constructed by virtue of Lemma 3.1, there

exists ψ ∈ L2(0, T ;V ) ∩ L∞(0, T ;L2
α), positive, such that, for N → +∞ we have the following

convergence, up to a subsequence of N :

ψ±

N ⇀ ψ ∗ − weakly in L∞(0, T ;L2
α), (101)

A1/2∇ηψ
+
N ⇀ A1/2∇ηψ weakly in L2(0, T ;L2

α), (102)

r1/2ψ+
N ⇀ r1/2ψ weakly in L2(0, T ;L2

α), (103)

Λ1[ψ
−

N ]⇀ Λ1[ψ] weakly in L2((0, T )× Ω), (104)

Λ2[ψ
−

N ]⇀ Λ2[ψ] weakly in L2(0, T ;L2
α). (105)

Proof It is clear from (57) that

ψ+
N is bounded in L2(0, T ;V ) (106)

and

ψ±

N is bounded in L∞(0, T ;L2
α). (107)

We then deduce that

ψ−

N ◦ zN is bounded in L∞(0, T ;L2
α). (108)

From (57) one infers

ψ+
N − ψ−

N ◦ zN → 0 in the norm of L2(0, T ;L2
α). (109)

Then there exists ψ+ ∈ L2(0, T ;V ) ∩ L∞(0, T ;L2
α) and ψ− ∈ L∞(0, T ;L2

α) such that, up to a

subsequence in N we have

ψ+
N ⇀ ψ+ weakly in L2(0, T ;V ) (110)

ψ±

N ⇀ ψ± ∗ −weakly in L∞(0, T ;L2
α), (111)

and

ψ−

N ◦ zN ⇀ ψ+ ∗ −weakly in L∞(0, T ;L2
α). (112)
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On the other hand we have

xn(y)− y = χn(tn; tn−1,y)− χn(tn−1; tn−1,y)

= ∆t
∂

∂t
χn(ξ; tn−1,y)

= ∆t un(χn(ξ; tn−1,y)).

(113)

This implies

‖xN (y, t) − y‖L∞(]0,T [×Ω) ≤ ∆t ‖u‖L∞(]0,T [×Ω) (114)

Now, for any ψ̃ ∈ C∞
0 (Q× Ω×]0, T [), with the help of (114) and (107), we obtain

∣∣∣∣∣

∫ T

0

∫

Ω×Q

[
ψ−

N (r, η,y, t) − ψ−

N (r, η, zN (y, t), t)
]
ψ̃(r, η,y, t) dqdydt

∣∣∣∣∣

=

∣∣∣∣∣

∫ T

0

∫

Ω×Q

ψ−

N (r, η,y, t)
[
ψ̃(r, η,y, t)− ψ̃(r, η,xN (y, t), t)

]
dqdydt

∣∣∣∣∣

≤ C∆t ‖u‖L∞([0,T ]×Ω) ‖ψ̃‖C1 .

(115)

We deduce that ψ−

N −ψ−

N ◦zN → 0 in the sense of distributions D′(Q×]0, T [). This leads to the

conclusion that ψ+ = ψ−, and we denote by ψ the common value ψ+ or ψ−. Therefore (101),

(102) and (103) are proved. Let now ϕ ∈ L2((0, T )× Ω)

∫ T

0

∫

Ω

(
Λ1ψ

−

N − Λ1ψ
)
ϕ(y, t) dydt

=

∫ T

0

∫

Ω×Q

ψ−

Nϕe
−αr dqdydt −

∫ T

0

∫

Ω×Q

ψϕe−αr dqdydt

→ 0, as N → +∞

(116)

since ϕe−αr ∈ L2
α. Now, invoking (101), proves (104). Finally, let ψ̃ ∈ L2(0, T ;L2

α) and with the

help of (103) we get

∫ T

0

∫

Ω×Q

(
Λ2ψ

+
N − Λ2ψ

)
ψ̃ dqdydt

=

∫ T

0

∫

Ω×Q

rψ+
N ψ̃ dqdydt −

∫ T

0

∫

Ω×Q

rψψ̃ dqdydt

→ 0, as N → +∞.

(117)

Which proves (105). The positivity of ψ follows from the positivity of ψn for any n. This ends

the proof.

We now focus on the convergence of the φN sequence.

Lemma 3.3. Let φ0 ∈ L∞(Ω), φ0 ≥ 0 and ψ0 ∈ L2
α such that
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0 ≤ ψ0 ≤ C0e
−αr a.e in Q

with C0 > 0 a constant. For {φN}N and
{
φ±N
}
N
, constructed by virtue of Lemma 3.1, there

exists φ ∈ L2(0, T ;H1) ∩ L∞(0, T ;L2) positive such that we have the following convergence, up

to a subsequence of N :

∇yφ
+
N ⇀ ∇yφ weakly L2(0, T ;L2) (118)

φ±N , φN → φ strongly L2(0, T ;L2(Ω)) (119)

Proof From (58), we deduce that

φ+N is bounded in L2(0, T ;H1(Ω)), (120)

φ±N is bounded in L∞(0, T ;L2
α) (121)

and

φ−N is bounded in L2(δ, T ;H1(Ω)) for any δ ∈]0, T [. (122)

Since we have

φN =
tn − t

∆t
φ−N +

t− tn−1

∆t
φ+N

we deduce that

φN is bounded in L∞(0, T ;L2
α) (123)

and

φN is bounded in L2(δ, T ;H1(Ω)) for any δ ∈]0, T [. (124)

It follows there exists a φ ∈ L2(0, T ;H1)∩L∞(0, T ;L2) such that (118) is satisfied. On the other

hand, from the equality
∂φN
∂t

=
φn − φn−1

∆t
on [tn−1, tn] (125)

and from (47) we deduce that for any φ̂ ∈ H1(Ω) we have

∫

Ω

∂φN
∂t

φ̂ dy =−

∫

Ω

u+N · ∇yφ
+
N φ̂ dy −D2

∫

Ω

∇yφ
+
N · ∇yφ̂ dy

− τ0

∫

Ω

φ+N

(∫

S2×R+

ψ−

N drdη

)
φ̂ dy

(126)

Using (120) and (107), gives

∂φN
∂t

is bounded in L2(0, T ; (H1(Ω))′). (127)
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Then, up to a subsequence of N , we have

φN → φ strongly in L2(δ, T ;L2(Ω)), for any δ ∈ ]0, T [. (128)

Let us now prove that

φN → φ strongly in L2(0, T ;L2(Ω)). (129)

We fix ε > 0 and we have for any δ ∈ ]0, T [:

∫ T

0

‖φN − φ‖2L2(Ω) dt =

∫ δ

0

‖φN − φ‖2L2(Ω) dt+

∫ T

δ

‖φN − φ‖2L2(Ω) dt

≤ 2Cδ +

∫ T

δ

‖φN − φ‖2L2(Ω) dt

(130)

where C is an upper bound for ‖φN‖L∞(0,T ;L2) and ‖φ‖L∞(0,T ;L2). Now taking δ = ε
4C we obtain

from (128) that for N large enough

∫ T

δ

‖φN − φ‖2L2(Ω) dt ≤
ε

2
, (131)

which proves (129). From (58) one gets

φ+N − φ−N → 0 strongly in L2(0, T ;L2(Ω)). (132)

Using the fact that

φN − φ+N =
t− tn
∆t

(φ+N − φ−N ) (133)

and

φN − φ−N =
t− tn−1

∆t
(φ+N − φ−N ) (134)

leads to

φN − φ±N → 0 strongly in L2(0, T ;L2(Ω)). (135)

This ends the proof.

3.3 Final stage of the proof of the main result

In the following we let N → +∞ in (97) and (99) with ψ̃ ∈ C∞
c ((−T, T ) × Ω × S2 × [0,+∞))

and φ̃ ∈ C∞
c ((−T, T ) × Ω × S

2 × [0,+∞)), respectively. We now prove that ψ and φ given by

Lemmas 3.2 and 3.3 satisfy the variational equalities (37) and (38), respectively. Since ∆t is
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small enough, we have

∫ T

0

∫

Ω×Q

ψ+
N (r, η,y, t) − ψ−

N (r, η, zN (y, t), t)

∆t
ψ̃(r, η,y, t) dqdydt

= −

∫ T

0

∫

Ω×Q

ψ−

N (r, η,y, t)
ψ̃(r, η,xN (y, t), t) − ψ̃(r, η,y, t −∆t)

∆t
dqdydt

−
1

∆t

∫ ∆t

0

∫

Ω×Q

ψ0(r, η,y)ψ̃(r, η,y, t−∆t) dqdydt.

(136)

Smoothness of ψ̃ entails

1

∆t

∫ ∆t

0

∫

Ω×Q

ψ0(r, η,y)ψ̃(r, η,y, t−∆t) dqdydt →

∫

Ω×Q

ψ0ψ̃(t = 0) dqdy, (137)

and
ψ̃(r, η,y, t) − ψ̃(r, η,y, t −∆t)

∆t
→

∂

∂t
ψ̃(r, η,y, t) strongly in L2(0, T ;L2

α). (138)

We also have

ψ̃(r, η,xn(y), t) − ψ̃(r, η,y, t)

∆t
= ∇yψ̃(r, η,y + θ1(xn(y)− y), t) · ξN , (139)

with θ1 ∈]0, 1[ and

ξN =
xn(y) − y

∆t
. (140)

Since xn(y) = χn(tn−1, tn,y) we have

ξN =
χn(tn−1, tn,y) − χn(tn, tn,y)

∆t
,

= −
∂χn

∂t
(tn−1 + θ2∆t, tn,y) = −un(χn(tn−1 + θ2∆t, tn,y)),

(141)

with θ2 ∈]0, 1[. Then

ψ̃(r, η,xn(y), t) − ψ̃(r, η,y, t)

∆t

= −∇yψ̃(r, η,y + θ1(xn(y) − y), t) · un(χn(tn−1 + θ2∆t, tn,y)).

(142)

On the other hand, for any s ∈ [tn−1, tn]

χn(s; tn,y) − y = χn(s; tn,y)− χn(tn; tn,y),

=
∂χn

∂t
(tn + θ3(s− tn), tn,y)(s − tn),

= un(χn(tn + θ3(s− tn), tn,y))(s − tn),

(143)
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with θ3 ∈]0, 1[, then

|χn(s; tn,y)− y| ≤ |s− tn| ‖u‖L∞(Ω×]0,T [). (144)

Then one deduces from (142) and (144):

ψ̃(r, η,xN (y, t), t) − ψ̃(r, η,y, t)

∆t
→ −u(t,y) · ∇yψ̃(r, η,y, t), (145)

strongly in L2(0, T ;L2
α). Next, from (136), (137), (138) and (145) one gets

∫ T

0

∫

Ω×Q

ψ+
N (r, η,y, t)− ψ−

N (r, η, zN (y, t), t)

∆t
ψ̃(r, η,y, t) dqdydt

→ −

∫ T

0

∫

Ω×Q

ψ

(
∂

∂t
ψ̃ + u · ∇yψ̃

)
dqdydt −

∫

Ω×Q

ψ0ψ̃(t = 0) dqdy.

(146)

Now, from the strong convergences

∇yu
+
N → ∇yu, (147)

g(∇yu
+
N ,u

+
N , η) → g(∇yu,u, η), (148)

and the fact that

φ−N → φ, (149)

one easily calculates the limit in (97) and gets (37). Moreover,

∫ T

0

∫

Ω

φ+N (y, t) − φ−N (y, t)

∆t
φ̃(y, t) dydt

→ −

∫

Ω

ψ0ψ̃(t = 0) dy −

∫ T

0

∫

Ω

φ
∂

∂t
φ̃ dydt.

(150)

Calculating the limit in (99) easily leads to (38).

4 Conclusions

Understanding polymer dynamics under different experimental conditions is of importance for

the laboratory biologists. In this work we studied the influence of an external velocity field on the

polymer-fibrils fragmentation (scission) and lengthening process. To the best of our knowledge

this type of study has never been taken into account in the mathematical modelling of this

problem. And even if our approach is at its early stage of development, we managed to obtain a

rather good generalization of the existing models using more realistic assumptions when adapted

to the prion study.

In this work, we generalized the corresponding Fokker-Planck-Smoluchowski partial differen-

tial equation for rigid rods in order to account for the fragmentation/lengthening process adapted
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for prion proliferation. Moreover, we have introduced a set of two equations on monomers and

polymers with a known flow. We prove existence and positivity of weak solutions to the system

with assumptions on the rates and distribution kernel. The proof is based on variational formu-

lation, a semi-discretization in time, and we obtain estimations which allow us to pass to the

limit. To achieve this, we introduced a suitable functional framework (see section 2.1).

The matter of existence of solutions to the full system (i.e. considering the time dependence

of monomers together with the Navier-Stokes equations given in section 1.3) will be adressed in

a future work.
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Appendix

Let M ∈ M3(R), η ∈ S
2, we shall compute in spherical coordinates according to the base

(eθ, eϕ, er)

∇η · Pη⊥Mη = ∇η ·Mη −∇η · (Mη · η)η.

Note that in spherical coordinates, η = er and for F a vector value function,

∇η · F = ∂θFθ +
cos θ

sin θ
Fθ +

1

sin θ
∂ϕFϕ + 2Fr,

with Fk = F · ek, for k = θ, ϕ, r. According to the derivative of the vector of the base, see

Appendix II [13] and the fact that

∂kMer · ej =M∂ker · ej +Mer · ∂kej,

assumed that F =Mer, then

∇η ·Mer =Meθ · eθ +Meϕ · eϕ.

Next, take F = (Mer · er)er, it is clear that

Fθ = (Mer · er)(er · eθ) = 0, and Fϕ = (Mer · er)(er · eϕ) = 0,

thus

∇η · (Mer · er)er = 2Mer · er.
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Finally,

∇η · Pη⊥Mη =Meθ · eθ +Meϕ · eϕ − 2Mer · er.

References

[1] R. Bird, R. Armstrong, and O. Hassager. Dynamics of polymeric liquids, vol. 2: Kinetic

theory. A Wiley-Interscience Publication, John Wiley & Sons, 1987.

[2] V. Calvez, N. Lenuzza, D. Oelz, J. Deslys, P. Laurent, F. Mouthon, and B. Perthame.

Size distribution dependence of prion aggregates infectivity. Mathematical Biosciences,

217(1):88–99, 2009.

[3] B. Caughey, G. Baron, B. Chesebro, and M. Jeffrey. Getting a grip on prions: oligomers,

amyloids and pathological membrane interactions. Annual review of biochemistry, 78:177,

2009.

[4] M. Doumic, T. Goudon, and T. Lepoutre. Scaling limit of a discrete prion dynamics model.

Communications in Mathematical Sciences, 7(4):839–865, 2009.

[5] H. Engler, J. Prüss, and G. Webb. Analysis of a model for the dynamics of prions ii. Journal

of mathematical analysis and applications, 324(1):98–117, 2006.

[6] M. Greer, L. Pujo-Menjouet, and G. Webb. A mathematical analysis of the dynamics of

prion proliferation. Journal of theoretical biology, 242(3):598–606, 2006.

[7] M. Greer, P. Van den Driessche, L. Wang, and G. Webb. Effects of general incidence and

polymer joining on nucleated polymerization in a model of prion proliferation. SIAM Journal

on Applied Mathematics, 68:154, 2007.

[8] R. Huilgol and N. Phan-Thien. Fluid mechanics of viscoelasticity. Elsevier, 1997.

[9] J. G. Kirkwood. Macromolecules. Gordon and Breach, 1968.

[10] P. Lansbury et al. The chemistry of scrapie infection: implications of the “ice 9” metaphor.

Chemistry & biology, 2(1):1–5, 1995.
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