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We address the statistical challenge of classifying subjects as hemiplegic, vestibular or normal based on complex trajectories obtained through two experimental protocols which were designed to evaluate potential deficits in postural control. The classification procedure involves a dimension reduction step where the complex trajectories are summarized by finite-dimensional summary measures based on a stochastic process model for a real-valued trajectory. This allows us to retrieve from the trajectories information relative to their temporal dynamic. A leave-one-out evaluation yields a 79% performance of correct classification for a total of n = 70 subjects, with 22 hemiplegic (31%), 16 vestibular (23%) and 32 normal (46%) subjects.

Introduction

This article contributes to the study of postural maintenance. Posture is fundamental for physical activity. A deficit in postural maintenance often results in falling, which is particularly hazardous in elderly people. The main objective of the research in postural maintenance is to adapt protocols for functional rehabilitation for people who display deficits in maintaining posture. We focus here on the issue of classifying subjects in terms of postural maintenance. A cohort of 70 subjects has been followed at the center for the study of sensorimotor functioning (CESEM) of the University Paris Descartes. The subjects who did not exhibit deficit in postural maintenance were labelled as normal. The others were hemiplegic and vestibular subjects and labelled accordingly. A hemiplegic subject suffers from a disorder of his proprioceptive system, which pertains to the sense of position, location, orientation of the body and its parts. A vestibular subject suffers from a deficit of his vestibular system, which is the system composed by the inner ear and the vestibular nerve and contributes to the sense of balance.

Each subject completed two experimental protocols designed to evaluate his/her potential deficits in maintaining posture. Each protocol is divided into three phases: a first phase of 15 seconds with no postural perturbation, a second phase of 35 seconds with postural perturbation followed by a last phase of 20 seconds without postural perturbation. During each protocol, measurements of the center-of-pressure of each foot are performed at discrete times, which results in temporal trajectories. Our objective is to classify subjects as hemiplegic, vestibular, and normal based on these trajectories. This is a significantly more difficult extension of the problem considered by [START_REF] Chambaz | Classification in postural style[END_REF], where only hemiplegic and normal subjects were to be classified (particularly because classifying into three classes is more difficult than classifying into two classes), and thus another step in the direction of clustering subjects in terms of their postural style. We refer to the bibliography in [START_REF] Chambaz | Classification in postural style[END_REF] for a review on the analysis of postural control.

Our present study is related to the topic of functional data classification. There is a sizeable literature dedicated to this topic. A variety of methods have been proposed, relying for instance on linear discriminant analysis [START_REF] James | Functionnal linear discriminant analysis for irragularly sampled curves[END_REF], principal component analysis [START_REF] Hall | A functionnal data-analytic approach to signal discrimination[END_REF], or a functional data version of the nearest-neighbors classification rule [START_REF] Biau | Functional classification in hilbert spaces[END_REF]. We refer to [START_REF] Ramsay | Functional Data Analysis[END_REF] for a general introduction to functional data analysis. Our approach here involves a dimension reduction step of our complex trajectories based on change points estimation and inference on a stochastic process model. This allows us to better use the data at hand than in [START_REF] Chambaz | Classification in postural style[END_REF] in the sense that we manage to retrieve from the trajectories information relative to their temporal dynamic. In contrast, [START_REF] Chambaz | Classification in postural style[END_REF] retrieve static information from the trajectories in the sense that the dimension reduction step relies on comparisons of basic statistics (such as the mean value of a segment of the trajectory, see Section 5.2) computed on arbitrarily chosen time intervals starting or ending where the perturbation phase starts or ends.

The data set and its modeling are introduced in Section 2. We present our inference procedure in Section 3. We carry it out on real and simulated data, and summarize the results in the latter section. The classification procedure is presented in Section 4. The results of its application to the real dataset are exposed and commented on in Section 5, which concludes on some perspectives for future research.

Data and modeling

The dataset at hand is described in Section 2.1. We introduce and motivate its modeling in Section 2.2.

Original dataset

The dataset was collected at the center for the study of sensorimotor functioning (CESEM) of the University Paris Descartes. It is composed of a cohort of n = 70 subjects. Among the 70 subjects, 22 are hemiplegic (due to cerebrovascular accidents), 16 are vestibular, while the 32 remaining subjects are identified as normal based on an initial medical evaluation.

Each subject completes two protocols which are designed to evaluate potential deficits in maintaining posture. These protocols have been identified as the most informative among four similar protocols for classifying hemiplegic versus normal subjects in the earlier study [START_REF] Chambaz | Classification in postural style[END_REF]. Both protocols are divided into three phases: a first phase of 15 seconds with no postural perturbation, a second phase of 35 seconds with postural perturbations (either some muscular perturbations or a combination of muscular and visual perturbations), and a third phase of 20 seconds with no postural perturbation. We expect that the subject's postural sway change around the beginning and the end of the perturbation phase (around 15 and 50 seconds).

For each protocol, the center-of-maximal-pressure exerted by each foot on a forceplatform is recorded at equispaced discrete times. Thus each protocol results in a trajectory (L i , R i ) i≤N , where (L i , R i ) is the observation at time t i = iδ for i = 1, . . . , N = 2800 and δ = 0.025 seconds. For each i = 1, . . . , N , 1: Specifics of the two protocols considered in this study. A protocol is divided into three phases: a first phase with no postural perturbation is followed by a second phase with perturbations, which is itself followed by a third phase without perturbation. Different kind of perturbations are considered. In protocol 1, one perturbs the processing by the brain of proprioceptive information (through muscular stimulation). In protocol 2, one perturbs the processing by the brain of both visual information (subjects must close their eyes) and proprioceptive information (through muscular stimulation).

L i = (L 1 i , L 2 i ) ∈ R 2 and R i = (R 1 i , R 2 i ) ∈
Following [START_REF] Chambaz | Classification in postural style[END_REF], we derive from (L i , R i ) i≤N the one-dimensional trajectory C 1:N (sometimes we will denote a n-tuple (x 1 , . . . , x n ) by x 1:n ) characterized by

C i = L i + R i 2 -γ 2 ,
where γ is defined as the componentwise median value of ( 1 2 (L i + R i )) i≤400 over the ten first seconds of the protocol. The process C 1:N provides a relevant description of the sway of the body during the course of the protocol. In Figure 1 we display the trajectories C 1:N corresponding to protocol 1 (left plot) and protocol 2 (right plot) as completed by a single hemiplegic subject. Figure 1 confirms the intuition that the subject's postural sway is not necessarily instantaneously affected by the start and end of perturbations. 

Data modeling

We model the trajectory C 1:N as the observation at discrete times of a stochastic process (C(t)) t∈ [δ,N δ] characterized by a stochastic differential equation.

We model the effects of the perturbations by possible changes in the volatility and drift functions at two unknown change points. In order to account for the fact that subjects react differently, we also assume that the change points differ among subjects. We denote by (T 1 , T 2 ) the change points of a trajectory, with

T 0 = τ 0 δ = δ < T 1 = τ 1 δ < T 2 = τ 2 δ < T 3 = 70 (τ 0 = 1,
τ 1 and τ 2 are integers). We assume that there exist two functions a, b, and two parameters (φ 1 , φ 2 , φ 3 ) and (σ 1 , σ 2 , σ 3 ) such that, for all t

∈ [T k-1 , T k [ and k = 1, 2, 3, dC(t) = a(C(t), φ k )dt + b(C(t), σ k )dW (t) C(T k-1 ) = C τ k-1 ,
where (W (t)) t∈[δ,N δ] is a standard Wiener process.

We now specify the parametric forms of the volatility and drift functions a and b. Because Figure 1 indicates that the variance of C 1:N is not constant over time and because, in addition, the process C 1:N takes positive values, we decide to rely on the classical Cox-Ingersoll-Ross (CIR) process [START_REF] Kloeden | Numerical Solution of Stochastic Differential Equation[END_REF], by setting a(

x, φ = (λ, µ)) = λ(µ -x) and b(x, σ) = σ √
x (for all x ≥ 0). In summary, we model the trajectory C 1:N as the observation at discrete times of the stochastic process (

C(t)) t∈[δ,N δ] characterized, for t ∈ [T k-1 , T k [ (k = 1, 2, 3), by    dC(t) = λ k (µ k -C(t))dt + σ k C(t)dW (t) C(T k-1 ) = C τ k-1 , (1)
where the initial condition

C(T k-1 ) is the observation C τ k-1 at time T k-1 , λ k , µ k and σ k are positive constants. It is known that if 2µ k λ k /σ 2
k ≥ 1 then the process remains positive and admits a stationary distribution. This distribution is a Gamma distribution with shape parameter 2µ k λ k /σ 2 k and scale parameter σ 2 k /2λ k [START_REF] Kloeden | Numerical Solution of Stochastic Differential Equation[END_REF]. Therefore, the complete parameter writes as (τ

1 , τ 2 , θ 1 , θ 2 , θ 3 ) with θ k = (λ k , µ k , σ k ) for k = 1, 2, 3.
We assume that the changes necessarily affect the drift parameter through a change in µ, or put in other words that µ 1 = µ 2 and µ 2 = µ 3 . Changes can also affect the other parameters.

Inference

In this section we address the inference of the parameter (τ 1 , τ 2 , θ 1 , θ 2 , θ 3 ). We first describe the estimating procedure in Section 3.1, then we present its results on the real dataset in Section 3.2, and finally we summarize a simulation study performed to evaluate its performances in Section 3.3.

A two-step estimating procedure

We define a two-step estimating procedure: we first estimate the sequence of change points, then we estimate (θ 1 , θ 2 , θ 3 ) on each interval characterized by the previously estimated change points. A great variety of methods have been proposed for the estimation of change points (Basseville and [START_REF] Basseville | Detection of abrupt changes: theory and application[END_REF][START_REF] Bai | Least squares estimation of a shift in linear processes[END_REF][START_REF] Cuenod | Parameter estimation and change-point detection from Dynamic Contrast Enhanced MRI data using stochastic differential equations[END_REF][START_REF] Lavielle | Using penalized contrasts for the change-point problem[END_REF]Bardet et al., 2012, among many others). We choose to adopt a popular approach originally proposed by [START_REF] Bai | Least squares estimation of a shift in linear processes[END_REF]. The approach relies on a least-squares criterion and aims at detecting change points which affect the mean of a linear process. The estimator (τ 1 , τ2 ) of the sequence of change points (τ 1 , τ 2 ) is defined as:

(τ 1 , τ2 ) = arg min (τ 1 ,τ 2 ) 1 N 3 k=1 τ k -1 i=τ k-1 C i -Ck 2 ,
where Ck is the arithmetic mean of C τ k-1 :τ k -1 . This makes sense because if (C(t)) t∈[T k-1 ,T k [ reaches a stationary regime then the random variables C τ k , . . . , C τ k -1 are identically distributed from a stationary distribution whose mean parameter is µ k .

Set k ∈ {1, 2, 3}. On each interval [ Tk-1 , Tk [= [τ 1 δ, τ2 δ[, we estimate θ k by minimizing a contrast function which is based on the log-likelihood of the approximated discrete-times Euler-Marumaya's scheme [START_REF] Kessler | Estimation of an ergodic diffusion from discrete observations[END_REF], for instance). The latter scheme with step size δ guarantees that, for i = τk-1 , . . . , τk -1,

C i+1 ≈ (1 -δλ k )C i + δλ k µ k + σ k √ δ C i η i+1 , (2) 
where (η i ) τk-1 <i≤τ k is a sequence of independent random variables with standard Gaussian distribution. By (2), it is convenient to consider the following equivalent parametrization:

θ k = (θ 1,k , θ 2,k , θ 3,k ), with θ 1,k = (1 -δλ k ), θ 2,k = δλ k µ k and θ 3,k = σ k √ δ.
The estimator θk of parameter θ k is defined as: θk = arg min

θ k ∈R 3 + τk -1 i=τ k-1 (C i+1 -θ 1,k C i -θ 2,k ) 2 C i θ 2 3,k + (τ k -τk-1 ) log(θ 2 3,k ),
which actually yields closed-form expressions:

θ1,k = (τ k -τk-1 ) C i+1 C i -C i+1 1 C i (τ k -τk-1 ) 2 -C i 1 C i , θ2,k = C i+1 -θ1,k C i (τ k -τk-1 ) , θ3,k = (C i+1 -θ1,k C i -θ2,k ) 2 ) C i τk -τk-1
(the sums in the above expressions range over [τ k-1 , τk -1]).

Under mild conditions, and if the process reaches the stationary regime, then (τ 1 , τ2 ) consistently estimates (τ 1 , τ 2 ) (see [START_REF] Lavielle | Detection of multiple changes in a sequence of dependent variables[END_REF]Lavielle and Ludeña, 2000, for instance). Furthermore, if the true change points (τ 1 , τ 2 ) are known then, under another set of mild conditions, the estimators ( θ1 , θ2 , θ3 ) consistently estimate (θ 1 , θ 2 , θ 3 ) (see [START_REF] Kessler | Estimation of an ergodic diffusion from discrete observations[END_REF], Theorem 1). To the best of our knowledge, there is no satisfactory result in the literature regarding the joint estimation of the change points (τ 1 , τ 2 ) and the parameter (θ 1 , θ 2 , θ 3 ).

Application to the real dataset

We undertake a simulation study of the properties of the two-step estimating procedure presented in the previous section, and summarize its results in the next section. Because we characterize our simulation scheme based on the results obtained when applying the latter procedure to the real dataset, we first present them here.

For each subject and protocol, we estimate (τ 1 , τ 2 , θ 1 , θ 2 , θ 3 ) from the corresponding (real) observed trajectory. The results pertaining to the estimation of (τ 1 , τ 2 ) are summarized in Table 2 (the mean and standard deviation of the estimates (τ 1 δ, τ2 δ) computed over each group of subjects are provided) and illustrated in Figure 2. Results pertaining to the estimation of (θ 1 , θ 2 , θ 3 ) are summarized in Table 5 (the mean and standard deviation of the estimates ( θ1 , θ2 , θ3 ) computed over each group of subjects are provided).

protocol 1 protocol 2 hemiplegic subjects 18.4 (7.4) 43.3 (12.2) 16.8 (1.0) 44.5 (12.4) vestibular subjects 20.9 (5.4) 49.9 (6.5) 19.5 (6.9) 50.3 (5.3) normal subjects 21.4 (8.2) 47.5 (10.7)

22.4 (8.1) 51.4 (2.7)

Table 2: For each subject and protocol, we estimate the change points (τ 1 , τ 2 ). For each group of subjects, we compute over the group the mean and standard deviation (given between parentheses) of the estimates (τ 1 δ, τ2 δ).

Three features of Table 2 are worth commenting on. First, one notes that there is no significant difference across groups of subjects (however, the means of τ1 δ and τ2 δ are slightly shifted to the left in the group of hemiplegic subjects relative to the two other groups). Second, the means of τ1 δ are close to the time of start of perturbations for all groups and protocols. As for the means of τ2 δ, they are close to the time of end for vestibular and normal subjects and both protocols. In hemiplegic subjects, one notes that the standard deviations are quite large and that the mean of τ2 δ is shifted to the left relative to the time of end of perturbations. This is due to the fact that for each protocol, 30% of hemiplegic subjects feature an estimator τ2 δ close to 30 seconds. Third, judging by the standard deviations, all hemiplegic subjects tend to react similarly by adjusting quickly to the perturbations undergone in protocol 2. Likewise, all normal subjects tend to react similarly by adjusting quickly to the end of perturbations undergone in protocol 2. In protocol 1, the large standard deviation associated to the mean value of τ2 δ computed over the group of normal subjects reflects the fact that 20% of these subjects feature an estimator τ2 δ close to 30 seconds.

Regarding Table 5, we consider in turn the parameters θ 1,k (k = 1, 2, 3), θ 2,k (k = 1, 2, 3) and θ 3,k (k = 1, 2, 3). First, the estimates θ1,k (k = 1, 2, 3) behave similarly across groups of subjects, protocols and intervals [ Tk-1 , Tk [ (k = 1, 2, 3). On the contrary, the estimates of θ2,k (k = 1, 2, 3) behave quite differently across groups of subjects, protocols and intervals Tk [ (k = 1,2,3). This is a promising feature for the sake of classifying subjects by group, which is our main problem at stake. As for the estimates θ3,k (k = 1, 2, 3), for any given group of subjects and protocol, they behave quite similarly. However, for protocol 2, it seems that the estimates θ3,k (k = 1, 2, 3) in normal subjects behave differently from their counterpart in hemiplegic or vestibular subjects. This is another promising feature.

In conclusion, and for the sake of illustrating our modeling and two-step estimating procedure, (i) we arbitrarily choose a hemiplegic subject and a normal subject;

(ii) for each of them, we retrieve the estimator (τ 1 , τ2 , θ1 , θ2 , θ3 ) of (τ 1 , τ 2 , θ 1 , θ 2 , θ 3 ) based on the trajectory obtained under protocol 2;

(iii) for each of them, we simulate a trajectory under (τ 1 , τ2 , θ1 , θ2 , θ3 ) (we refer to Section 3.3 for the specifics of the simulation);

(iv) we represent on the same plots the real and simulated trajectories, see Figure 3.

It appears that the real and simulated trajectories are relatively resembling. 

Simulation study

We carry out a simulation study to evaluate the performances of the two-step estimating procedure presented in Section 3.1. We directly simulate the trajectory C 1:N . Specifically, (i) we set (T 1 , T 2 ) = (τ 1 δ, τ 2 δ) = (15, 50);

(ii) we rely on the Euler scheme (2) with step size δ/10 to approximate the sampling of (C(t)) t∈ [δ,N δ] from the distribution characterized by (1) where, for each k ∈ {1, 2, 3}, θ k equals the mean of its 22 estimates based on the 22 real trajectories associated to the 22 hemiplegic subjects and protocol 1 (see Section 3.2 and Table 5);

(iii) we conclude by sub-sampling (C(t)) t∈ [δ,N δ] to derive C 1:N .

We sample B = 100 independent copies of C 1:N . For each copy we estimate the parameters (τ 1 , τ 2 , θ 1 , θ 2 , θ 3 ). The means and standard deviations of the estimated change points and parameters computed over the 100 independent replications are reported in Table 3.

Three comments on Table 3 are in order. First, regarding the estimation of (τ 1 , τ 2 ), we note that the means of the estimated change points are very close to their respective true values. Moreover, the standard deviations are small. Second, regarding the estimation of (θ 1,k , θ 3,k ) (k = 1, 2, 3), we note that the means of the estimates of θ 1,k and θ 3,k are very close to their respective true values and that the standard deviations are small. Third, regarding the estimation of θ 2,k (k = 1, 2, 3), we emphasize that the means are quite apart Table 3: For each of the B = 100 independently simulated datasets, we derive the estimates (τ 1 δ, τ2 δ, θ1 , θ2 , θ3 ). We report here the true values and means and standard deviations (between parentheses) computed over the B = 100 replications.

k = 1 k = 2 k = 3 θ1,k 0.
from their respective true values. Moreover, the standard deviations are not small. Overall this indicates a poorer estimation of θ 2,k (k = 1, 2, 3) than of (θ 1,k , θ 3,k ) (k = 1, 2, 3). This is probably due to the fact that the time intervals [T k-1 , T k [ (k = 1, 2, 3) are relatively narrow given the value of δ.

Classification

In Section 4.2 we describe our classification procedure of subjects as hemiplegic, vestibular or normal based on their trajectories obtained under the two protocols. It is built upon the previous section. Indeed, it does not rely on the trajectories themselves but rather on their finite-dimensional summary measures whose definition, given in Section 4.1, depends on the results of our two-step estimation procedure.

Summary measures

Most classification procedures based on trajectories involve a preliminary step of dimension reduction where the high-dimensional trajectories are summarized into a low-dimensional summary measure [START_REF] Biau | Functional classification in hilbert spaces[END_REF][START_REF] Ramsay | Functional Data Analysis[END_REF]. Here we build a tailored finite-dimensional summary measure of every trajectory which relies on the estimates (τ 1 , τ2 , θ1 , θ2 , θ3 ) derived from it by applying our two-step estimating procedure. We argue in Section 3.2 that, overall, τ1 , τ2 , θ2,k and θ3,k (k = 1, 2, 3) may be relevant for the sake of classifying subjects as hemiplegic, vestibular or normal. Because the ratio θ2,k /(1 -θ1,k ) = μk is easier to interpret than θ2,k (and since θ1,k varies very little across subjects and protocols) and because θ3,k = σk √ δ, we choose to define our finite-dimensional summary measure as (τ 1 , τ2 , μ1 , μ2 , μ3 , σ1 , σ2 , σ3 ). Hereafter we denote X 1 the latter vector derived from the trajectory associated to protocol 1 and X 2 that derived from the trajectory associated to protocol 2.

Classification procedure

We actually construct two classifiers, φ1 and φ2 , to classify subjects as hemiplegic, vestibular or normal based on either X 1 or X 2 for φ1 , and on both (X 1 , X 2 ) for φ2 .

The generic observed data structure associated to a given subject is (X 1 , X 2 , Y ), where Y ∈ {1, 2, 3} indicates the subject's group (with convention Y = 1 for hemiplegic, Y = 2 for vestibular, and Y = 3 for normal). We denote P 0 the true distribution of (X 1 , X 2 , Y ).

Let S be the set of all classifiers based on X = (X 1 , X 2 ). The misclassification risk to S ∈ S is

R (P 0 ) (S) = E P 0 [1{S(X) = Y }]. Denote R * = min S∈S R (P 0 ) (S) its minimum.
It is achieved at the Bayes classifier S * ∈ S, characterized by S * (X) = arg max y∈{1,2,3} P 0 (Y = y|X). For j = 1, 2, we also introduce the Bayes classifier S * j ∈ S which relies only on X j : S * j (X) = arg max y∈{1,2,3} P 0 (Y = y|X j ).

Our objective is to construct φ1 and φ2 which respectively estimate the better classifier among S 1 * and S 2 * (i.e., arg min S 1 * ,S 2 * R (P 0 ) (S j * )) and S * . We choose to rely on the popular methodology of random forests [START_REF] Breiman | Random forests[END_REF], which proved powerful in a variety of applications. This is made easy thanks to the R package randomForest (we used the default tuning). The construction of the estimators Ŝ1 * and Ŝ2 * of S 1 * and S 2 * , and that of φ2 is straightforward. We derive φ1 from ( Ŝ1 * , Ŝ2 * ) by V -fold cross-validation, with V = 10.

Application

This section is devoted to the application of our classification procedure to the real dataset. In Section 5.1 we apply it exactly as it is described in Section 4. In Section 5.2, we consider a slightly enhanced version, whose performances are better. We conclude on some perspectives in Section 5.3.

Performance of the classification procedure

We evaluate the performances of the classification procedure by the leave-one-out rule. We acknowledge that it may result in overly optimistic error rates. Resorting to the leaveone-out rule is notably motivated by the relatively small sample size of our dataset. The results are reported in Table 4 (second row).

With its leave-one-out performance equal to 74%, the best classifier is φ1 , which involves one protocol only. For curiosity, we also evaluate the performances of φ1 and φ2 when systematically replacing (τ 1 δ, τ2 δ) with (15, 50) (the start and end times of the perturbation phase). We report the results in Table 4 (first row). Quite satisfactorily, we note that both φ1 and φ2 are not as good as the original versions: estimating the change points proves very relevant.

Performance of an extended classification procedure

It is tempting to extend our classification procedure by simply extending the definition of the summary measure which is at its core. Following [START_REF] Chambaz | Classification in postural style[END_REF], we merely substitute (X 1 , U 1 ) and (X 2 , U 2 ) for X 1 and X 2 with U j (j = 1, 2) derived from

C 1:N as U j = ( C+ 1 -C- 1 , C- 2 -C+ 1 , C+ 2 -C- 2 ) where C- 1 = δ 5 i∈[10/δ,15/δ[ C i , C+ 1 = δ 5 i∈]15/δ,20/δ] C i , C- 2 = δ 5 i∈[45/δ,50/δ[ C i , C+ 2 = δ 5 i∈]50/δ,55/δ] C i .
We refer to [START_REF] Chambaz | Classification in postural style[END_REF] for a justification. Then we apply the extended classification procedure and report its performances in Table 4 (third row).

With its leave-one-out performance equal to 79%, the best classifier is φ2 , which both extended summary measures (X 1 , U 1 ) and (X 2 , U 2 ). This is slightly better than the best performance obtained in Section 5.1: enriching the summary measures seems to provide relevant additional information for the sake of classifying subjects as hemiplegic, vestibular or normal. performances φ1 φ2

4.2 with (τ 1 δ, τ2 δ) = (15, 50) 61% 64% procedure of Section 4.2 74% 68% 5.2 76% 79%

Table 4: Leave-one-out performances of φ1 and φ2 on the real dataset for the sake of classifying subjects as hemiplegic, vestibular or normal. First row: classification procedure of Section 4.2 when imposing (τ 1 δ, τ2 δ) = (15, 50). Second row: classification procedure of Section 4.2. Third row: extended classification procedure of Section 5.2.

Perspectives

We address the statistical challenge of classifying subjects as hemiplegic, vestibular or normal based on complex trajectories obtained through two experimental protocols which were designed to evaluate potential deficits in postural control. The classification procedure involves a dimension reduction step where the complex trajectories are summarized by finite-dimensional summary measures based on a stochastic process model for a realvalued trajectory. This allows us to retrieve from the trajectories information relative to their temporal dynamic. A leave-one-out evaluation yields a 79% performance of correct classification for a total of n = 70 subjects, with 22 hemiplegic (31%), 16 vestibular (23%) and 32 normal (46%) subjects.

In future work, we will extend the classification procedure by introducing finite-dimensional summary measures based on a stochastic process model for the original trajectories in R 4 . We will also draw advantage from our good understanding of the classification problem to tackle the closely related next statistical challenge of clustering our subjects in terms of postural style. ) (k = 1, 2, 3). For each group of subjects and each protocol, we compute over the group and for that protocol the mean and standard deviation (between parenthese) of the estimates ( θ1

, θ2 , θ3 
).

Figure 1 :

 1 Figure 1: Two trajectories C 1:N respectively corresponding to protocol 1 (left) and protocol 2 (right) undergone by a single hemiplegic subject.

Figure 2 :

 2 Figure 2: Representing the estimated change points (τ 1 δ, τ2 δ) (vertical lines) as obtained based on the two (real) observed trajectories of the same single hemiplegic subject as in Figure 1 (left: protocol 1, right: protocol 2).

Figure 3 :

 3 Figure 3: In each plot (left: hemiplegic subject, right: normal subject), we represent the real (solid line) and simulated (dotted line) trajectories, where the parameters of the simulation are derived from the real trajectory by applying our two-step estimating procedure.

Table

  

				R 2
	respectively correspond to the left and right feet.	
	protocol 1st phase (0→15s) 2nd phase (15→50s) 3rd phase (50→70s)
	1		muscular stimulation	
	2	no perturbation	eyes closed	no perturbation
			muscular stimulation	

Table 5 :

 5 For each subject and each protocol, we first estimate the change points (τ 1 δ, τ2 δ) then we compute the estimates ( θ1

	)
	, θ3
	, θ2

3 ) over each of the three resulting intervals [δ, τ1 δ[, [τ 1 δ, τ2 δ[ and [τ 2 δ, N δ], where θ
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