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Abstract

This article contributes to the study of postural style, focusing on the issue of clas-
sifying subjects in terms of how they maintain posture. Here, we specifically tackle
the statistical problem of classifying subjects sampled from a two-class population.
Each subject (enrolled in a cohort of 54 participants) goes through two experimental
protocols designed to evaluate potential deficits in maintaining posture. Measures
of foot pressure are obtained at discrete times throughout the protocols. The clas-
sification procedure is a two-step procedure. In the first step, the data are modeled
by parametric diffusion processes. The parameters can change at some unknown
change points. Both parameters and change points are estimated from the data. In
the second step, we use the V -fold cross-validation principle and the super-learning
methodology to build two classifiers based on the parameters and change points es-
timators. We achieve a satisfactory 91% rate of correct classification.

Keywords: Change point estimation; Classification; Cross-validation; Postural main-
tenance; Stochastic process modeling

1 Introduction

This article contributes to the study of postural maintenance. Posture is fundamental
for physical activity. A deficit in postural maintenance often results in falling, which is
particularly hazardous in ederly people. The main objective of the research in postural
maintenance is to adapt protocols for functional rehabilitation for people who display
deficits in maintaining posture. In this paper, we focus on the issue of how to classify
subjects in terms of postural maintenance.

A cohort of 54 subjects has been followed at the Center for the Study of Sensorimo-
tor Functioning (CESEM) of the University Paris Descartes (Chambaz and Denis, 2011).
Some of the subjects did not exhibit deficit in postural maintenance while the others were
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hemiplegic subjects. Each subject completed four experimental protocols designed to eval-
uate his/her potential deficits in maintaining posture. Each protocol is divided into three
phases: a first phase of 15 seconds with no postural perturbation, a second phase of 35
seconds with postural perturbation followed by a last phase of 20 seconds without postural
perturbation. During each protocol, measurements of the center-of-pressure of each foot
are performed at discrete times, resulting in time-indexed trajectories. Our objective is to
classify subjects into two classes, normal and hemiplegic, from these trajectories.

The structure of a generic trajectory is complex: due to the perturbation phase of the
protocols, the behavior of the patient can change abruptly. Consequently, the characteris-
tics of the measured trajectories are time-inhomogeneous. This makes statistical inference
and classification difficult. The classification problem is linked to functional data classifi-
cation problems. There is a sizeable literature on methods for classifying functional data.
Methods such as linear discriminant analysis (James and Hastie, 2001), classification based
on principal composant analysis (Hall et al., 2001) or functional data version of the nearest
neighbour classification rule (Biau et al., 2005) have been used to classify functional data.
For a general introduction to functional data analysis, see Ramsay and Silverman (2005).
Our work relies on a previous study carried out by Chambaz and Denis (2011) where they
specifically tackle the statistical problem of classifying subjects from this very dataset. Our
aim is to improve on their procedure by taking into account the dynamic of the data.

In order to bypass the problem of the complexity of the trajectories, Chambaz and
Denis (2011) propose to base their classification procedure on summary measures of the
trajectories. Each protocol is summarized by a vector of small dimension involving the
averages of observations computed over the last/first five seconds before/after the begin-
ning/end of the second phase of the protocol. Their classification procedure, based on these
summary measures, is a two-step procedure. In the first step they rank the protocols by
decreasing order of relevance. In the second step, they derive four classifiers that involve
the best (i.e., more informative), the two best, the three best and then all four protocols.
This two-step procedure relies on the targeted maximum likelihood learning (see van der
Laan and Rubin, 2006) and the super-learning methods (see van der Laan et al., 2007).
The authors obtain a 74% rate of correct classification with the best protocol and a 81%
rate with the two best protocols.

The aim of the present work is to improve on the rate of correct classification provided
by Chambaz and Denis (2011). Because, going through several protocols is unpleasant and
sometimes painful, we decided to use only the two best protocols as indentified in Cham-
baz and Denis (2011). The summary measures proposed in Chambaz and Denis (2011) do
not take into account either the temporal dynamic of the protocols or the specifics of each
patient during the protocols (e.g., each patient has his/her own reaction time to the pertur-
bations). The choice of a 5-second threshold around the beginning/end of the perturbation
phase is arbitrarily chosen. This is why we propose to build new summary measures based
on a stochastic process to model the temporal aspect of the trajectories and the individuals’
behavior changes during the three phases of the protocols. Therefore, we assume that the
trajectories are observations of a stochastic process with unknown parameters that may
change at some unknown change points. The process parameters depend on the change

2



points. So, we first estimate the sequence of change points, then the parameters of the
process on each interval. The new summary measures rely on the estimators of both the
change points and the parameters. As in Chambaz and Denis (2011), our classification
procedure, based on the new summary measures, involves the construction of two classi-
fiers based on one of the two best protocols and on the two best protocols, respectively.
The construction of these classifiers involves the V -fold cross-validation principle and the
superlearning methodology. The evaluation of the performances of the classification proce-
dure on the real dataset requires the leave-one-out-rule. We improve on the rate of correct
classification to 91%.

The article is organized as follows. In Section 2, we describe the dataset and the data
modeling. The estimation of the model parameters is presented in Section 3, together
with a simulation study. The classification procedure is formally described in Section 4.
In Section 5 we report the results obtained by applying the latter classification procedure
to the real dataset. In Section 6 we draw the conclusions of our research and discuss our
approach.

2 Data and modeling

The dataset, collected at the Center for the study of Sensorimotor Functioning (CESEM)
of the University Paris Descartes, is described in Section 2.1. We motivate and introduce
the data modeling in Section 2.2.

2.1 Original dataset

Let us briefly recall the protocols of the study. For a more detailed description, see Chambaz
and Denis (2011). The dataset is composed of a cohort of n = 54 subjects. Among the
54 subjects, 22 are hemiplegic (due to cerebrovascular accident). After an initial medical
evaluation, the 32 other subjects are identified as normal patients. For each subject some
covariates are collected (age, gender, laterality, height and weight).

Each subject completes four protocols that evaluate potential deficits in maintaining
posture. A protocol is divided into three phases: a first phase of 15 seconds with no postural
perturbation, a second phase of 35 seconds with visual and/or muscular perturbation and
a last phase of 20 seconds without perturbation. Therefore, the patient’s behavior can
change near (in time) the beginning and the end of the perturbation phase (around 15 and
50 seconds).

The ranking of the protocols provided by Chambaz and Denis (2011) shows that only
two protocols are really significant in terms of postural informativeness. Since going
through several protocols can be quite painful, we use only the trajectories from these
two protocols, the specifics of which are described in Table 1.

For each protocol, the center-of-pressure of each foot is recorded at equispaced discrete
times. Thus each protocol results in a trajectory X1:N where Xi = (Li, Ri) is the observa-
tion at time ti = iδ for i = 1, . . . , N , N = 2800 and a time-step δ = 0.025 seconds. For
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i = 1, . . . , N , Li = (L1
i , L

2
i ) ∈ R

2 (Ri = (R1
i , R

2
i ), respectively) gives the position of the

center-of-pressure of the left foot (right foot, respectively) on the force-platform at time
iδ.

protocol 1st phase (0→15s) 2nd phase (15→50s) 3rd phase (50→70s)
1 muscular stimulation
2 no perturbation eyes closed no perturbation

muscular stimulation

Table 1: Specifics of the two protocols considered in this study. A protocol is divided into
three phases: a first phase without postural perturbation is followed by a second phase with
perturbation, which is itself followed by a last phase without perturbation. Different kind of
perturbations are considered. Protocol 1 perturbs the processing of proprioceptive information
by the brain (muscular stimulation). Protocol 2 relies on perturbing both the processing of visual
data (eyes closed) and proprioceptive information by the brain (muscular stimulation).

We focus as in (as in Chambaz and Denis, 2011) on the one-dimensional trajectory C1:N

which is derived from X1:N by:
Ci = ‖Bi − b‖,

where (Bi)i∈{1,...,N} = (1
2
(Li + Ri))i∈{1,...,N} and b is defined as the componentwise median

value of (Bi) during the first phase of the protocol. The process C1:N provides a relevant
description of the sway of the body during the course of the protocol. Figure 1 displays
the trajectories C1:N corresponding to the two different protocols completed by a same
hemiplegic subject. Figure 1 confirms the intuition that the patient’s changes of behavior
do not occur exactly at 15 and 50 seconds. As an illustration, it is easy to retrieve the
beginning and ending times of the second phase of protocol 1 from the left-hand plot in
Figure 1, but not for protocol 2 from the right-hand plot of the same figure.

Figure 1: Two trajectories iδ 7→ Ci that correspond to the two different protocols undergone by
a same hemiplegic subject (protocol 1 on the left, protocol 2 on the right).
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2.2 Data modeling

The trajectory C1:N is considered as the observation at discrete times of a stochastic process
(C(t))t∈[T0,T ] defined by a stochastic differential equation (SDE):

{

dC(t) = b(C(t), φ)dt+ a(C(t), σ)dW (t)

C(T0) = C0,
(1)

where (W (t)) is a standard Wiener process, b is a drift function and a a volatility function,
T0 = δ and T = 70 seconds. Functions a and b are known, but they depend on unknown
parameters φ and σ.

The perturbation phase of the protocols involves that the parameters of C1:N can
change, at least at two change points around 15 and 50 seconds, which corresponds to
the beginning and the end of the perturbation phase. Since each patient has a specific
behavior during the protocols, we assume that the change points are unknown and that
they differ among subjects. A visual investigation of several trajectories C1:N for different
patients shows that a third change point may occur during the perturbation phase. There-
fore, we also investigate the case where there are three change points. In the following we
denote by T0 = δ < T1 = τ1δ < . . . < TK−1 = τK−1δ < TK = T = 70 the sequence of
unknown change points with τi ∈ N, and where K is either 3 or 4, which corresponds to
two or three intermediate change points.

We allow the parameters φ and σ defined in (1) to change on each interval [Tk−1, Tk]
for k = 1, . . . , K defined by the change points (Tk). Hence, for each k = 1, . . . , K, we
assume that the stochastic process C(t) on [Tk−1, Tk] is defined by Equation (1) with drift
and volatility functions that depend on the unknown parameters φk and σk.

There remains to specify the drift function b and the volatility function a. Figure 1
suggests that the variance of C1:N is not constant over time. In addition the process C1:N

is positive. Therefore we propose to model C(t) by the classical Cox-Ingersoll-Ross (CIR)
process (Kloeden and Platen, 1992). More formally, for all k = 1, . . . , K, (C(t))t∈[Tk−1,Tk]

is defined by the following SDE:







dC(t) = λk(µk − C(t))dt+ σk
√

C(t)dW (t)

C(Tk−1) = Cτk−1
,

(2)

where the initial condition C(Tk−1) is the observation Cτk−1
at time Tk−1, λk, µk and σk

are positive constants, λk is the time-scale of the process, µk is the mean of the asymptotic
distribution and σk represents the standard deviation. If 2µkλk

σ2
k

≥ 1 the process stays

positive, and admits a stationary distribution. This distribution is a Gamma distribution

with shape parameter 2µkλk
σ2
k

and scale parameter
σ2
k

2λk
.

The change points T1, . . . , TK−1, and the vector of parameters θk = (λk, µk, σk) are
unknown. In a first step we estimate the sequence of change points, then on each interval
[T̂k−1, T̂k], k = 1, . . . , K we estimate the parameter θk.
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3 Estimation of the model parameters

This section is devoted to the first step of our classification procedure: the estimation of
the sequence of change points defined in Section 2.2 and the parameters of the diffusion
process (C(t))t∈[Tk−1,Tk]. We first define the estimators and recall their properties. Then
we give the results of this estimation on the dataset and illustrate the performance of the
estimation method with a simulation study.

3.1 Change-point estimation

The methodology used for the estimation of the sequence τ = (τk)1≤k≤K−1 relies on the
statistical theory of change point estimation in piecewise-constant models. In this frame-
work, the distribution parameters of the process are assumed to change at some instants.
For instance, the changes can affect the mean and the variance of the distribution. Be-
tween two change points, the parameters of the process are assumed to remain constant.
Different methods have been proposed for the estimation of the change points, such as
sequential methods (Basseville and Nikiforov, 1993), local methods (Gĳbels et al., 1999)
or the minimization of penalized contrast (Lavielle, 2005). In this paper, we adopt the
contrast proposed by Lavielle (2005), but with a known number of change points. It is a
global approach, where all the change points are simultaneously detected by minimizing
a contrast J (τ, C1:N). This contrast function, based on a Gaussian pseudo log-likelihood,
is proposed to detect changes that affect both the mean and the variance. The contrast
function is defined as:

J (τ, C1:N) =
1

N

K
∑

k=1

(τk − τk−1 + 1) log(γ2
τk−1:τk

),

where

γ2
τk−1:τk

=
1

τk − τk−1 + 1

τk
∑

i=τk−1

(Ci − C̄τk−1:τk)
2

and C̄τk−1:τk is the empirical mean of (Cτk−1
, . . . , Cτk). Thus, the estimated sequence of

change points denoted by τ̂N = (τ̂N,1, . . . , τ̂N,K−1) is defined by:

τ̂N = arg min
τ
J (τ, C1:N).

Let us now recall some theoretical results in the framework of piecewise-constant models,
when the true number of change points is known (see Lavielle, 1999; Lavielle and Ludeña,
2000). The sequence τ̂N has the following property: Under general conditions, for any
k ∈ {1, . . . , K − 1},

P (|τ̂N,k − τk| > η)→ 0, when η →∞ and N→∞.

For notation simplicity, we denote by τ̂ = (τ̂1, . . . , τ̂K−1) the obtained estimator and by
T̂ = (T̂1, . . . , T̂K−1) = δτ̂ the instants of change points.
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3.2 Estimation of the parameters of the diffusion processes

We describe the method used for the estimation of the parameters of the processes
(C(t))t∈[T̂k−1,T̂k] defined in Equation (2) for k = 1, . . . K. On each interval [T̂k−1, T̂k], the
estimation of the parameters relies on the minimization of a contrast function proposed
by Kessler (1997), and based on the approximate discrete-time Euler-Marumaya’s scheme.

Let (C̃i)i∈{τ̂k−1,...,τ̂k} denote the discrete-time approximation of (C(t))t∈[T̂k−1,T̂k], obtained

by the Euler-Marumaya scheme with step size δ. For i ∈ {τ̂k−1, . . . , τ̂k}, we have:

C̃i+1 = (1− δλk)C̃i + δλkµk + σk
√
δ
√

C̃i ηi+1, (3)

where (ηi)i∈{τ̂k−1+1,...,τ̂k} is a sequence of independent random variables with common law
N (0, 1). We use the following parameterization θk = (θ1,k, θ2,k, θ3,k), with θ1,k = (1− δλk),
θ2,k = δλkµk and θ3,k = σk

√
δ. The contrast function Lk(θk) based on the log-likelihood of

(C̃i)i∈{τ̂k−1,τ̂k}, is defined by:

Lk(θk) =
τ̂k−1
∑

i=τ̂k−1

(Ci+1 − θ1,kCi − θ2,k)2

Ciθ23,k
+ (τ̂k − τ̂k−1 + 1) log(θ23,k).

The estimator θ̂k is defined by:

θ̂k = arg min
θk∈R

3
+

Lk(θk). (4)

Thus, we obtain explicit estimators:

θ̂1,k =
(τ̂k − τ̂k−1 + 1)

∑ Ci+1

Ci
−∑Ci+1

∑ 1
Ci

(τ̂k − τ̂k−1 + 1)2 −∑Ci
∑ 1
Ci

,

θ̂2,k =

∑

Ci+1 − θ̂1,k
∑

Ci
(τ̂k − τ̂k−1 + 1)

,

θ̂3,k =

√

√

√

√

√

∑ (Ci+1−θ̂1,kCi−θ̂2,k)2)

Ci

τ̂k − τ̂k−1 + 1
.

Under general assumptions, see Theorem 1 in Kessler (1997), if (C(t))[Tk−1,Tk] is sta-

tionary and when N → +∞, δ → 0 and Nδ → +∞, the estimators θ̂k, k = 1, . . . , K − 1,
defined by (4) are consistent:

θ̂k
Pθk→ θk.

3.3 Estimation results

For each patient, for each protocol and forK = 3 or 4 intervals, we estimate the sequence of
change points T̂1, . . . , T̂K−1 and the parameters θ̂1, . . . , θ̂K from the dataset. Results of the

7



change point estimation are summarized in Table 2 and illustrated in Figure 2. Results of
the parameter estimation are summarized in Table 3. In order to discuss the difference in
the estimated change points and parameters between the normal and hemiplegic subjects,
we give the results separately for each group.

Normal subjects

protocol K = 3 K = 4

1 18.28 (4.37) 50.66 (10.53) 16.62 (5.02) 31.90 (13.75) 52.97 (6.85)

2 19.75 (7.83) 52.62 (4.87) 15.84 (4.32) 31.59 (12.47) 52.68 (4.80)

Hemiplegic subjects

protocol K = 3 K = 4

1 15.27 (3.13) 45.27 (13.78) 14.27 (3.89) 31.18 (11.13) 51.86 (8.84)

2 16.95 (5.39) 48.13 (11.60) 13.95 (7.15) 30.45 (14.38) 55.36 (3.35)

Table 2: Estimation of the sequence (T1, . . . TK−1), for K = 3 and 4 intervals. For each patient
and each protocol, we compute the estimators T̂k of Tk, k = 1, . . . ,K − 1. We provide the
empirical means and standard deviations (between parentheses) of the estimators T̂k over each
group (normal and hemiplegic subjects).

Table 2 shows that whatever the value of K, the estimated change points over the
groups of normal and hemiplegic subjects are not significantly different. Two change points
are estimated around the beginning (15 seconds) and the end (50 seconds) of the second
phase of the protocol (the perturbation phase). This is consistent with the specifics of the
protocols. When K = 3 the change points occur slightly earlier in the hemiplegic group
than in the normal group, though not significantly. For each protocol and K = 4, the
third change point is estimated during the perturbation phase (around 30 seconds). This
is consistent with previous investigations. As an illustration, we see in Figure 2 that, for
each protocol, two change points are estimated around 15 and 50 seconds and are the same
for K = 3 or 4 intervals. The third change point is estimated for each protocol during the
perturbation phase between 30 and 40 seconds. The third change point seems to be more
relevant for protocol 1 than for protocol 2 for this particular subject.

The results provided in Table 3 show that for each protocol and each group, the values
of the estimated empirical means of θ1,k are close. Consequently, the parameters θ1,k, k =
1, . . . , K−1 may not be relevant for the classification step. The estimated empirical means
of θ2,k are significantly different from one protocol to the other and one group to the other.
The estimated empirical means of θ3,k change over the two groups. We expect that the
parameters θ2,k and θ3,k, k = 1, . . . , K − 1 can provide relevant information to determine
whether the patient is hemiplegic or not.

3.4 Simulation study

A simulation study is carried out to evaluate the performance of the estimation procedure
described in Section 3.1 and Section 3.2. The data are simulated with two deterministic

8



Figure 2: Estimated change points for trajectories of protocol 1 (left column) and protocol 2 (right
column). The two trajectories are from the same hemiplegic subject. The top line corresponds
to two estimated change points (K = 3), the bottom line corresponds to three estimated change
points (K = 4).

change points T1, T2 at respectively 15 and 50 seconds, using the mean parameters obtained
in Table 3 for the normal subjects and protocol 1. We simulate 100 datasets using a Euler
scheme with step size 0.0025. Then observations at time (iδ) with δ = 0.025 are sub-
sampled to build a simulated trajectory. The estimation procedure of the change points
and parameters is applied to each simulated trajectory. The means and standard deviations
of the change points and parameters estimated from the 100 trajectories are presented in
Table 4.

The means of the estimators of the change points are close to the true values. More-
over, the standard deviations are small. The means of the parameter estimators are very
satisfactory, although the estimation of θ2,2 is slightly biased. This is probably due to the
fact that the time interval is small.

To conclude this section, we provide in Figure 3 an illustration of the data modeling.
The simulated trajectory based on the estimators T̂1, T̂2 and (θ̂1, θ̂2, θ̂3) is relatively close
to the true trajectory.
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protocol param. Normal subjects Hemiplegic subjects
k = 1 k = 2 k = 3 k = 1 k = 2 k = 3

1 θ1,k 0.98 (0.01) 0.99 (0.01) 0.98 (0.02) 0.96 (0.02) 0.98 (0.01) 0.98 (0.02)
θ2,k 0.06 (0.04) 0.14 (0.12) 0.11 (0.08) 0.13 (0.09) 0.27 (0.30) 0.16 (0.13)
θ23,k 0.04 (0.03) 0.03 (0.04) 0.03 (0.04) 0.08 (0.05) 0.05 (0.04) 0.05 (0.05)

2 θ1,k 0.98 (0.02) 0.99 (0.01) 0.98 (0.01) 0.96 (0.02) 0.98 (0.02) 0.97 (0.02)
θ2,k 0.09 (0.08) 0.22 (0.26) 0.15 (0.14) 0.15 (0.10) 0.37 (0.36) 0.36 (0.62)
θ23,k 0.06 (0.06) 0.05 (0.04) 0.05 (0.06) 0.1 (0.06) 0.1 (0.10) 0.09 (0.08)

Table 3: Estimation of the parameters (θ1, θ2, θ3) of the CIR stochastic process. For each patient,
each protocol and K = 3, we estimate two change points for the trajectory C1:N . Then, we
compute the estimators (θ̂1,k, θ̂2,k, θ̂3,k), k = 1, 2, 3. We provide the empirical means and standard

deviations (between parentheses) of the estimators θ̂i,k over each group (normal and hemiplegic
subjects).

Change points estimation

T1 T2

True Estimated True Estimated

15 16.65 (2.41) 50 51.28 (2.42)

Parameter estimation
k = 1 k = 2 k = 3

parameter True Estimated True Estimated True Estimated

θ1,k 0.98 0.976 (0.010) 0.99 0.986 (0.005) 0.98 0.975 (0.009)

θ2,k 0.06 0.076 (0.030) 0.14 0.189 (0.071) 0.11 0.135 (0.043)

θ3,k 0.04 0.038 (0.002) 0.03 0.029 (0.001) 0.03 0.029 (0.001)

Table 4: Simulation study. Empirical means and standard deviations of change points and
parameters estimators computed from 100 simulated trajectories with two change points.

4 Classification procedure

This section is devoted to our classification procedure. We present the definition of the
finite-dimensional summary measure in Section 4.1. We formally introduce the statistical
framework that we consider in Section 4.2. Finally, we describe our classification procedure
in Section 4.3. Our classification procedure involves the cross-validation principle that is
described in Section 4.4.

4.1 Summary measures

The finite-dimensional summary measure relies on the estimated sequence of change points
T̂1, . . . , T̂K−1, and on the estimators θ̂1, . . . , θ̂K defined in Section 3.2. Under the assumption
that, on each interval defined by the estimated change points of the protocols, the process
(C(t))[T̂k−1,T̂k] defined by (2) reaches the stationary regime, a relevant information from

the process (C(t))[T̂k−1,T̂k] is the mean of the stationary distribution with
θ̂2,k

1−θ̂1,k
= µ̂k
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Figure 3: Illustration of the data modeling, for protocol 2: true trajectory (solid line) and
simulated trajectory (dotted line). The left plot correspond to a normal patient, the right plot
to a hemiplegic patient. Two change points are estimated and parameters θk are estimated. For
each k = 1, 2, 3 and according to Equation (3) with parameter θ̂k, we simulate C̃τ̂k−1:τ̂k . The

simulated trajectory is then C̃1:N = (C̃1:τ̂1 , C̃τ̂1:τ̂2 , C̃τ̂2:N
).

as estimator. Furthermore, estimation results given in Section 3.3 have shown that the
parameters θ2,k and θ3,k may provide helpful information for classification. Finally, we
decide to focus on the finite-dimensional summary measure YK of C1:N , which is defined
as

YK =
(

µ̂1, . . . , µ̂K , θ̂3,1, . . . , θ̂3,K , T̂1, . . . , T̂K−1

)

. (5)

In the sequel, we denote by Y jK the summary measure defined by (5) and associated to
protocol j, j = 1, 2.

4.2 Classification framework

We want to construct classifiers to determine if the patient is normal or hemiplegic. For a
given patient, those classifiers are based both on the finite-dimensional summary measure
defined by (5) and on the patient covariates.
For a given patient, we denote by O the observed data structure:

O = (W,Y 1
3 , Y

1
4 , Y

2
3 , Y

2
4 , A),

where W is the vector of baseline covariates, for each j ∈ {1, 2} and K ∈ {3, 4}, the vector
Y jK ∈ R

3K−1 is the summary measure associated to the jth protocol with (K − 1) change
points. The variable A ∈ {0, 1} indicates the subject’s class (with convention A = 1 for
hemiplegic subjects and A = 0 for normal subjects). We assume that the distribution of
O is P0 ∈M, whereM is the set of all possible distributions of O.

We denote by S the set of all possible classifiers which are functions of the vector of base-
line covariatesW and the summary measure (Y 1

3 , Y
1

4 , Y
2

3 , Y
2

4 ). Set Z = (W,Y 1
3 , Y

1
4 , Y

2
3 , Y

2
4 ).

We recall that, in the classification framework, the risk R(P0) associated to a classifier S ∈ S
is defined as:

R(P0)(S) = EP0
[1{S(Z) 6= A}] .
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We denote by R∗ the minimum of these risks:

R∗ = min
S∈S
R(P0)(S).

This minimum is achieved at S(∗), the Bayes classifier, characterized by:

S(∗)(Z) = 1

{

η(Z) ≥ 1

2

}

,

where η(Z) = P0 (A = 1|Z). For K = 3, 4 and j = 1, 2, let us define the classifier SjK based
only on W and the summary measure Y jK (i.e. SjK(Z) = SjK(W,Y jK)):

SjK(W,Y jK) = 1

{

ηjK(W,Y jK) ≥ 1

2

}

,

where ηjK(W,Y jK) = P0

(

A = 1|W,Y jK
)

. For (K1, K2) ∈ {3, 4}2, let us define the classifier

SK1,K2 based only on W and the summary measures Y 1
K1

and Y 2
K2

(i.e. SK1,K2(Z) =
SK1,K2(W,Y 1

K1
, Y 2
K2

)):

SK1,K2(W,Y 1
K1
, Y 2
K2

) = 1

{

ηK1,K2(W,Y 1
K1
, Y 2
K2

) ≥ 1

2

}

,

where ηK1,K2(W,Y 1
K1
, Y 2
K2

) = P0

(

A = 1|W,Y 1
K1
, Y 2
K2

)

. Let us define φ1 and φ2 as:

φ1 ∈ arg min
Sj
K

R(P0)(SjK),

φ2 ∈ arg min
SK1,K2

R(P0)(SK1,K2).

The classifier φ1 represents the best classifier among those which are functions of W and
a summary measure Y jK with K ∈ {3, 4} and j ∈ {1, 2}. This corresponds to the best
classifier among all the classifiers based on one protocol only. The classifier φ2 represents
the best classifier among those which are functions of W and the summary measures
Y 1
K1
, Y 2
K2

with (K1, K2) ∈ {3, 4}2. This corresponds to the best classifier among all the
classifiers based on the two protocols. Since φ1 and φ2 depend on the distribution P0 which
is unknown, we must construct estimators φ̂1 and φ̂2 of φ1 and φ2. First, for each K = 3, 4
and j = 1, 2, we construct an estimator ŜjK of SjK . Then for each K1 = 3, 4 and K2 = 3, 4,
we construct an estimator ŜK1,K2 of SK1,K2 . We denote by H1 = {Ŝ1

3 , Ŝ
1
4 , Ŝ

2
3 , Ŝ

2
4} the set of

candidate estimators of φ1 and byH2 = {Ŝ3,3, Ŝ3,4, Ŝ4,3, Ŝ4,4} the set of candidate estimators

of φ2. In a second step, we select φ̂1 (respectively φ̂2) among the set H1 (respectively H2)
based on the V -fold cross-validation principle.

4.3 Construction of the classifiers

In this section, we describe the construction of the set H1. Except for the change of
notations the procedure is the same for the construction of H2.

12



Let Dn = (O(1), . . . , O(n)) be a learning dataset of size n. For each K = 3, 4 and

j = 1, 2, the construction of ŜjK relies on the plug-in-rule (Tsybakov, 2004). Based on Dn,
we construct an estimator η̂jK(Dn, .) of ηjK , using the super-learning methodology (van der
Laan et al., 2007). For a new observation (W,Y jK) independent of Dn, the plug-in classifier
ŜjK is then defined as:

ŜjK(Dn;W,Y
j
K) = 1

{

η̂jK(Dn;W,Y
j
K) ≥ 1

2

}

.

We adopt the following classification rule: We decide to classify a new subject with informa-
tion (W,Y jK) into the group of hemiplegic subjects if ŜjK(Dn;W,Y

j
K) = 1 and into the group

of normal subjects otherwise. The plug-in classifiers can converge with fast rates under
assumptions on the regression function ηjK and the so-called margin condition (Audibert
and Tsybakov, 2007).

4.4 Cross-validation procedure

In this section, we briefly describe the V -fold cross-validation procedure for the construction
of the classifier φ̂1. Except for the change of notations the procedure is the same for the
construction of φ̂2. Several studies (practical and theorical) have been conducted on the
cross-validation principle (see Geisser, 1975; Dudoit and van der Laan, 2005, for example).

Let V ≥ 2 be an integer. We first consider a regular partition (Bv)1≤v≤V of the indices
{1, . . . , n} such that:

Card(Bv) ∈ {⌊n/V ⌋, ⌊n/V ⌋+ 1}.
For each v ∈ {1, . . . , n}, we denote D(v)

n (respectively D(−v)
n ) the data set (O(i))i∈Bv (re-

spectively (O(i))i6∈Bv) and we define:

P (v)
n =

1

Card(Bv)

∑

i∈Bv

δO(i)

P (−v)
n =

1

n− Card(Bv)

∑

i6∈Bv

δO(i)
,

where P (v)
n is the empirical distribution of D(v)

n and P (−v)
n is the empirical distribution of

D(−v)
n . Let ŜjK ∈ H1. We denote by Ŝ

j (−v)
K = ŜjK(D(−v)

n ; .) the estimator based on D(−v)
n of

SjK . We define its empirical cross-validated risk estimator R̂ and its oracle counterpart R̃
by:

R̂(ŜjK) =
1

V

V
∑

v=1

R(P vn )
(

Ŝ
j (−v)
K

)

,

R̃(ŜjK) =
1

V

V
∑

v=1

R(P0)
(

Ŝ
j (−v)
K

)

,

13



with

R(P
(v)
n )(Ŝ

j (−v)
K ) =

1

Card(Bv)

∑

i∈Bv

1{Ŝj (−v)
K (Wi, Y

j
K,i) 6= Ai)}.

For each v ∈ {1, . . . , V }, conditionally on D(−v)
n , R(P

(v)
n )(Ŝ

j (−v)
K ) is the empirical estimator

of the true risk R(P0)
(

Ŝ
j (−v)
K

)

based on D(v)
n .

The V -cross-validation principle consists in selecting among H1 the classifier which mini-
mizes the cross-validation risk. We define the cross-validated selector (K̂, ĵ) as:

(K̂, ĵ) ∈ arg min
(K,j)
R̂(ŜjK).

Its oracle counterpart is defined as:

(K̃, j̃) ∈ arg min
(K,j)
R̃(ŜjK).

For a new observation (W,Y jK) independent ofDn, the cross-validated classifier φ̂1 is defined
as:

φ̂1(Dn)(Z) = 1

{

Ŝ ĵ
K̂

(Dn;Z) ≥ 1

2

}

.

A natural way to evaluate the performances of the cross-validated classifier is to compare

the risk difference between R̃(φ̂1(Dn)) and R̃(Ŝ j̃
K̃

(Dn)). Dudoit and van der Laan (2005)
provide the following asymptotic results:

0 ≤ E
[

R̃(φ̂1(Dn))−R∗
]

≤ E
[

R̃(Ŝ j̃
K̃

(Dn))−R∗
]

+O

(

log(Card(H1))√
npn

)

,

where pn is the proportion of observations among n which are in the validation sets. Note
that in the V -fold cross-validation framework pn ≃ 1

V
.

5 Classification results

In this section, we present the results of our classification procedure described in Section 4
applied to the real dataset. We evaluate the performance of our classification on the real
dataset in Section 5.1. Finally, we give an extension of the classification procedure in
Section 5.2.

5.1 Performance of the classification procedure

The evaluation of our classification procedure applied to the real data relies on the leave-
one-out rule.

Formally, let Dn = (O(1), . . . , O(n)) be the real dataset (n = 54). For each i ∈ {1, . . . , n}
we denote Dn\{O(i)} byD(−i) and {O(i)}\{A(i)} by Z(i). For each j = 1, 2 and i = 1, . . . , n,

we first compute φ̂
(−i)
j the estimator of φj based on D(−i) and evaluate its risk Rj(i) on O(i):

Rj(i) = 1
{φ

(−i)
j

(Z(i)) 6=A(i)}
.

14



Then, we compute the performance Perfj:

Perfj =
1

n

n
∑

i=1

Rj(i),

which indicates the leave-one-out error of φ̂j on the real dataset. For the V -fold cross-
validation step we use V = 10. For the specifics of the super-learner used here we refer to
the appendix in Chambaz and Denis (2011). The library of estimation procedure used here
is the random forest procedure (Breiman, 2001) for different values of tuning parameters.
The performance results are provided in Table 5.

protocol j = 1 j = 2
Perfj 0.83 0.80

Table 5: Leave one out performances Perfj of our classification procedure applied to the real
dataset. Perf1 corresponds to the classifier φ̂1 (one protocol) and Perf2 corresponds to the clas-
sifier φ̂2 (two protocols).

The best performance is achieved by the classifier φ̂1 which involves only one protocol.
The proportion of subjects correctly classified equals to 83%. So, we improve on the
performance rates of correct classification compared to Chambaz and Denis (2011), which
are respectively 74% with one protocol and 80% with two protocols. These results confirm
that the new summary measures are more adapted to take into account the temporal
dynamics of the protocols.

For each i = 1, . . . , n, it is always protocol 1 that is selected by the cross-validation for
the construction of φ̂

(−i)
1 . Conversely, the ranking of the protocols proposed by Chambaz

and Denis (2011) shows that protocol 2 is more informative than protocol 1. It is not
surprising since the information provided by a protocol for the classification depends on
the definition of the summary measures used. Thus, a new definition of summary measures
can involve a new ranking of the protocols.

Moreover, for each j = 1, 2 and i = 1, . . . , n, it is generally K = 3 (two change points)

which is selected by the cross-validation for the construction of φ̂
(−i)
1 . Therefore, only the

two change points involved in the perturbation phase of the protocols seem to provide
helpful information for the classification.

In order to evaluate the relevance of the change point estimation for the classification
step, we compute the performance of the classification procedure with two fixed change
points T1 = 15 and T2 = 50 seconds. We obtain a rate of correct classification equal to
66% with one protocol and 74% with two protocols. Thus, the information provided by
the estimated change points is very relevant.

5.2 Extension of the summary measure

In this section, we propose an extension of our classification procedure by enriching the vec-
tor of summary measures defined in Section 4.1 with the summary measure used in Cham-
baz and Denis (2011). Let U j denote the vector of these summary measures associated to
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the protocol j defined by Chambaz and Denis (2011). The construction of U j also relies
on C1:N , and is defined as follows:

U j = (C̄+
1 − C̄−1 , C̄−2 − C̄+

1 , C̄
+
2 − C̄−2 )

where

C̄−1 =
δ

5

∑

i∈[10/δ,15/δ[

Ci, C̄+
1 =
δ

5

∑

i∈]15/δ,20/δ]

Ci,

C̄−2 =
δ

5

∑

i∈[45/δ,50/δ[

Ci, C̄+
2 =
δ

5

∑

i∈]50/δ,55/δ]

Ci.

In this new classification procedure, for K = 3, 4 and j = 1, 2, the summary measure
ZjK writes as:

ZjK = (Y jK , U
j).

Therefore, for a given patient the observed data structure O writes as:

O = (W,Z1
3 , Z

1
4 , Z

1
3 , Z

1
4 , A)

We then apply the classification procedure described in Section 4. The results are shown
in Table 6. The best performance is achieved with the classifier that involves summary

protocol j = 1 j = 2
Perfj 0.83 0.91

Table 6: Leave-one-out performances Perfj of our classification procedure applied with the ex-
tended summary measures. Perf1 corresponds to the classifier φ̂1 (one protocol) and Perf2 corre-
sponds to the classifier φ̂2 (two protocols).

measures from the two protocols. The proportion of subjects correctly classified equals to
91%, which is really much better than the performances obtained so far. Thus, the sum-
mary measures used by Chambaz and Denis (2011) seem to provide additional information
for classification.

6 Discussion

In this article, we tackle the statistical problem of classifying subjects from a dataset
which consists of complex trajectories. We model the trajectories by a stochastic process
with unknown parameters that change at some unknown change points. Then summary
measures which rely on estimators of the change points and the parameters of the process
are proposed. The classification procedure based only on the summary measures involves
the V -fold cross validation principle. We improve on previous results (Chambaz and Denis,
2011), showing that it is possible to obtain a 91% rate of correct classification (evaluated
by the leave-one-out rule).
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We show that data modeling, especially as regards change point estimation, is crucial
for the classification step. The stochastic process modeling with change point estimation
makes it possibe to take into account the temporal dynamics of the data and the specifics
of the protocols. Moreover, we show that the CIR process may be well adapted for mod-
eling trajectories C1:N . In previous investigations, we studied other classes of stochastic
processes, as the Ornstein-Uhlenbeck process and geometric Brownian motion, but the
results of the modeling were not relevant.

In this paper, we focus on summary measures based on trajectories C1:N pertaining to
distances. A natural way to enrich these summary measures would be to add informa-
tion pertaining to patients’ orientation on the force platform during the protocols. Thus,
summary measures based on a 2-D stochastic process (as the Ornstein-Uhlenbeck process)
modeling of B1:N could provide helpful information for classification. We will consider this
approach in future work.
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