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Abstract
We address the statistical challenge of classifying subjects as hemiplegic, vestibu-

lar or normal based on complex trajectories obtained through two experimental pro-
tocols which were designed to evaluate potential deficits in postural control. The
classification procedure involves a dimension reduction step where the complex trajec-
tories are summarized by finite-dimensional summary measures based on a stochastic
process model for a real-valued trajectory. This allows us to retrieve from the tra-
jectories information relative to their temporal dynamic. A leave-one-out evaluation
yields a 79% performance of correct classification for a total of n = 70 subjects, with
22 hemiplegic (31%), 16 vestibular (23%) and 32 normal (46%) subjects.

Keywords: Change point estimation; Multiclass classification; Cross-validation; Pos-
tural maintenance; Stochastic process modeling

1 Introduction
This article contributes to the study of postural maintenance. Posture is fundamental
for physical activity. A deficit in postural maintenance often results in falling, which is
particularly hazardous in elderly people. The main objective of the research in postural
maintenance is to adapt protocols for functional rehabilitation for people who display
deficits in maintaining posture. We focus here on the issue of classifying subjects in terms
of postural maintenance. A cohort of 70 subjects has been followed at the center for
the study of sensorimotor functioning (CESEM) of the University Paris Descartes. The
subjects who did not exhibit deficit in postural maintenance were labelled as normal. The
others were hemiplegic and vestibular subjects and labelled accordingly. A hemiplegic
subject suffers from a disorder of his proprioceptive system, which pertains to the sense of
position, location, orientation of the body and its parts. A vestibular subject suffers from
a deficit of his vestibular system, which is the system composed by the inner ear and the
vestibular nerve and contributes to the sense of balance.
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Each subject completed two experimental protocols designed to evaluate his/her po-
tential deficits in maintaining posture. Each protocol is divided into three phases: a first
phase of 15 seconds with no postural perturbation, a second phase of 35 seconds with pos-
tural perturbation followed by a last phase of 20 seconds without postural perturbation.
During each protocol, measurements of the center-of-pressure of each foot are performed at
discrete times, which results in temporal trajectories. Our objective is to classify subjects
as hemiplegic, vestibular, and normal based on these trajectories. This is a significantly
more difficult extension of the problem considered by Chambaz and Denis (2012), where
only hemiplegic and normal subjects were to be classified (particularly because classify-
ing into three classes is more difficult than classifying into two classes), and thus another
step in the direction of clustering subjects in terms of their postural style. We refer to
the bibliography in (Chambaz and Denis, 2012) for a review on the analysis of postural
control.

Our present study is related to the topic of functional data classification. There is a
sizeable literature dedicated to this topic. A variety of methods have been proposed, relying
for instance on linear discriminant analysis (James and Hastie, 2001), principal component
analysis (Hall et al., 2001), or a functional data version of the nearest-neighbors classifi-
cation rule (Biau et al., 2005). We refer to (Ramsay and Silverman, 2005) for a general
introduction to functional data analysis. Our approach here involves a dimension reduc-
tion step of our complex trajectories based on change points estimation and inference on a
stochastic process model. This allows us to better use the data at hand than in (Chambaz
and Denis, 2012) in the sense that we manage to retrieve from the trajectories information
relative to their temporal dynamic. In contrast, Chambaz and Denis (2012) retrieve static
information from the trajectories in the sense that the dimension reduction step relies on
comparisons of basic statistics (such as the mean value of a segment of the trajectory, see
Section 5.2) computed on arbitrarily chosen time intervals starting or ending where the
perturbation phase starts or ends.

The data set and its modeling are introduced in Section 2. We present our inference
procedure in Section 3. We carry it out on real and simulated data, and summarize the
results in the latter section. The classification procedure is presented in Section 4. The
results of its application to the real dataset are exposed and commented on in Section 5,
which concludes on some perspectives for future research.

2 Data and modeling
The dataset at hand is described in Section 2.1. We introduce and motivate its modeling
in Section 2.2.

2.1 Original dataset
The dataset was collected at the center for the study of sensorimotor functioning (CESEM)
of the University Paris Descartes. It is composed of a cohort of n = 70 subjects. Among the
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70 subjects, 22 are hemiplegic (due to cerebrovascular accidents), 16 are vestibular, while
the 32 remaining subjects are identified as normal based on an initial medical evaluation.

Each subject completes two protocols which are designed to evaluate potential deficits
in maintaining posture. These protocols have been identified as the most informative
among four similar protocols for classifying hemiplegic versus normal subjects in the earlier
study (Chambaz and Denis, 2012). Both protocols are divided into three phases: a first
phase of 15 seconds with no postural perturbation, a second phase of 35 seconds with
postural perturbations (either some muscular perturbations or a combination of muscular
and visual perturbations), and a third phase of 20 seconds with no postural perturbation.
We expect that the subject’s postural sway change around the beginning and the end of
the perturbation phase (around 15 and 50 seconds).

For each protocol, the center-of-maximal-pressure exerted by each foot on a force-
platform is recorded at equispaced discrete times. Thus each protocol results in a trajectory
(Li, Ri)i≤N , where (Li, Ri) is the observation at time ti = iδ for i = 1, . . . , N = 2800 and
δ = 0.025 seconds. For each i = 1, . . . , N , Li = (L1

i , L
2
i ) ∈ R2 and Ri = (R1

i , R
2
i ) ∈ R2

respectively correspond to the left and right feet.

protocol 1st phase (0→15s) 2nd phase (15→50s) 3rd phase (50→70s)
1 muscular stimulation
2 no perturbation eyes closed no perturbation

muscular stimulation

Table 1: Specifics of the two protocols considered in this study. A protocol is divided into
three phases: a first phase with no postural perturbation is followed by a second phase with
perturbations, which is itself followed by a third phase without perturbation. Different kind of
perturbations are considered. In protocol 1, one perturbs the processing by the brain of propri-
oceptive information (through muscular stimulation). In protocol 2, one perturbs the processing
by the brain of both visual information (subjects must close their eyes) and proprioceptive infor-
mation (through muscular stimulation).

Following Chambaz and Denis (2012), we derive from (Li, Ri)i≤N the one-dimensional
trajectory C1:N (sometimes we will denote a n-tuple (x1, . . . , xn) by x1:n) characterized by

Ci =
∥∥∥∥Li +Ri

2 − γ
∥∥∥∥

2
,

where γ is defined as the componentwise median value of (1
2(Li + Ri))i≤400 over the ten

first seconds of the protocol. The process C1:N provides a relevant description of the sway
of the body during the course of the protocol. In Figure 1 we display the trajectories C1:N
corresponding to protocol 1 (left plot) and protocol 2 (right plot) as completed by a single
hemiplegic subject. Figure 1 confirms the intuition that the subject’s postural sway is not
necessarily instantaneously affected by the start and end of perturbations.
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Figure 1: Two trajectories C1:N respectively corresponding to protocol 1 (left) and protocol 2
(right) undergone by a single hemiplegic subject.

2.2 Data modeling
We model the trajectory C1:N as the observation at discrete times of a stochastic process
(C(t))t∈[δ,Nδ] characterized by a stochastic differential equation.

We model the effects of the perturbations by possible changes in the volatility and drift
functions at two unknown change points. In order to account for the fact that subjects
react differently, we also assume that the change points differ among subjects. We denote
by (T1, T2) the change points of a trajectory, with T0 = τ0δ = δ < T1 = τ1δ < T2 = τ2δ <
T3 = 70 (τ0 = 1, τ1 and τ2 are integers). We assume that there exist two functions a, b, and
two parameters (φ1, φ2, φ3) and (σ1, σ2, σ3) such that, for all t ∈ [Tk−1, Tk[ and k = 1, 2, 3,{

dC(t) = a(C(t), φk)dt+ b(C(t), σk)dW (t)
C(Tk−1) = Cτk−1 ,

where (W (t))t∈[δ,Nδ] is a standard Wiener process.
We now specify the parametric forms of the volatility and drift functions a and b.

Because Figure 1 indicates that the variance of C1:N is not constant over time and because,
in addition, the process C1:N takes positive values, we decide to rely on the classical Cox-
Ingersoll-Ross (CIR) process (Kloeden and Platen, 1992), by setting a(x, φ = (λ, µ)) =
λ(µ− x) and b(x, σ) = σ

√
x (for all x ≥ 0).

In summary, we model the trajectory C1:N as the observation at discrete times of the
stochastic process (C(t))t∈[δ,Nδ] characterized, for t ∈ [Tk−1, Tk[ (k = 1, 2, 3), by dC(t) = λk(µk − C(t))dt+ σk

√
C(t)dW (t)

C(Tk−1) = Cτk−1 ,
(1)

where the initial condition C(Tk−1) is the observation Cτk−1 at time Tk−1, λk, µk and σk are
positive constants. It is known that if 2µkλk/σ2

k ≥ 1 then the process remains positive and
admits a stationary distribution. This distribution is a Gamma distribution with shape
parameter 2µkλk/σ2

k and scale parameter σ2
k/2λk (Kloeden and Platen, 1992). Therefore,
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the complete parameter writes as (τ1, τ2, θ1, θ2, θ3) with θk = (λk, µk, σk) for k = 1, 2, 3. We
assume that the changes necessarily affect the drift parameter through a change in µ, or put
in other words that µ1 6= µ2 and µ2 6= µ3. Changes can also affect the other parameters.

3 Inference
In this section we address the inference of the parameter (τ1, τ2, θ1, θ2, θ3). We first describe
the estimating procedure in Section 3.1, then we present its results on the real dataset
in Section 3.2, and finally we summarize a simulation study performed to evaluate its
performances in Section 3.3.

3.1 A two-step estimating procedure
We define a two-step estimating procedure: we first estimate the sequence of change points,
then we estimate (θ1, θ2, θ3) on each interval characterized by the previously estimated
change points.

A great variety of methods have been proposed for the estimation of change points (Bas-
seville and Nikiforov, 1993; Bai, 1994; Cuenod et al., 2011; Lavielle, 2005; Bardet et al.,
2012, among many others). We choose to adopt a popular approach originally proposed
by Bai (1994). The approach relies on a least-squares criterion and aims at detecting
change points which affect the mean of a linear process. The estimator (τ̂1, τ̂2) of the
sequence of change points (τ1, τ2) is defined as:

(τ̂1, τ̂2) = arg min
(τ1,τ2)

1
N

3∑
k=1

τk−1∑
i=τk−1

(
Ci − C̄k

)2
,

where C̄k is the arithmetic mean of Cτk−1:τk−1. This makes sense because if (C(t))t∈[Tk−1,Tk[
reaches a stationary regime then the random variables Cτk

, . . . , Cτk−1 are identically dis-
tributed from a stationary distribution whose mean parameter is µk.

Set k ∈ {1, 2, 3}. On each interval [T̂k−1, T̂k[= [τ̂1δ, τ̂2δ[, we estimate θk by minimizing
a contrast function which is based on the log-likelihood of the approximated discrete-times
Euler-Marumaya’s scheme (Kessler, 1997, for instance). The latter scheme with step size
δ guarantees that, for i = τ̂k−1, . . . , τ̂k − 1,

Ci+1 ≈ (1− δλk)Ci + δλkµk + σk
√
δ
√
Ci ηi+1, (2)

where (ηi)τ̂k−1<i≤τ̂k
is a sequence of independent random variables with standard Gaussian

distribution. By (2), it is convenient to consider the following equivalent parametrization:
θk = (θ1,k, θ2,k, θ3,k), with θ1,k = (1 − δλk), θ2,k = δλkµk and θ3,k = σk

√
δ. The estimator

θ̂k of parameter θk is defined as:

θ̂k = arg min
θk∈R3

+

τ̂k−1∑
i=τ̂k−1

(Ci+1 − θ1,kCi − θ2,k)2

Ciθ2
3,k

+ (τ̂k − τ̂k−1) log(θ2
3,k),
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which actually yields closed-form expressions:

θ̂1,k =
(τ̂k − τ̂k−1)∑ Ci+1

Ci
−∑Ci+1

∑ 1
Ci

(τ̂k − τ̂k−1)2 −∑Ci
∑ 1

Ci

,

θ̂2,k =
∑
Ci+1 − θ̂1,k

∑
Ci

(τ̂k − τ̂k−1) ,

θ̂3,k =

√√√√√∑ (Ci+1−θ̂1,kCi−θ̂2,k)2)
Ci

τ̂k − τ̂k−1

(the sums in the above expressions range over [τ̂k−1, τ̂k − 1]).
Under mild conditions, and if the process reaches the stationary regime, then (τ̂1, τ̂2)

consistently estimates (τ1, τ2) (see Lavielle, 1999; Lavielle and Ludeña, 2000, for instance).
Furthermore, if the true change points (τ1, τ2) are known then, under another set of mild
conditions, the estimators (θ̂1, θ̂2, θ̂3) consistently estimate (θ1, θ2, θ3) (see Kessler, 1997,
Theorem 1). To the best of our knowledge, there is no satisfactory result in the literature
regarding the joint estimation of the change points (τ1, τ2) and the parameter (θ1, θ2, θ3).

3.2 Application to the real dataset
We undertake a simulation study of the properties of the two-step estimating procedure
presented in the previous section, and summarize its results in the next section. Because
we characterize our simulation scheme based on the results obtained when applying the
latter procedure to the real dataset, we first present them here.

For each subject and protocol, we estimate (τ1, τ2, θ1, θ2, θ3) from the corresponding
(real) observed trajectory. The results pertaining to the estimation of (τ1, τ2) are summa-
rized in Table 2 (the mean and standard deviation of the estimates (τ̂1δ, τ̂2δ) computed
over each group of subjects are provided) and illustrated in Figure 2. Results pertaining to
the estimation of (θ1, θ2, θ3) are summarized in Table 5 (the mean and standard deviation
of the estimates (θ̂1, θ̂2, θ̂3) computed over each group of subjects are provided).

protocol 1 protocol 2
hemiplegic subjects 18.4 (7.4) 43.3 (12.2) 16.8 (1.0) 44.5 (12.4)
vestibular subjects 20.9 (5.4) 49.9 (6.5) 19.5 (6.9) 50.3 (5.3)

normal subjects 21.4 (8.2) 47.5 (10.7) 22.4 (8.1) 51.4 (2.7)

Table 2: For each subject and protocol, we estimate the change points (τ1, τ2). For each group
of subjects, we compute over the group the mean and standard deviation (given between paren-
theses) of the estimates (τ̂1δ, τ̂2δ).

Three features of Table 2 are worth commenting on. First, one notes that there is
no significant difference across groups of subjects (however, the means of τ̂1δ and τ̂2δ are
slightly shifted to the left in the group of hemiplegic subjects relative to the two other
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Figure 2: Representing the estimated change points (τ̂1δ, τ̂2δ) (vertical lines) as obtained based
on the two (real) observed trajectories of the same single hemiplegic subject as in Figure 1 (left:
protocol 1, right: protocol 2).

groups). Second, the means of τ̂1δ are close to the time of start of perturbations for all
groups and protocols. As for the means of τ̂2δ, they are close to the time of end for
vestibular and normal subjects and both protocols. In hemiplegic subjects, one notes that
the standard deviations are quite large and that the mean of τ̂2δ is shifted to the left
relative to the time of end of perturbations. This is due to the fact that for each protocol,
30% of hemiplegic subjects feature an estimator τ̂2δ close to 30 seconds. Third, judging
by the standard deviations, all hemiplegic subjects tend to react similarly by adjusting
quickly to the perturbations undergone in protocol 2. Likewise, all normal subjects tend
to react similarly by adjusting quickly to the end of perturbations undergone in protocol 2.
In protocol 1, the large standard deviation associated to the mean value of τ̂2δ computed
over the group of normal subjects reflects the fact that 20% of these subjects feature an
estimator τ̂2δ close to 30 seconds.

Regarding Table 5, we consider in turn the parameters θ1,k (k = 1, 2, 3), θ2,k (k = 1, 2, 3)
and θ3,k (k = 1, 2, 3). First, the estimates θ̂1,k (k = 1, 2, 3) behave similarly across groups of
subjects, protocols and intervals [T̂k−1, T̂k[ (k = 1, 2, 3). On the contrary, the estimates of
θ̂2,k (k = 1, 2, 3) behave quite differently across groups of subjects, protocols and intervals
[T̂k−1, T̂k[ (k = 1, 2, 3). This is a promising feature for the sake of classifying subjects by
group, which is our main problem at stake. As for the estimates θ̂3,k (k = 1, 2, 3), for any
given group of subjects and protocol, they behave quite similarly. However, for protocol 2,
it seems that the estimates θ̂3,k (k = 1, 2, 3) in normal subjects behave differently from
their counterpart in hemiplegic or vestibular subjects. This is another promising feature.

In conclusion, and for the sake of illustrating our modeling and two-step estimating
procedure,

(i) we arbitrarily choose a hemiplegic subject and a normal subject;

(ii) for each of them, we retrieve the estimator (τ̂1, τ̂2, θ̂1, θ̂2, θ̂3) of (τ1, τ2, θ1, θ2, θ3) based
on the trajectory obtained under protocol 2;
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(iii) for each of them, we simulate a trajectory under (τ̂1, τ̂2, θ̂1, θ̂2, θ̂3) (we refer to Sec-
tion 3.3 for the specifics of the simulation);

(iv) we represent on the same plots the real and simulated trajectories, see Figure 3.

It appears that the real and simulated trajectories are relatively resembling.

Figure 3: In each plot (left: hemiplegic subject, right: normal subject), we represent the real
(solid line) and simulated (dotted line) trajectories, where the parameters of the simulation are
derived from the real trajectory by applying our two-step estimating procedure.

3.3 Simulation study
We carry out a simulation study to evaluate the performances of the two-step estimating
procedure presented in Section 3.1. We directly simulate the trajectory C1:N . Specifically,

(i) we set (T1, T2) = (τ1δ, τ2δ) = (15, 50);

(ii) we rely on the Euler scheme (2) with step size δ/10 to approximate the sampling of
(C(t))t∈[δ,Nδ] from the distribution characterized by (1) where, for each k ∈ {1, 2, 3},
θk equals the mean of its 22 estimates based on the 22 real trajectories associated to
the 22 hemiplegic subjects and protocol 1 (see Section 3.2 and Table 5);

(iii) we conclude by sub-sampling (C(t))t∈[δ,Nδ] to derive C1:N .

We sample B = 100 independent copies of C1:N . For each copy we estimate the param-
eters (τ1, τ2, θ1, θ2, θ3). The means and standard deviations of the estimated change points
and parameters computed over the 100 independent replications are reported in Table 3.

Three comments on Table 3 are in order. First, regarding the estimation of (τ1, τ2), we
note that the means of the estimated change points are very close to their respective true
values. Moreover, the standard deviations are small. Second, regarding the estimation of
(θ1,k, θ3,k) (k = 1, 2, 3), we note that the means of the estimates of θ1,k and θ3,k are very
close to their respective true values and that the standard deviations are small. Third,
regarding the estimation of θ2,k (k = 1, 2, 3), we emphasize that the means are quite apart
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k = 1 k = 2 k = 3
θ̂1,k 0.975 (0.010) 0.975 (0.009) 0.973 (0.006)
θ1,k 0.970 0.980 0.980

θ̂2,k 0.114 (0.033) 0.473 (0.121) 0.214 (0.076)
θ2,k 0.110 0.390 0.160

θ̂2
3,k 0.078 (0.004) 0.058 (0.002) 0.060 (0.003)
θ2

3,k 0.080 0.060 0.060
τ̂1δ 16.2 (0.9) τ̂2δ 50.8 (2.1)
τ1δ 15.0 τ2δ 50.0

Table 3: For each of the B = 100 independently simulated datasets, we derive the estimates
(τ̂1δ, τ̂2δ, θ̂1, θ̂2, θ̂3). We report here the true values and means and standard deviations (between
parentheses) computed over the B = 100 replications.

from their respective true values. Moreover, the standard deviations are not small. Overall
this indicates a poorer estimation of θ2,k (k = 1, 2, 3) than of (θ1,k, θ3,k) (k = 1, 2, 3). This
is probably due to the fact that the time intervals [Tk−1, Tk[ (k = 1, 2, 3) are relatively
narrow given the value of δ.

4 Classification
In Section 4.2 we describe our classification procedure of subjects as hemiplegic, vestibular
or normal based on their trajectories obtained under the two protocols. It is built upon
the previous section. Indeed, it does not rely on the trajectories themselves but rather on
their finite-dimensional summary measures whose definition, given in Section 4.1, depends
on the results of our two-step estimation procedure.

4.1 Summary measures
Most classification procedures based on trajectories involve a preliminary step of dimension
reduction where the high-dimensional trajectories are summarized into a low-dimensional
summary measure (Biau et al., 2005; Ramsay and Silverman, 2005). Here we build a tai-
lored finite-dimensional summary measure of every trajectory which relies on the estimates
(τ̂1, τ̂2, θ̂1, θ̂2, θ̂3) derived from it by applying our two-step estimating procedure.

We argue in Section 3.2 that, overall, τ̂1, τ̂2, θ̂2,k and θ̂3,k (k = 1, 2, 3) may be relevant
for the sake of classifying subjects as hemiplegic, vestibular or normal. Because the ratio
θ̂2,k/(1 − θ̂1,k) = µ̂k is easier to interpret than θ̂2,k (and since θ̂1,k varies very little across
subjects and protocols) and because θ̂3,k = σ̂k

√
δ, we choose to define our finite-dimensional

summary measure as (τ̂1, τ̂2, µ̂1, µ̂2, µ̂3, σ̂1, σ̂2, σ̂3). Hereafter we denote X1 the latter vector
derived from the trajectory associated to protocol 1 andX2 that derived from the trajectory
associated to protocol 2.
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4.2 Classification procedure
We actually construct two classifiers, φ̂1 and φ̂2, to classify subjects as hemiplegic, vestibu-
lar or normal based on either X1 or X2 for φ̂1, and on both (X1, X2) for φ̂2.

The generic observed data structure associated to a given subject is (X1, X2, Y ), where
Y ∈ {1, 2, 3} indicates the subject’s group (with convention Y = 1 for hemiplegic, Y = 2
for vestibular, and Y = 3 for normal). We denote P0 the true distribution of (X1, X2, Y ).

Let S be the set of all classifiers based on X = (X1, X2). The misclassification risk
associated to S ∈ S is R(P0)(S) = EP0 [1{S(X) 6= Y }]. Denote R∗ = minS∈S R(P0)(S)
its minimum. It is achieved at the Bayes classifier S∗ ∈ S, characterized by S∗(X) =
arg maxy∈{1,2,3} P0 (Y = y|X). For j = 1, 2, we also introduce the Bayes classifier S∗j ∈ S
which relies only on Xj: S∗j(X) = arg maxy∈{1,2,3} P0(Y = y|Xj).

Our objective is to construct φ̂1 and φ̂2 which respectively estimate the better classifier
among S1∗ and S2∗ (i.e., arg minS1∗,S2∗ R(P0)(Sj∗)) and S∗. We choose to rely on the popular
methodology of random forests (Breiman, 2001), which proved powerful in a variety of
applications. This is made easy thanks to the R package randomForest (we used the
default tuning). The construction of the estimators Ŝ1∗ and Ŝ2∗ of S1∗ and S2∗, and that
of φ̂2 is straightforward. We derive φ̂1 from (Ŝ1∗, Ŝ2∗) by V -fold cross-validation, with
V = 10.

5 Application
This section is devoted to the application of our classification procedure to the real dataset.
In Section 5.1 we apply it exactly as it is described in Section 4. In Section 5.2, we
consider a slightly enhanced version, whose performances are better. We conclude on some
perspectives in Section 5.3.

5.1 Performance of the classification procedure
We evaluate the performances of the classification procedure by the leave-one-out rule. We
acknowledge that it may result in overly optimistic error rates. Resorting to the leave-
one-out rule is notably motivated by the relatively small sample size of our dataset. The
results are reported in Table 4 (second row).

With its leave-one-out performance equal to 74%, the best classifier is φ̂1, which involves
one protocol only. For curiosity, we also evaluate the performances of φ̂1 and φ̂2 when
systematically replacing (τ̂1δ, τ̂2δ) with (15, 50) (the start and end times of the perturbation
phase). We report the results in Table 4 (first row). Quite satisfactorily, we note that both
φ̂1 and φ̂2 are not as good as the original versions: estimating the change points proves
very relevant.
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5.2 Performance of an extended classification procedure
It is tempting to extend our classification procedure by simply extending the definition
of the summary measure which is at its core. Following Chambaz and Denis (2012), we
merely substitute (X1, U1) and (X2, U2) for X1 and X2 with U j (j = 1, 2) derived from
C1:N as U j = (C̄+

1 − C̄−1 , C̄−2 − C̄+
1 , C̄

+
2 − C̄−2 ) where

C̄−1 = δ

5
∑

i∈[10/δ,15/δ[
Ci, C̄+

1 = δ

5
∑

i∈]15/δ,20/δ]
Ci,

C̄−2 = δ

5
∑

i∈[45/δ,50/δ[
Ci, C̄+

2 = δ

5
∑

i∈]50/δ,55/δ]
Ci.

We refer to (Chambaz and Denis, 2012) for a justification. Then we apply the extended
classification procedure and report its performances in Table 4 (third row).

With its leave-one-out performance equal to 79%, the best classifier is φ̂2, which both
extended summary measures (X1, U1) and (X2, U2). This is slightly better than the best
performance obtained in Section 5.1: enriching the summary measures seems to provide
relevant additional information for the sake of classifying subjects as hemiplegic, vestibular
or normal.

performances
φ̂1 φ̂2

4.2 with (τ̂1δ, τ̂2δ) = (15, 50) 61% 64%
procedure of Section 4.2 74% 68%

5.2 76% 79%

Table 4: Leave-one-out performances of φ̂1 and φ̂2 on the real dataset for the sake of classifying
subjects as hemiplegic, vestibular or normal. First row: classification procedure of Section 4.2
when imposing (τ̂1δ, τ̂2δ) = (15, 50). Second row: classification procedure of Section 4.2. Third
row: extended classification procedure of Section 5.2.

5.3 Perspectives
We address the statistical challenge of classifying subjects as hemiplegic, vestibular or
normal based on complex trajectories obtained through two experimental protocols which
were designed to evaluate potential deficits in postural control. The classification proce-
dure involves a dimension reduction step where the complex trajectories are summarized
by finite-dimensional summary measures based on a stochastic process model for a real-
valued trajectory. This allows us to retrieve from the trajectories information relative to
their temporal dynamic. A leave-one-out evaluation yields a 79% performance of correct
classification for a total of n = 70 subjects, with 22 hemiplegic (31%), 16 vestibular (23%)
and 32 normal (46%) subjects.
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In future work, we will extend the classification procedure by introducing finite-dimen-
sional summary measures based on a stochastic process model for the original trajectories
in R4. We will also draw advantage from our good understanding of the classification
problem to tackle the closely related next statistical challenge of clustering our subjects in
terms of postural style.
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