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Abstract

The e�ective behaviour of linear viscoelastic heterogeneous material can be derived from the
correspondence principle and the inversion of the obtained symbolic homogenized behav-
ior. Various numerical methods were proposed to carry out this inversion. The collocation
method, widely used, within this framework rests on a discretization of the characteristic
spectrum in a sum of discrete lines for which it is necessary to determine the intensities and
the positions by the minimization of the di�erence between the exact temporal function and
its approximation. The classical method is based on a priori choice of the lines positions and
on the optimization of their intensities. It is shown here that the combined optimization
of the positions and the (positive) intensities lead to a minimization problem under con-
straints. In the simple case of an incompressible isotropic two-phase material, this method is
confronted with the analytical solutions of the e�ective relaxation function and the classical
collocation method. In the case of a continuous spectrum or a spectrum made up of a whole
of discrete lines, the proposed method improves the predictions of the classical approach.
For the various cases considered (ratio of the phases relaxation times, volume fraction of
the components), a low number of the collocation points, even with the classical approach,
lead to a good agreement with the analytical solution. The pro�t increases with the chosen
interval time for the distribution of the collocation points especially for a spectrum made up
of a whole of discrete lines.
Keywords: Viscoelasticity; Homogenization; Laplace transform; Collocation method;
Optimization

1. Introduction

To obtain the e�ective properties of non-ageing linear viscoelastic heterogeneous media, it
is useful to apply the Laplace-Carson transform or the so-called correspondence principle
[1] which helps to transform the linear viscoelastic behaviour into a symbolic elastic one for
which it is possible to apply the classical linear homogenization techniques. The viscoelastic
e�ective properties are then deduced by the inversion of the Laplace-Carson transform.
Apart some simple cases, for which it is possible to carry out "exactly" this inversion by
calculating the integral of Bromwich de�ned in the complex plane by f(t) = 1
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[2], this inversion is usually performed numerically in an approached way. The majority of
the work carried out within this framework rests on a development in series of the required
temporal functions. We can in particular quote the widely used Prony-Dirichlet series or
the collocation method developed by Schapery [8] and its extensions such as the multidata
method proposed by Cost and Becker [5]. From a practical point of view, these methods rest
on a preliminary choice of relaxation times (delays) and require the resolution of a linear
system to determine the coe�cients of the series approaching the relaxation (creep) func-
tion. Nevertheless, they do not impose conditions on these coe�cients whereas a physical
description of the sti�ness (compliance) viscoelastic modulus requires positive coe�cients.
Various methods were proposed to overcome this di�culty [6, 4], but they are always based
on a preliminary adequate choice of the relaxation (creep) times.
This paper deals with the evaluation of the collocation method, used in homogenization [7],
by considering a more general approach to approximate e�ective relaxation or creep func-
tion. To this end, we recall �rstly the approximation of viscoelastic sti�ness and compliance
modulus by the Dirichlet series and we present the implemented procedure allowing to �t as
well as possible the reference function. To assess the e�ciency of this method, we consider
then the case of an incompressible isotropic two-phase material for which analytical expres-
sions of the e�ective behavior are available. This comparison enables especially to discuss
the cases of relaxation functions with continuum spectra or made up of discrete lines and
their consequence on the improved procedure.

2. Principle of the improved collocation method

According to the principle of superposition of Boltzmann, the local behavior in heterogeneous
materials composed of linear viscoelastic constituents without ageing is governed by the
following law:

�(t) =
Z t

0
C(t� �)d"(�) or "(t) =

Z t

0
S(t� �)d�(�) (1)

where C(t) is the tensor of viscoelastic modulus (i.e. relaxation function) and S(t) is the
tensor of viscoelastic compliances (i.e. the creep function). Based on the thermodynamics
of the irreversible processes, Biot [3] showed that in the general case the linear viscoelastic
compliance tensor reads:

S(t) = Se + Svt+
Z +1

0
J(�)(1� e�t=� )d� (2)

where J(t) is the spectrum of creep (or delay) of the material, Se and Sv are the tensors of
the elastic and viscous compliances characterizing the material's behavior, respectively, at
t = 0 and t = +1. The tensor of viscoelastic modulus is written:

C(t) =
Z +1

0
G(�)e�t=�d� (3)

where G(t) is the spectrum of relaxation of the material. Each characteristic spectrum, a
priori unknown, is approached by a sum of discrete lines positioned at n relaxation times or
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relaxation delays �r. The relaxation function (3), as well as the transient part of the creep
function S = S(t) � Se � Svt are thus approached by their expansion as Prony series as
follows:

C�(t) =
nX
r=1

Gre�t=�r ; S�(t) =
nX
r=1

Jr(1� e�t=�r) (4)

where Gr and Jr are the intensities of the functions C�(t) and S�(t), respectively.
The determination of the coe�cients and relaxation times of the transient series relies on
the minimization of the quadratic error E evaluated between the exact and approached
functions. For the relaxation function, E reads:

E =
Z +1

0
[C(t)� C�(t)]2dt (5)

whose minimization (@E=@Gr = 0 and @E=@�r = 0) leads to:

Ĉ(pr) = Ĉ�(pr) and
dĈ(p)
dp
jpr =

dĈ�
dp
jpr where pr = 1=�r;8 r = 1; :::; n (6)

:̂ denotes the Laplace transform. Substituting C� by its expression (4)-(a) leads to the
following system:

Ĉ�(pr) =
nX
i=1

Gi
1

pi + pr
and

dĈ�(p)
dp

jpr = �
nX
i=1

Gi
1

(pi + pr)2 8 r = 1; :::; n (7)

For a �xed number of terms of the the Dirichlet series, the best approximation of the exact
function is thus obtained when the transforms of Laplace and their derivative are equal at n
points pr. From a practical point of view, it is thus necessary to know the Laplace transform,
as well as the derivative of this transform of the original temporal function at the various
points of collocation. It is worth noting that the classical collocation method, resting on a
preliminary choice of the points pr, corresponds to the �rst equality (7)-(a) which de�nes a
linear system allowing to determine the coe�cients. For the improved collocation method,
the obtained two equalities de�ne a nonlinear system of 2n equations (for each component
of the viscoelastic modulus tensor) with 2n unknown variables. In addition, it is necessary
to introduce the following constraints for its resolution:

� The coe�cents Gr must be positive,

� The collocation times �r must be in the interval [�min; �max],

� The relaxation function must be equal to the elastic modulus at the instant t = 0:

The nonlinear system can then be written as a minimization problem under constraints:8<: minGr;�r

�Pn
r=1

�
Ĉ(pr)� Ĉ�(pr)

�2
+
Pn

r=1

�
dĈ(p)
dp jpr � dĈ�(p)

dp jpr
�2
�

where Gr � 0; �min � �r � �max and
Pn

r=1Gr � Ce = 0
(8)
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where Ce is the elastic modulus of the considered material. In a same manner, it is possible
to de�ne a minimization problem associated to the transient part of the creep function
S. The former takes similar form than (8) but without the constraint on the behavior at
t = 0. In this work we will focus only on the relaxation function. To solve the minimization
problem (8), we implement the algorithm Shor (SolvOpt) which allows the optimization of
non-smooth functions (case of a problem under constraints, for example).

3. Illustrative example: case of a two-phase composite

In order to evaluate the relevance of the numerical procedure of inversion proposed above
and for the sake of simplicity, we consider in the following an isotropic material whose
components obey an isotropic incompressible Maxwellian behaviour. The local behaviour of
the phase (i) is then described by the following compliance and sti�ness tensors:

Si(t) = (me
i +mv

i t)K and C(t) = 2�eie
�t=�iK +1J where �i = me

i=m
v
i ; 2�ei (9)

where J and K are the spherical and deviatoric isotropic projectors, respectively. The scalar
constants me

i and mv
i are, respectively, the elastic and viscous shear compliances of phase (i),

�ei is the elastic shear modulus and �i = me
i=mv

i are the relaxation times characterizing the
spectrum of the phase (i). The e�ective behavior of this composite is thus entirely de�ned
by the scalar function ~�(t).
Then applying the Laplace-Carson transform, the local behavior (1) becomes a symbolic elas-
tic law characterized by the symbolic local shear modulus �̂�i (p) = p=[2me

i (p + 1=�i)]. The
e�ective symbolic shear modulus can therefore be obtained evaluated using one of the avail-
able linear homogenization schemes such as the Mori-Tanaka or the self-consistent models.
The expression of the shear modulus ~�(t) is then obtained by the inversion of the Laplace-
Carson transform of the symbolic result.
According to the Mori-Tanaka model, the analytical expression of the e�ective shear modulus
reads [9]:

~�MT (t) =
be

2avmv
1(�1 � � 0)

��
1
�
� 1
�1

�
e�t=�1 �

�
1
�
� 1
� 0
�
e�t=� 0

�
(10)

where 2 denotes the inclusion phase, � 0 = �1(2c1 + (5 � 2c1) �2
me1=m

v
2
)(2c1 + (5 � 2c1) �1

me1=m
v
2
),

av = 5mv
2 � 2c1(mv

2 �mv
1), be = 5me

1 + 3c1(me
2�me

1) and ci the volume fraction of the phase
(i). According to this model, the spectrum of the relaxation function is thus composed of
two discrete lines.
For the self-consistent model, Beurthey and Zaoui [2] showed that the spectrum of relaxation
of the e�ective shear modulus consists of two discrete lines and a bounded continuous part
of the form

GAC(�) � �1�2p
�1�2

p
(� � �1)(�2 � �)

�(� � �1)(�2 � �)
(11)

as shown for example in �gure (1) where �1 and �2 are the bounds of the interval.
More details about the explicit expression of the shear modulus are given in [2]. In this work
the integral expression of the shear modulus (11) was evaluated numerically. The result
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Figure 1: Relaxation spectra derived from the classical self-consistent model in the case: c2 = 0:5;mv
1 =

1;mv
2 = 10; �1 = 1; �2 = 10 as shown in [2]

derived from the inversion method using the collocation method can then be confronted to
the above quoted analytical results which di�er mainly by the fact that the self-consistent
model implies a continuous spectrum of relaxation.

4. Results and discussion

The "optimized" collocation method proposed in this paper is compared to the classical
collocation method relying on a preliminary choice of the relaxation times and to the exact
results provided by the self-consistent and Mori-Tanaka models for the relaxation function as
shown on �gures (2)-(a)-(b) and �gures (2)-(c)-(d), respectively. For �gures (2)-(a) and (c),
the relaxation times �r (r = 1; :::; n) characteristics of the collocation method are distributed
in an interval quali�ed to be "minimal" [�min; �max] = [min(�i);max(�i)] where �i are the
relaxation times characteristics of the phase (i). In �gures (b) and (d) the relaxation times
of the collocation method belong to an interval wider than the "minimal" interval.
For relaxation times in the "minimal" interval, the results show that for a low number of
points (n � 3) the classical collocation method and its "optimized" version provides results
in well agreement with the analytical solution characterized either by a continuous spectrum
(�gure (2)-(a)) or a discrete spectrum (�gure (2)-(c)). For relaxation times distributed in a
wide interval, the "optimized" version of the collocation method considering a low number
of points (n � 8) improves the results of its classical version.
The interest of the "optimized" collocation method increases if the relaxation function is
characterized by a spectrum made up of discrete lines. For a wide interval and with a
high number of points (n � 20) the classical collocation method provides estimates in good
agreement with the exact solution. In opposition, for a low number of points, this method
can provide negative estimates as shown on �gure (2)-(d).
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Figure 2: Relaxation functions evaluated by the improved and classical collocation methods compared to the
exact results for a two-phase material according to the Mori-Tanaka scheme (a-b) in the case c2 = 0:5;me

1 =
me

2 = 1; �2=�1 = 100 and to the self-consistent scheme (c-d) in the case c2 = 0:5;me
1 = me

2 = 1; �2=�1 = 10.
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5. Conclusion

The combined optimization of the positions and the (positive) intensities of the Prony's serie
approaching the exact relaxation (or creep) function improves the results of the classical
collocation method with a low number of collocation points. The e�ciency of the proposed
method increases especially for the case of relaxation (creep) functions with a a spectrum
made up of discrete lines. Such idea can be extended for other existent numerical methods
allowing the inversion of the Laplace-Carson transform.
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