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This paper concerns with the problem of determining an optimal control on the dividend and investment policy of a firm. We allow the company to make an investment by increasing its outstanding indebtedness, which would impact its capital structure and risk profile, thus resulting in higher interest rate debts. We formulate this problem as a mixed singular and switching control problem and use a viscosity solution approach combined with the smooth-fit property to get qualitative descriptions of the solution. We further enrich our studies with a complete resolution of the problem in the tworegime case.

Introduction

The theory of optimal stochastic control problem, developed in the seventies, has over the recent years once again drawn a significance of interest, especially from the applied mathematics community with the main focus on its applications in a variety of fields including economics and finance. For instance, the use of powerful tools developed in stochastic control theory has provided new approaches and sometime the first mathematical approaches in solving problems arising from corporate finance. It is mainly about finding the best optimal decision strategy for managers whose firms operate under uncertain environment whether it is financial or operational, see [START_REF] Brennan | Evaluating natural resource extraction[END_REF] and [START_REF] Dixit | Investment under uncertainty[END_REF]. A number of corporate finance problems have been studied, or at least revisited, with this optimal stochastic control approach.

In this paper, we consider the problem of determining the optimal control on the dividend and investment policy of a firm. There are a number of research on this corporate finance problem. In [START_REF] Décamps | Optimal dividend policy and growth option[END_REF], Décamps and Villeneuve study the interactions between dividend policy and irreversible investment decision in a growth opportunity and under uncertainty. We may equally refer to [START_REF] Vath | A mixed singular/switching control problem for a dividend policy with reversible technology investment[END_REF] for an extension of this study, where the authors relax the irreversible feature of the growth opportunity. In other words, they consider a firm with a technology in place that has the opportunity to invest in a new technology that increases its profitability. The firm self-finances the opportunity cost on its cash reserve. Once installed, the manager can decide to return back to the old technology by receiving some cash compensation.

As in a large part of the literature in corporate finance, the above papers assume that the firm cash reserve follows a drifted Brownian motion. They also assume that the firm does not have the ability to raise any debt for its investment as it holds no debt in its balance sheet. In our study, as in the Merton model, we consider that firm value follows a geometric Brownian process and more importantly we consider that the firm carries a debt obligation in its balance sheet. However, as in most studies, we still assume that the firm assets is highly liquid and may be assimilated to cash equivalents or cash reserve. We allow the company to make investment and finance it through debt issuance/raising, which would impact its capital structure and risk profile. This debt financing results therefore in higher interest rate on the firm's outstanding debts.

Furthermore, we consider that the manager of the firm works in the interest of the shareholders, but only to a certain extent. Indeed, in the objective function, we introduce a penalty cost P and assume that the manager does not completely try to maximize the shareholders' value since it applies a penalty cost in the case of bankruptcy. This penalty cost could represent, for instance, an estimated cost of the negative image upon his/her own reputation due to the bankruptcy under his management leadership. Mathematically, we formulate this problem as a combined singular and multiple-regime switching control problem. Each regime corresponds to a level of debt obligation held by the firm.

In terms of literature, there are many research papers on singular control problems as well as on optimal switching control problems. One of the first corporate finance problems using singular stochastic control theory was the study of the optimal dividend strategy, see for instance [START_REF] Choulli | A diffusion model for optimal dividend distribution for a company with constraints on risk control[END_REF] and [START_REF] Jeanblanc | Optimization of the flow of dividends[END_REF]. These two papers focus on the study of a singular stochastic control problem arising from the research on optimal dividend policy for a firm whose cash reserve follows a diffusion model. Amongst singular stochastic control problems, we may equally refer to problems arising from mathematical biology, in particular studies on optimal harvesting strategies, see [START_REF] Lungu | Optimal harvesting from a population in a stochastic crowded environment[END_REF] and [START_REF] Yang | Optimal singular stochastic problem on harvesting system[END_REF].

In the study of optimal switching control problems, a variety of problems are investigated, including problems on management of power station [START_REF] Carmona | Valuation of Energy Storage: An Optimal Switching Approach[END_REF], [START_REF] Hamadène | On the Starting and Stopping Problem: Application in reversible investments[END_REF], resource extraction [START_REF] Brekke | Optimal switching in an economic activity under uncertainty[END_REF], firm investment [START_REF] Duckworth | A model for investment decisions with switching costs[END_REF], marketing strategy [START_REF] Lon | A model for optimally advertising and launching a product[END_REF], and optimal trading strategies [START_REF] Dai | Trend Following Trading under a Regime Switching Model[END_REF], [START_REF] Zervos | Buy-low and sell-high investment strategies[END_REF]. Other related works on optimal control switching problems include [START_REF] Bayraktar | On the One-Dimensional Optimal Switching Problem[END_REF] and [START_REF] Vath | Explicit solution to an optimal switching problem in the two-regime case[END_REF], where the authors employ respectively optimal stopping theory and viscosity techniques to explicitly solve their optimal two-regime switching problem on infinite horizon for one-dimensional diffusions. We may equally refer to [START_REF] Pham | Continuous-time Stochastic Control and Optimization with Financial Applications[END_REF], for an interesting overview of the area.

In the above studies, only problems involving the two-regime case are investigated. There are still too few studies on the multi-regime switching problems. The main additional feature in the multiple regime problems consists not only in determining the switching region as opposed to the continuation region, but also in identifying the optimal regime to where to switch. This additional feature sharply increases the complexity of the multi-regime switching problems. Recently, Djehiche, Hamadène and Popier [START_REF] Djehiche | A finite horizon optimal switching problem[END_REF], and Hu and Tang [START_REF] Hu | Multi-dimensional BSDE with oblique reflection and optimal switching[END_REF] have studied optimal multiple switching problems for general adapted processes by means of reflected BSDEs, and they are mainly concerned with the existence and uniqueness of solution to these reflected BSDEs. In [START_REF] Pham | Optimal switching over multiple regimes[END_REF], the authors investigated an optimal multiple switching problem on infinite horizon for a general one-dimensional diffusion and used the viscosity techniques to provide an explicit characterization of the switching regions showing when and where it is optimal to change the regime.

However, the studies that are most relevant to our problem are the one investigating combined singular and switching control problems. Recently an interesting connection between the singular and the switching problems was given by Guo and Tomecek [START_REF] Guo | Connections between singular control and optimal switching[END_REF]. In [START_REF] Vath | A mixed singular/switching control problem for a dividend policy with reversible technology investment[END_REF], the authors studied a problem which combines features of both optimal switching and singular control. They proved that the mixed problem can be decoupled in two pure optimal stopping and singular control problems and provided results which are of quasi-explicit nature. However, the switching part of this problem is limited to a two-regime problem.

In this paper, we combine the difficulties of the multiple switching problem [START_REF] Pham | Optimal switching over multiple regimes[END_REF] with those of the mixed singular and two-regime switching problem [START_REF] Vath | A mixed singular/switching control problem for a dividend policy with reversible technology investment[END_REF]. In other words, not only do we have to determine the three regions comprising the continuation, dividend and switching regions, but also, within the switching region, we have to identify the regime to where to switch. The latter feature considerably increases the complexity of our problem. In terms of mathematical approach, we characterize our value functions as unique viscosity solution to an associated system of variational inequalities. Furthermore, we use viscosity and uniqueness results combined with smooth-fit properties to determine the solutions of our HJB system. The results of our analysis take qualitatively different forms depending on the parameters values.

The plan of the paper is organized as follows. We define the model and formulate our stochastic control problem in the second section. In section 3, we characterize our problem as the unique viscosity solution to the associated HJB system and obtain some regularity properties, while, in section 4, we obtain qualitative description of our problem. Finally, in section 5, we further enrich our studies with a complete resolution of the problem in the two-regime case.

The model

We consider a firm whose value follows a process X. The firm also has the possibility to raise its debt level in order to satisfy its financial requirement such as investing in growth opportunities. It may equally pay down its debt.

We consider an admissible control strategy α = (Z t , (τ n ) n≥0 , (k n ) n≥0 ), where Z represents the dividend policy, the nondecreasing sequence of stopping times (τ n ) the switching regime time decisions, and (k n ), which are F τn -measurable valued in {1, ..., N }, the new value of debt regime at time t = τ n . Let denote the process X x,i,α as the enterprise value of the company with initial value of x and initially operating with a debt level D i and which follow the control strategy α. However, in order to reflect the fact that a firm also holds a significant amount of debt obligation either to financial institutions, inland revenues, suppliers or through corporate bonds, we assume that the firm debt level may never get to zero. We assume that the firm assets is cash-like, i.e. the manager may dispose of some part of the company assets and obtain its equivalent in cash. In other words, the process X could be seen as a cash-reserve process used in most papers on optimal dividend policy, see for instance [START_REF] Décamps | Optimal dividend policy and growth option[END_REF], [START_REF] Jeanblanc | Optimization of the flow of dividends[END_REF].

We assume that the cash-reserve process X x,i,α , denoted by X when there is no ambiguity and associated to a strategy α = (Z t , (τ n ) n≥0 , (k n ) n≥0 ), is governed by the following stochastic differential equation:

dX t = bX t dt -r It D It dt + σX t dW t -dZ t + dK t (2.1)
where

I t = n≥0 k n 1 τn≤t<τ n+1 , I 0 -= i k n ∈ I N := {1, ..., N } D j < D l , j < l, j, l ∈ I N (2.2)
r j < r l , j < l, j, l ∈ I N (2.
3) D i and r i represent respectively different levels of debt and their associated interest rate paid on those debts. Relations (2.2) and (2.3) assume that the level of risk of a firm uniquely depends on the level of its debt, i.e. the higher the debt level, the higher the interest rate that the firm has to pay. The process K t represents the cash-flow due to the change in the firm's indebtedness. More precisely,

K t = n≥0 D κ n+1 -D κn -g 1 τ n+1 ≤t (2.4)
where g represents the additional cost associated with the change of firm's level of debt. It could be seen as the fixed commission cost paid for bank services for arranging debt issuance or debt redemption. Mathematically, it prevents continuous switching of the debt level. We assume that g is small with respect to other quantities in the following way

∀(i, j) ∈ I N : i = j; 0 < g < min | (b -r i )D i -(b -r j )D j | b ; | D i -D j | . (2.5)
For a given control strategy α, the bankruptcy time is represented by the stopping time T α defined as

T α = inf{t ≥ 0, X x,i,α t ≤ D It }. (2.6)
When there is no ambiguity, we generally refer to T instead of T α for the bankruptcy time. We equally introduce a penalty cost or a liquidation cost P > 0, in the case of a holding company looking to liquidate one of its own affiliate or activity. In the case of the penalty, it mainly assumes that the manager does not completely try to maximize the shareholders' value since it applies a penalty cost in the case of bankruptcy. We therefore define the value functions which the manager actually optimizes as follows

v i (x) = sup α∈A E T - 0 e -ρt dZ t -P e -ρT , x ∈ R, i ∈ {1, ..., N }, (2.7) 
where A represents the set of admissible control strategies, and ρ the discount rate. The next step would be to compute the real value function u i of the shareholders. Indeed, once we obtain the optimal strategy, α * = (Z * t , (τ * n ) n≥0 , (k * n ) n≥0 ) of the above problem (2.7), then we may compute the real shareholders' value by following the strategy α * , as numerically illustrated in Figure 3 and4:

u i (x) = E α * T - 0 e -ρt dZ * t , x ∈ R, i ∈ {1, ..., N } (2.8)
Remark 2.1 If b > ρ, the value functions is infinite for any initial value of x > D i and any regime i. The proof is quite straightforward. We simply consider a sequence of strategy controls which consists in doing nothing up to time t k , where (t k ) k≥1 is strictly nondecreasing and goes to infinity when k goes to infinity, and then at t k , distribute X t k -D It k in dividend and allow the company to become bankrupt. We then need to notice that

lim k→∞ E e -ρt k X x t k = +∞.
For the rest of the paper, we now consider that the discount rate ρ is always bigger than the growth rate b.

Viscosity Characterization of the value functions

We first introduce some notations. We denote by R x,i the firm value in the absence of dividend distribution and the ability to change the level of debt, fixed at D i .

dR x,i t = [bR x,i t -r i D i ]dt + σR x,i t dW t , R x,i 0 = x (3.1)
The associated second order differential operator is denoted L i :

L i ϕ = [bx -r i D i ]ϕ (x) + 1 2 σ 2 x 2 ϕ (x) (3.2)
Using the dynamic programming principle, we obtain the associated system of variational inequalities satisfied by the value functions:

min -A i v i (x) , v i (x) -1 , v i (x) -max j =i v j (x + D j -D i -g) = 0, x > D i , i ∈ I N v i (D i ) = -P,
where the operator A i is defined by

A i φ = L i φ -ρφ.
We now state a standard first result for this system of PDE.

Proposition 3.1 Let (ϕ i ) i∈I N smooth enough on (D i , ∞) such that ϕ i (D + i ) := lim x↓D i ϕ i (x) ≥
-P , and

min -A i ϕ i (x) , ϕ i (x) -1, ϕ i (x) -max j =i ϕ j (x + D j -D i -g) ≥ 0, for x > D i , i ∈ I N
where we set by convention ϕ i (x) = -P for x < D i , then we have v i ≤ ϕ i , for all i ∈ I N .

Proof: Given an initial state-regime value

(x, i) ∈ (D i , ∞) × I N , take an arbitrary control α = (Z, (τ n ), (k n )) ∈ A, and set for m > 0, θ m,n = inf{t ≥ T ∧ τ n : X x,i,α t ≥ m or X x,i,α t ≤ D It + 1/m} ∞ a.
s. when m goes to infinity. Apply then Itô's formula to e -ρt ϕ kn (X x,i,α t ) between the stopping times T ∧ τ n and τ m,n+1

: = T ∧ τ n+1 ∧ θ m,n . Notice that for T ∧ τ n ≤ t < τ m,n+1 , X x,i
t stays in regime k n . Then, we have

e -ρτ m,n+1 ϕ kn (X x,i τ - m,n+1 ) = e -ρ(T ∧τn) ϕ kn (X x,i T ∧τn ) + τ m,n+1
T ∧τn

e -ρt (-ρϕ kn + L kn ϕ kn )(X x,i t )dt + τ m,n+1
T ∧τn

e -ρt σϕ kn (X x,i t )dW t - τ m,n+1
T ∧τn

e -ρt ϕ kn (X x,i t )dZ c t + T ∧τn≤t<τ m,n+1 e -ρt ϕ kn (X x,i t ) -ϕ kn (X x,i t -) , (3.3) 
where Z c is the continuous part of Z. We make the convention that when T ≤ τ n , (T ∧ θ) - = T for all stopping time θ > τ n a.s., so that equation (3.3) holds true a.s. for all n, m (recall that ϕ kn (X x,i T ) = -P ).

Since ϕ kn ≥ 1, we have by the mean-value theorem ϕ kn (X

x,i t ) -ϕ kn (X x,i t -) ≤ X x,i t -X x,i t -= -(Z t -Z t -) for T ∧ τ n ≤ t < τ m,n+1 .
By using also the supersolution inequality of ϕ kn , taking expectation in the above Itô's formula, and noting that the integrand in the stochastic integral term is bounded by a constant (depending on m), we have

E e -ρτ m,n+1 ϕ kn (X x,i τ - m,n+1 ) ≤ E e -ρ(T ∧τn) ϕ kn (X x,i T ∧τn ) -E τ m,n+1
T ∧τn

e -ρt dZ c t -E   T ∧τn≤t<τ m,n+1 e -ρt (Z t -Z t -)   ,
and so

E e -ρ(T ∧τn) ϕ kn (X x,i T ∧τn ) ≥ E τ - m,n+1
T ∧τn

e -ρt dZ t + e -ρτ m,n+1 ϕ kn (X x,i τ - m,n+1
)

By sending m to infinity, with Fatou's lemma, we obtain :

E e -ρ(T ∧τn) ϕ kn (X x,i T ∧τn ) ≥ E (T ∧τ n+1 ) - T ∧τn e -ρt dZ t + e -ρ(T ∧τ n+1 ) ϕ kn (X x,i (T ∧τ n+1 ) -) . (3.4) 
Now, as

ϕ kn (x) ≥ ϕ k n+1 (x+D k n+1 -D kn -g) and recalling X x,i T ∧τ n+1 = X x,i (T ∧τ n+1 ) -+D k n+1 - D kn -g on {τ n+1 < T }, we have ϕ kn (X x,i (T ∧τ n+1 ) -) ≥ ϕ k n+1 (X x,i (T ∧τ n+1 ) -+ D k n+1 -D kn -g) = ϕ k n+1 (X x,i (T ∧τ n+1 ) ) on {τ n+1 < T }. (3.5) Moreover, notice that on {T ≤ τ n+1 }, X x,i T ≤ D n , hence ϕ kn (X x,i (T ∧τ n+1 ) ) = ϕ kn (X x,i T ) = -P and ϕ k n+1 (X x,i (T ∧τ n+1 ) ) = ϕ k n+1 (X x,i
T ) = -P , we see that inequality (3.5) also holds on {T ≤ τ n+1 } and so a.s. Therefore, plugging into (3.4), we have

E e -ρ(T ∧τn) ϕ kn (X x,i T ∧τn ) ≥ E (T ∧τ n+1 ) - T ∧τn e -ρt dZ t + e -ρ(T ∧τ n+1 ) ϕ k n+1 (X x,i T ∧τ n+1 ) .
By iterating the previous inequality for all n, we then obtain

ϕ i (x) ≥ E (T ∧τn) - 0 e -ρt dZ t + e -ρ(T ∧τn) ϕ kn (X x,i T ∧τn ) , ≥ E (T ∧τn) - 0
e -ρt dZ t -e -ρ(T ∧τn) P , ∀n ≥ 0, since ϕ kn ≥ -P . By sending n to infinity, we obtain the required result from the arbitrariness of the control α.

2 Corollary 3.1 If max i∈I N (b -r i )D i ≤ -ρP
, an optimal policy is the immediate consumption.

Proof: It is easy to see that, in this case, the set of functions v i (x) = x -D i -P , for i ∈ {1, ..., N }, satisfy the previous system of variational inequalities. It is a direct application of Proposition 3.1. 2

Throughout the paper, we now assume that the following assumption holds

P > min j∈I N r j -b ρ D j . (A-1)
In the following Corollary, we show a linear growth condition on the value functions.

Corollary 3.2 For all i ∈ I N , and for all x ∈ (D i , ∞), we have

v i (x) ≤ x -D i + max j∈I N b -r j ρ D j Proof: We set ∀i ∈ I N , ϕ i (x) = x -D i + max i∈I N b-r i ρ D i , x > D i -P, x ≤ D i .
A straightforward computation shows that ϕ i , i ∈ I N , satisfy the supersolution properties and the associated assumptions. Indeed it is clear that ϕ i (D + i ) := lim x↓D i ϕ i (x) ≥ -P and ϕ i (x) = -P for x < D i and we equally have the following inequality

min -A i ϕ i (x) , ϕ i (x) -1 , ϕ i (x) -max j =i ϕ j (x + D j -D i -g) ≥ 0, x ≥ D i 2 
We shall assume that the following dynamic programming principle holds: for any (x, i)

∈ [D i , ∞) × I N , we have (DP) v i (x) = sup α=((Z),(τn),(kn))∈A E (T ∧θ∧τ 1 ) - 0 e -ρt dZ t + e -ρ(T ∧θ∧τ 1 ) v i (X x,i T ∧θ )1 T ∧θ<τ 1 + v k 1 (X x,i τ 1 )1 τ 1 ≤T ∧θ , (3.6)
where θ is any stopping time, possibly depending on α ∈ A in (3.6).

The next result states the initial-boundary data for the value functions.

Proposition 3.2 The value functions v i are continuous on (D i , ∞) and satisfy

v i (D + i ) := lim x↓D i v i (x) = -P. (3.7)
Proof: a) We first prove (3.7). For x > D i , let us consider the process R x,i , defined in (3.1), and denote θ i = inf{t ≥ 0 : R x,i t = D i }.

Let consider the geometric Brownian process R x,0 defined as the solution to

dR t = bR t dt + σR t dW t , R 0 = x,
and denote θ i,0 = inf{t ≥ 0 : R x,0 t = D i }. Notice that

R x,i t ≤ R x,0 t , ∀i ∈ I N , t ≥ 0 θ i ≤ θ i,0 , ∀i ∈ I N . (3.8)
Fix some r ∈ (0, g) such that D i < x < D i + r, and denote θ r,i = inf{t ≥ 0 : R x,i t = r + D i } and θ r,i,0 = inf{t ≥ 0 : R x,0 t = r + D i }. It is well-known that

P [θ i,0 > θ r,i,0 ] → 0, as x ↓ D i .
Notice that θ r,i,0 < θ r,i and combined with (3.8), we obtain

P [θ i > θ r,i ] ≤ P [θ i,0 > θ r,i,0 ].
As such,

P [θ i > θ r,i ] → 0, as x ↓ D i . (3.9) 
Let α = (Z, (τ n ) n≥1 , k n≥1 ) be an arbitrary policy in A, and denote η = T ∧θ r,i = T x,i,α ∧θ r,i . For t ≤ η, from the definition of an admissible control, there is no regime shift. As such, for t ≤ η, we have X x,i t ≤ R x,i t ≤ R x,0 t . We also have T x,i ≤ θ i . We then write :

E T - 0 e -ρt dZ t = E η - 0 e -ρt dZ t + E 1 T >η T - η e -ρt dZ t ≤ E E 1 T >η T - η e -ρt dZ t F θ - r,i ≤ E 1 T >θ r,i E T - θ r,i e -ρt dZ t F θ - r,i ≤ E 1 T >θ r,i e -ρθ r,i v i X x,i θ - r,i , (3.10) 
where we also used in the second inequality the fact that on {T > η}, η = θ r,i , and θ r,i is a predictable stopping time. Now, since v i is nondecreasing, we have

v i (X x,i θ - r,i ) ≤ v i (D i + r).
Moreover, recalling that T ≤ θ i , inequalities (3.10) and (3.9) yield

0 ≤ E T - 0 e -ρt dZ t ≤ v i (D i + r)P[θ i > θ r,i ] -→ 0, as x ↓ D i . (3.11)
Furthermore, using the fact that T x,i ≤ θ i ≤ θ i,0 , we have

E -P e -ρT ≤ -P E e -ρθ i,0
Noticing that θ i,0 is the hitting time of a drifted Brownian, it is straightforward that E e -ρθ i,0 -→ 1, as x ↓ D i and recalling (3.11), we obtain

-P ≤ v i (x) ≤ E T - 0 e -ρt dZ t -E P e -ρT ≤ v i (r)P[θ i > θ r ] -P E e -ρθ i,0 -→ -P, as x ↓ D i .
We may therefore conclude that v i (D + i ) = -P .

b) We now turn to the continuity of the value functions v i . Let γ > 0 and x ∈ (D i , ∞). We set

T γ = inf{t ≥ 0; R x,i t ≥ x + γ}.
We now consider a control strategy α = (Z, (τ n ), k n ), where τ 1 > T γ and Z t = 0, ∀ t < τ 1 .

Notice that ∀ t < τ 1 , X x,i t = R x,i t . Applying the programming dynamic principle (DP), we obtain

v i (x) ≥ E e -ρX T γ ∧T x,i v i (X T γ ∧T x,i ) , therefore v i (x + γ) -v i (x) ≤ E (1 -e -ρT γ )v i (x + γ)1 T γ <T x,i + v i (x + γ)1 T γ ≥T x,i +E P e -ρT x,i 1 T γ ≥T x,i ≤ v i (x + γ) 1 -E[e -ρT γ ] + (v i (x + γ) + P )P(T γ ≥ T x,i ).
Using the non-decreasing property of the value functions, for γ ≤ γ 0 , we have

v i (x + γ) -v i (x) ≤ v i (x + γ 0 ) 1 -E[e -ρT γ ] + (v i (x + γ 0 ) + P )P(T γ ≥ T x,i ). (3.12)
Using the same arguments as in the above proof of the right continuity of v i at D + i , we may obtain P(T γ ≥ T x,i ) -→ 0, as γ ↓ 0, and

E[e -ρT γ ] -→ 1, as γ ↓ 0.
Given the finiteness of v i as show in Corollary 3.2, we obtain that the right-hand side of the (3.12) goes to zero as γ ↓ 0. We may therefore conclude the right-continuity of v i . An analog argument gives us the left-continuity. 2

We then have the PDE characterization of the value functions v i .

Theorem 3.1 The value functions v i , i ∈ I N , are continuous on (D i , ∞), and are the unique viscosity solutions on (D i , ∞) with linear growth condition and boundary data v i (D i ) = -P , to the system of variational inequalities :

min -A i v i (x) , v i (x) -1 , v i (x) -max j =i v j (x + D j -D i -g) ≥ 0, x > D i . (3.13) 
Actually, we obtain some more regularity results on the value functions.

Proposition 3.3 The value functions v i , i ∈ I N , are C 1 on (D i , ∞). Moreover, if we set for i ∈ I N :

S i = x ≥ D i , v i (x) = max j =i v j (x + D j -D i -g), (3.14) 
D i = int ({x ≥ D i , v i (x) = 1}), (3.15) 
C i = (D i , ∞) \ (S i ∪ D i ), (3.16 
)

then v i is C 2 on the open set C i ∪ int(D i ) ∪ int(S i ) of (D i , ∞
), and we have in the classical sense

ρv i (x) -L i v i (x) = 0, x ∈ C i .
S i , D i , and C i respectively represent the switching, dividend, and continuation regions when the outstanding debt is at regime i.

The proofs of Theorem 3.1 and Proposition 3.3 are omitted as they follow essentially arguments from [START_REF] Guo | Optimal partially reversible investment with entry decision and general production function[END_REF], [START_REF] Pham | On the smooth-fit property for one-dimensional optimal switching problem[END_REF] and in particular [START_REF] Vath | A mixed singular/switching control problem for a dividend policy with reversible technology investment[END_REF].

Qualitative results on the switching regions

For i, j ∈ I N and x ∈ [D i , +∞), we introduce some notations:

δ i,j = D j -D i , ∆ i,j = (b -r j )D j -(b -r i )D i and x i,j = x + δ i,j -g. We set x * i = sup{x ∈ [D i , +∞) : v i (x)
> 1} for all i ∈ I N We equally define S i,j as the switching region from debt level i to j.

S i,j = {x ∈ (D i + g, +∞), v i (x) = v j (x i,j )}.
From the definition (3.14) of the switching regions, we have the following elementary decomposition property :

S i = ∪ j =i S i,j , i ∈ I N .
We now begin with two obvious results. Since there is a fixed switching cost g > 0, it is not optimal to continuously change your debt structure. Moreover, if it is optimal to distribute dividends and to switch to another regime, it is still optimal to distribute dividend after the regime switch. Lemma 4.1 Let i, j ∈ I N such that i = j. Assume that there exists x ∈ S i,j then we have i)

x i,j := x + D j -D i -g ∈ S j . ii) v i (x) = v j (x i,j ). Especially, if x ∈ S i,j ∩ D i then x i,j ∈ D j \ S j . Proof: For k ∈ I N \ {j}, we have v j (x i,j ) = v i (x) ≥ v k (x k,i ).
As v k is strictly non-decreasing, we get v j (x i,j ) > v k (x k,i -g). Let h ∈ R. For h going to 0, we have

v j (x i,j + h) = v j (x i,j ) + hv j (x i,j ) + o(h) = v i (x) + hv j (x i,j ) + o(h) = v i (x + h) + h(v j (x i,j ) -v i (x)) + o(h). As v i (x + h) ≥ v j (x i,j + h), we obtain h(v j (x i,j ) -v i (x)) ≤ o(h).
Hence, we have v j (x i,j ) = v i (x). 2

In the following Lemma, we state that there exists a finite level of cash such that it is optimal to distribute dividends up to this level. Lemma 4.2 For all i ∈ I N , we have

x * i := sup{x ∈ [D i , +∞) : v i (x) > 1} < +∞.
Proof: Assume that there exists k ∈ {0, ..., N -1} such that x * i < +∞ for all i ∈ I k := {i 1 , ..., i k } ⊂ I N . Notice that I k = ∅ if k = 0. We will show that there exists j ∈ I N \ I k such that x * j < +∞. From Corollary 3.2 and Proposition 3.3, we deduce that, for all i ∈ I N , the function x → v i (x) -x is continuous, non decreasing and bounded. We set

a i := lim x→+∞ (v i (x) -x).
Moreover, for all (i, j) ∈ I N such that i = j, we have

a j -(a i + δ j,i -g) = lim x→+∞ (v j (x) -v i (x + δ j,i -g)) ≥ 0. Let j 0 ∈ I N \ I k such that a j 0 + D j 0 = max j∈I N \I k (a j + D j )
. For all j ∈ I N \ I k , we have a j + δ j 0 ,j -g < a j 0 . It is easy to see that there exists x ∈ [D j , +∞) satisfying the following conditions:

v j 0 (x) > x + max j∈I N \I k ;j 0 =j (a j + δ j 0 ,j -g), ρv j 0 (x) > bx -r j 0 D j 0 , x > x * i -(δ j 0 ,i -g), ∀i ∈ I k .
At this point, we introduce a continuous function defined on [D i , +∞):

V (x) = v j 0 (x) if x < x x -x + v j 0 (x) if x ≥ x Let x ≥ x. We have -A j 0 V (x) = (ρ -b)(x -x) + [ρv j 0 (x) -(bx -r j 0 D j 0 )] > 0.
Moreover, for j ∈ I N \ I k such that j = j 0 , we have V (x) ≥ x + a j + δ j 0 ,j -g ≥ v j (x + δ j 0 ,j -g).

For i ∈ I k , we have

v i (x + δ j 0 ,i -g) -V (x) = x + δ j 0 ,i -g -x * i + v j (x * i ) -(x -x + v j 0 (x)) = v i (x * i ) -x * i + (x + δ j 0 ,i -g) -v j 0 (x) ≤ v i (x + δ j 0 ,i -g) -v j 0 (x) ≤ 0.
Finally, for all j ∈ I N \ {j 0 }, V ((x) ≤ v j 0 (x) ≤ v j (x -δ j,j 0 + g). As V (x) = 1, V is a continuous solution of equation (3.13). From Theorem 3.1, we deduce that v j 0 = V and x * j 0 ≤ x. 2

Now, we shall study properties of x * i and more generally, properties of left-boundaries of D i in the sense as detailed in the following definition. Notice that, if x * i > D i then x * i is a left-boundary of D i . In order to compute the dividend regions, we establish the following lemma. Lemma 4.3 Let i, j ∈ I N such that j = i. We assume that there exists xi a left-boundary of

D i . i) Assume that xi ∈ S i , then we have (b -r i )D i > -ρP and ρv i (x i ) = bx i -r i D i . As x → ρv i (x) -bx + r i D i is increasing, it implies that ρv i (x) < bx -r i D i on (D i , xi ) and ρv i (x) > bx -r i D i on (x i , +∞).
ii) Assume that xi ∈ S i,j then we have ii.a) [x i , xi + ε] ⊂ S i,j and xi + δ i,j -g is a left-boundary of D j .

ii.b) ρv i (x i ) = bx i -r i D i + ∆ i,j -bg and ∆ i,j > 0.

ii.c) ∀k ∈ I N -{i, j}, xi ∈ S i,k .

Notice that the last equality implies that -ρP + bg < (b -r j )D j .

Remark 4.1 We have ρv

i (x i ) ≥ bx i -r i D i , ∀i ∈ I n .
Proof: i). We assume that xi ∈ S i . As S i is closed and xi > D i , we can choose ε > 0 such that

(x i -ε, xi + ε) ∩ S i = ∅. Moreover, v i ≥ 1 and v i (x i ) = 1 so there exists a sequence (y n ) n∈N ∈ (x i -ε, xi ) ∩ C i such that lim n→+∞ y n = xi and v i (y n ) ≤ 0. We have 0 ≥ v i (y n ) = 2 σ 2 y 2 n ρv i (y n ) -(by n -r i D i )v i (y n )
and letting n going to infinity, we get

0 ≥ ρv i (x i ) -(bx i -r i D i ) = lim y→x i ;y>x i -A i v i (y) ≥ 0,
leading to the desired equality.

v i (x i ) ≤ b ρ (x i -D i ) -P,
leading to a contradiction as ρ > b and v i (x i ) ≥ xi -D i -P .

ii). We assume that xi ∈ S i,j .

ii.a). We first prove that [x i , xi + ε] ⊂ S i,j and that xj :

= xi + δ i,j -g is a left-boundary of D j . Let y ∈ [x i , xi + ε]. We have v j (y + δ i,j -g) ≤ v i (y) = y -xi + v i (x i ) = y -xi + v j (x j ).
On the other hand, v j ≥ 1 so y -xi +v j (x j ) ≤ v j (y +δ i,j -g). It follows that v j (y +δ i,j -g) = v i (y) and [x i , xi ] ⊂ S i,j . Moreover, we have proved that [x j , xj + ε] ∈ D j . We assume that there exists η > 0 such that (x j -η, xj ) ⊂ D j and show that it leads to a contradiction. Let x ∈ (x j -η, xj ). We have

v j (x) = x -xj + v j (x j ) = (x -δ i,j + g) -xi + v i (x i ) > v i (x -δ i,j + g).
The last inequality follows from the fact that xi is a left-boundary of D i and contradicts the fact that v i is solution of equation (3.13). Hence, to show that xj is a left-boundary of D j it remains to prove that xj > D j . However, if it was not the case, we would have,

v i (x i ) = v j (x i + δ i,j -g), since xi ∈ S i,j , = v j (D j ) = -P. But xi = xj -δ i,j +g = D i +g, leading to the contradiction -P = v i (D i ) < v i (D i +g) = -P .
ii.b). We now prove that

ρv i (x i ) = bx i -r i D i +∆ i,j -bg and ∆ i,j := (b-r j )D j -(b-r i )D i > 0.
From Lemma 4.1, we know that xj ∈ S j . Therefore it follows from step i) that (br j )D j > -ρP and ρv j (x j ) = bx j -r j D j . We obtain

ρv i (x i ) = ρv j (x i + δ i,j -g) = ρv j (x j ) = bx j -r j D j = bx i + b(δ i,j -g) -r j D j = bx i -r i D i + ∆ i,j -bg. (4.1) As ρv i (x i ) -(bx i -r i D i ) = lim y→x i ;y>x i ρv i (y) -L i v i (y) ≥ 0, we have ρv i (x i ) ≥ bx i -r i D i and then ∆ i,j ≥ bg > 0.
ii.c). It remains to show that ∀k ∈ I N -{i, j}, xi ∈ S i,k . This fact is an elementary result as highlighted earlier because if there exists k ∈ I N -{i, j} such that xi ∈ S i,k ∩ S i,j , it would implies that ∆ i,k = ∆ i,j . Relation (4.1) gives us the last equality. 2 Corollary 4.1 Let i ∈ I N . We have the following results:

i) Assume that x * i ∈ S i . If (b -r i )D i > -ρP then ρv i (x * i ) = bx * i -r i D i else x * i = D i .
ii) Assume that x * i ∈ S i,j where j ∈ I N -{i}. We have ∆ i,j > 0 and (b -r j )D j > -ρP + bg and ρv i (

x * i ) = bx * i -r i D i + ∆ i,j -bg.
Proof: Most results follow directly from Lemma 4.3. We just have to prove that when we assume that x * i ∈ S i and (b -r i )D i ≤ -ρP then x * i = D i . If it was not the case, we would have, following the proof of Lemma 4.3,

ρv i (x * i ) -(bx * i -r i D i ) = 0.
We then obtain

v i (x * i ) ≤ b ρ (x * i -D i ) -P, leading to a contradiction as ρ > b and v i (x * i ) ≥ x * i -D i -P . Hence if (b -r i )D i ≤ -ρP , we have x * i = D i . 2 
We now turn to the following result which basically states that when it is optimal to distribute dividend and/or to switch regime, then it is still optimal when the firm is richer.

Lemma 4.4 Let (i, j) ∈ I 2 N such that i = j. If (x * i , +∞) ∩ S i,j = ∅ then there exists y * i,j ∈ [x * i , +∞) such that [x * i , +∞) ∩ S i,j = [y * i,j , +∞) and ρv i (y * i,j ) = by * i,j -r i D i + ∆ i,j -bg. Proof: We set y * i,j = inf [x * i , +∞) ∩ Si,j . If x * i ∈ S i,j
, the result has been proved in Corollary 4.1. We now assume that x * i < y * i,j . Let y > y * i,j . Using the same argument as in ii) of Corollary 4.1, we may get v j (y + δ i,j -g) = v i (y) and [y * i,j , +∞) ⊂ S i,j . Moreover, we know that y * i,j + δ i,j -g ∈ S j and S j is a closed set, so there exists ε > 0 such that [ȳ * i,j -ε, ȳ * i,j ] ∩ S j = ∅ where we set ȳ * i,j = y * i,j + δ i,j -g. As y * i,j ∈ Di , we can find a sequence (y k ) k∈N with values in [ȳ * i,j -ε, ȳ * i,j ], such that y k ∈ D j (if not we may obtain a contradiction by straightforwardly showing that y * i,j > inf [x * i , +∞) ∩ Si,j .), i.e.

∀k ∈ N, y k ∈ C j and lim k→+∞ y k = ȳ * i,j .

We finally obtain

0 = ρv j (y k ) -(by k -r j D j )v j (y k ) - σ 2 y 2 k 2 v j (y k ) = ρv j (ȳ * i,j ) -(bȳ * i,j -r j D j )v j (ȳ * i,j ).
Using v j (ȳ * i,j ) = v i (y * i,j ) and v j (ȳ * i,j ) = v i (y * i,j ) = 1 (from Lemma 4.1 and y * i,j ∈ D i ), we may obtain the desired results and conclude the proof.

2

We now establish an important result in determining the description of the switching regions. The following Theorem states that it is never optimal to expand its operation, i.e. to make investment, through debt financing, should it result in a lower "drift" ((b -r i )D i ) regime. However, when the firm's value is low, i.e. with a relatively high bankruptcy risk, it may be optimal to make some divestment, i.e. sell parts of the company, and use the proceedings to lower its debt outstanding, even if it results in a regime with lower "drift". In other words, to lower the firm's bankruptcy risk, one should try to decrease its volatility, i.e. the diffusion coefficient. In our model, this clearly means making some debt repayment in order to lower the firm's volatility, i.e. σX t .

Theorem 4.1 Let i, j ∈ I N such that (b-r j )D j > (b-r i )D i .
We have the following results:

1) x * j ∈ S j,i and Dj = (x * j , +∞).

2)

Sj,i ⊂ (D j + g, x * j ). Furthermore, if D j < D i , then Sj,i = ∅. Proof: 1). Since (b -r j )D j > (b -r i )D i , we have ∆ j,i < 0. It follows from part ii) of Corollary 4.1 that x * j ∈ S j,i . Let y ∈ Dj . There exists ε > 0 such that (y -ε, y + ε) ⊂ Dj . For x ∈ (y -ε, y + ε), we have 0 ≤ -A j v j (x) = ρv j (x) -(bx -r j D j ).
Hence, ρv j (x) ≥ bx -r j D j and y ≥ x * j .

2). Let us assume that there exists y ∈ Sj,i . we first need to prove that y < x * j . Let's assume that y ≥ x * j . From Lemma 4.4, we know that [y, +∞) ⊂ S j,i . We set s * j,i = inf Sj,i ∩ D j . As x * j ∈ S j , we have x * j ≤ s * j,i . On the other hand, it is easy to see that s * j,i + δ j,i -g = x * i and x * i ∈ S i . We obtain

ρv j (s * j,i ) = ρv i (x * i ) = bx * i -r i D i = bs * j,i -r j D j -(∆ i,j + bg) < bs * j,i -r j D j < ρv j (x * j ).
We may deduce that x * j > s * j,i ,, which contradicts the fact that x * j ≤ s * j,i , so y < x * j .

We now prove that if D j < D i , Sj,i = ∅.

Assume that there exists x ∈ Sj,i . From the first step, we know that x ∈ D j . We deduce from Lemma 4.1 that x := x + δ j,i -g ∈ C i then we have

1 2 σ 2 x 2 v j (x) + (bx -r j D j ) v j (x) ≤ ρv j (x) = ρv i (x) = 1 2 σ 2 x2 v i (x) + (bx -r i D i ) v i (x) = 1 2 σ 2 x2 v j (x) + (bx -r i D i ) v j (x).
Combining these equations, we get

0 ≤ σ 2 2 (x 2 -x 2 )v j (x) -(∆ i,j + bg)v j (x).
As x2 -x 2 ≥ 0 (using D j < D i and Assumption (2.5)), (∆ i,j + bg)v j (x) > 0 and v j < 0 on

[ r j D j b , x * j ), we necessarily have x ∈ (D j + g, r j D j b ∧ x * j ).
Therefore, if b ≥ r j , S j,i = ∅. Now, we assume that b < r j and Sj,i = ∅. Let S j,i = sup Sj,i and if we set Sj,i := S j,i +δ j,i -g, it follows that

0 ≤ σ 2 2 ( S2 j,i -S 2 j,i )v j (S - j,i ) -(∆ i,j + bg)v j (S j,i ). Hence, we have 0 ≤ ρv j (S j,i ) -b Sj,i -r i D i + S2 j,i S2 j,i -S 2 j,i (∆ i,j + bg) v j (S j,i ) ≤ ρv j (S j,i ) -bS j,i -r j D j + S j,i 2 S2 j,i -S 2 j,i (∆ i,j + bg) v j (S j,i ). (4.2) 
On the other hand, we have (S j,i , x * j ) ⊂ C j so

0 ≤ σ 2 S 2 j,i 2 v j (S + j,i ) - S j,i 2 S2 j,i -S 2 j,i (∆ i,j + bg)v j (S j,i ).
Especially, we have v j (S + j,i ) > 0. Moreover, v j is a C 2 function and v j > 1 on (S j,i , x * j ), it follows that there exists y ∈ (S j,i , x * j ) such that v j (y) = 0 since v (x * j ) = 1. We set y j = inf{y ∈ (S j,i , x * j ) : v j (y) ≤ 0}. As v j ≤ 0 on [ r j D j b , +∞), we know that y j ≤ r j D j b . We have v j (y j ) = 0 and y j ∈ C j , so we can assert that h(y j ) = 0 where we have set

h(x) = (bx -r j D j )v j (x) -ρv j (x).
On (S j,i , y j ), we have v j > 0 so h is decreasing. Indeed, we have

h (x) = (bx -r j D j )v j (x) -(ρ -b)v j (x) ≤ 0.
Finally, this proves that ρv j (S j,i ) ≤ (bS j,i -r j D j )v j (S j,i ). Reporting this in the inequality (4.2), we get

0 ≤ - S j,i 2 S2 j,i -S 2 j,i (∆ i,j + bg)v j (S j,i ).
This is impossible as S2 j,i > S 2 j,i , ∆ i,j + bg > 0 and v j (S j,i ) ≥ 1. In conclusion, Sj,i = ∅. 2 We now turn to an important corollary. 2) For all i ∈ I N -{m}, we have:

i) If D m < D i , Sm,i = ∅. ii) If D i < D m , Sm,i ⊂ (D m + g, x * m ). Furthermore, if b ≥ r i , then Sm,i ⊂ (D m + g, (a * i + δ i,m + g) ∧ x * m )
, where a * i is the unique solution of the equation ρv i (x) = (bx -r i D i )v i (x). We further have a * i = x * i .

Proof:

The only point left to show is 2.ii). We now assume that there exists i ∈ I N -{m} such that D i < D m , b ≥ r i and Sm,i = ∅

We prove that the equation ρv i (x) = (bx -r i D i )v i (x) admits a unique solution a * i and prove that Sm,i ⊂ (D m + g, a * i + δ m,i -g). Let x ∈ Sm,i . It follows from the first step that Sm,i ∩ D m = ∅. Hence, from Lemma 4.1, we have

x := x + δ m,i -g ∈ C i . We obtain 0 ≥ σ 2 x 2 2 v i (x) + (bx -r m D m )v i (x) -ρv i (x) = A i v i (x) + σ 2 2 (x 2 -x 2 )v i (x) + (∆ i,m + bg)v i (x) = - x 2 -x 2 x 2 H i (x),
where we have set

H i (x) = bx -r i D i - x 2 (x + δ i,m + g) 2 -x 2 (∆ i,m + bg) v i (x) -ρv i (x).
Hence, we have

Sm,i ⊂ {x ∈ (D m + g, +∞) : H i (x) ≥ 0} ⊂ {x ∈ (D m + g, +∞) : G i (x + δ m,i -g) ≤ 0},
where we set G i (y) = ρv i (y) -(by -r i D i )v i (y). We notice that, for all y ∈ (D i , +∞), G i (y) ≥ σ 2 x 2 2 v i (y). Recalling our assumption that b ≥ r i , it follows that

G i (y) ≥ (ρ -b)v i (y) - 2(by -r i D i ) σ 2 y 2 G i (y) > - 2(by -r i D i ) σ 2 y 2 G i (y).
As G i is continuous on (D i , +∞) and G i (D i ) < 0, it implies that the equation G i (y) = 0 admits a unique solution which will be denoted by a * i . Therefore, we have Sm,i ⊂ (D m + g, a * i + δ i,m + g). Furthermore, from Corollary 4.1, we either have G(x * i ) = 0 or G(x * i ) > 0. As such, we deduced that a * i ∈ (D i , x * i ).

2 We now turn to the following results ordering the left-boundaries (x * i ) i∈I N of the dividend regions (D i ) i∈I N . Proposition 4.1 Consider i, j ∈ I N , such that (b -r i )D i < (b -r j )D j . We always have x * i + δ i,j -g ≤ x * j unless there exists a regime k such that (b -r j )D j < (b -r k )D k and x * i ∈ S i,k , then we have x * j -δ i,j + g < x * i < x * k -δ i,k + g.

Proof: First, we assume that x * i ∈ S i . From Lemma 4.3, we know that ρv i (x * i ) = bx * i -r i D i . On the other hand, we have

ρv i (x * j -(δ i,j -g)) ≥ ρv j (x * j ) ≥ bx * j -r j D j ≥ b(x * j -(δ i,j -g)) -r i D i + ∆ i,j -bg > b(x * j -(δ i,j -g)) -r i D i .
Hence, we have x * i + δ i,j -g < x * j . Now, we assume that there exists k ∈ I N -{i} such that x * i ∈ S i,k . If k = j, we have

x * i + δ i,j -g = x * j . If k = j, we have x * i + δ i,k -g = x * k and ρv i (x * i ) = bx * i -r i D i + ∆ i,k -bg = b(x * i + δ i,k -g) -r k D k .
On the other hand, we have

ρv i (x * j -(δ i,j -g)) ≥ ρv j (x * j ) = bx * j -r j D j = b(x * j -(δ i,j -g)) -r i D i + ∆ i,j -bg = b x * j -(δ i,j -g) + (δ i,k -g) -r k D k + ∆ k,j .
If (b -r j )D j > (b -r k )D k , i.e. ∆ k,j > 0, then we have

ρv i (x * j -(δ i,j -g)) > b x * j -(δ i,j -g) + (δ i,k -g) -r k D k .
Hence, we have x * i + δ i,j -g < x * j . However, in the case that (b -r j )D j < (b -r k )D k , then

ρv i (x * j -(δ i,j -g)) < b x * j -(δ i,j -g) + (δ i,k -g) -r k D k .
Hence, we have

x * i + δ i,j -g > x * j . 2 
5 The two regime-case

Before investigating the two-regime case, for the sake of completeness, we give the results in the case where there is no regime change, i.e. the firm's debt level remains constant. Proof: From Theorem 4.2, we have

D 1 = [x * 1 , +∞) where ρv 1 (x * 1 ) = bx * 1 -r 1 D 1 and S 1 = ∅. 1) We assume that S2 = ∅. From Corollary 4.1, we know that ρv 2 (x * 2 ) = bx * 2 -r 2 D 2 . If there exists x ∈ D2 ∩ (D 2 , x * 2 ), we would have 0 ≤ ρv 2 (x) -(bx -r 2 D 2 ) but this is impossible for x < x * 2 .
Hence we have

C 2 = [D 2 , x * 2 ), and 
D 2 = [x * 2 , +∞).
2) Now, we assume that S2 = ∅ and set y * 2 = inf S2 . We first prove that S 2 = [y * 2 , +∞). We define the following function

V 2 (x) = v 2 (x) if D 2 ≤ x < y * 2 v 1 (x + δ 2,1 -g) if y * 2 ≤ x.
V 2 is a C 1 function on [D 2 , +∞). We prove that V 2 is the solution of the variational inequality satisfied by v 2 . We obviously have

V 2 (x) ≥ 1 and V 2 (x) ≥ v 1 (x + δ 2,1 -g).
Moreover, we have

V 2 (x + δ 1,2 -g) = v 2 (x + δ 1,2 -g) ≤ v 1 (x) if D 2 ≤ x < y * 2 + δ 2,1 + g v 1 (x -2g) ≤ v 1 (x) if y * 2 + δ 2,1 + g ≤ x.
It remains to prove that A 2 V 2 (x) ≤ 0 on [y * 2 , +∞). For x ≥ y * 2 , we set x = x + δ 2,1 -g and we have

A 2 V 2 (x) = σ 2 x 2 2 v 1 (x) + (bx -r 2 D 2 )v 1 (x) -ρv 1 (x) = A 1 v 1 (x) + σ 2 2 (x 2 -x 2 )v 1 (x) -(∆ 2,1 + bg)v 1 (x) ≤ σ 2 2 (x 2 -x 2 )v 1 (x). ii) If a * 1 ∈ D 1 , there exists z * 1 ∈ (a * 1 , y * 1 ) such that D 1 = [a * 1 , z * 1 ] ∪ [x * 1 , +∞) and C 1 = [D 1 , a * 1 ) ∪ (z * 1 , y * 1 ).
Remark 5.2 Theorem 5.2 states that when the firm's value is sufficiently high (above y * 1 threshold), it's optimal to switch to a higher-debt regime which operates at a higher drift (b-r i )D i , see figure 2, case 2. However, when the firm is too small, it may be optimal not to postpone dividend payment and to operate under as a medium size company (cash-reserve lower than the threshold a * 1 , as in figure 2, case 3), i.e. to distribute dividend, whenever the cash-reserve exceed the threshold a *

1 . However, one should not switch to a lower drift regime unless it lowers the firm's bankruptcy risk. It may happen, when the value firm dangerously approaches bankruptcy threshold, i.e. when its cash reserve stands between s * 2 and S * 2 . Proof: Throughout the proof, for x ∈ R, we set x = x + δ 1,2 -g and x = x + δ 2,1 -g. Notice that we have x < x < x.

1.) From Theorem 4.2 we have

D 2 = [x * 2 , +∞) where ρv 2 (x * 2 ) = bx * 2 -r 2 D 2 S2 ⊂ (D 2 + g, (a * 1 + δ 2,1 -g) ∧ x * 2 ),
where a * 1 is the unique solution of the equation ρv 1 (x) = (bx -r 1 D 1 )v 1 (x). Assume that S2 = ∅. We set s * 2 = inf S2 and S * 2 = sup S2 . Now we prove that S2 = (s * 2 , S * 2 ). On [D 2 , +∞), we define the following function:

V 2 (x) =      v 2 (x) if x < s * 2 v 1 (x + δ 2,1 -g) if s * 2 ≤ x ≤ S * 2 v 2 (x) if x > S * 2 .
V 2 is a continuous function on [D 2 , +∞) and it is easy to see that V 2 ≥ 1. For all x ∈ [D 2 , +∞), we have V 2 (x) ≥ v 1 (x+δ 2,1 -g) and for x+δ 1,2 -g ∈ [s * 2 , S * 2 ], V 2 (x+δ 1,2 -g) = v 1 (x -2g) < v 1 (x). We now prove that A 2 V 2 ≤ 0. Let x ∈ [s * 2 , S * 2 ], we have

A 2 V 2 (x) = A 1 v 1 (x) + x 2 -x 2 x 2 σ 2 x 2 2 v 1 (x) + x 2 x 2 -x 2 (∆ 1,2 + bg)v 1 (x) = - x 2 -x 2
x 2 H 1 (x).

We recall that H 1 (x) = bx -r 1 D 1 -x 2 (x + δ 1,2 + g) 2 -x 2 (∆ 1,2 + bg) v 1 (x) -ρv 1 (x).

We have seen in the proof of Theorem 4.2 that S2 ⊂ {x ∈ (D m , +∞) : H 1 (x) ≥ 0}. Especially, we have H 1 (S *

2 ) ≥ 0, with S * 2 ≤ a * 1 . Now, we prove that H 1 is decreasing on (D 1 , a * 1 ). As H 1 is continuous, this will lead to A 2 V 2 ≤ 0 and allows us to assert that v 2 = V 2 and especially that S2 = (s * 2 , S * 2 ). We may rewrite H 1 :

H 1 (x) = U 1 (x) -G 1 (x),
where

G 1 (x) = ρv 1 (x) -(bx -r 1 D 1 )V 1 (x) U 1 (x) = - x 2 (x + δ 1,2 + g) 2 -x 2 (∆ 1,2 + bg)v 1 (x).
From the proof of Theorem 4.2, we have G 1 is strictly non-decreasing on (D 1 , a * 1 ). Furthermore, a straight study of the function U 1 and recalling that on (D 1 , a * 1 ], v 1 (x) ≤ 0, we may obtain that U 1 is non-increasing. As such, H 1 is strictly non-increasing. 

3.)

We now assume that S1 = ∅. We set y * 1 = inf S1 and prove that S1 = (y * 1 , +∞).

On [D 1 , +∞), we define the following function:

V 1 (x) = v 1 (x) if x < y * 1 v 2 (x + δ 1,2 -g) if y * 1 ≤ x.
V 1 is a C 1 function on [D 1 , +∞) and it is easy to see that V 1 ≥ 1. For all x ∈ [D 1 , +∞), we have V 1 (x) ≥ v 2 (x + δ 1,2 -g) and for x ≥ y * 1 , V 1 (x + δ 2,1 -g) = v 2 (x -2g) < v 2 (x). We now prove that A 1 V 1 ≤ 0. Let x ∈ [y * 1 , +∞), we have

A 1 V 1 (x) = A 2 v 2 (x) - (x 2 -x 2 )σ 2 2 v 2 (x) -∆ - 1,2 v 2 (x) ≤ - (x 2 -x 2 )σ 2 2 v 2 (x) -∆ - 1,2 v 2 (x).
If x ∈ D 2 , we obviously have A 1 V 1 (x) ≤ 0. Assume that x ∈ C 2 , then we have

A 1 V 1 (x) = x2 -x 2 x2 H 2 (x).
As H 2 is decreasing, we have H 2 (x) ≤ H 2 (y * 1 ) ≤ 0 so A 1 V 1 (x) ≤ 0. Finally, we assume that x ∈ S2 . In this case, we have

(x -g) 2 x2 -x 2 A 1 V 1 (x) ≤ - σ 2 (x -g) 2 2 v 1 (x -g) - (x -g) 2 x2 -x 2 ∆ - 1,2 v 1 (x -g) = -ρv 1 (x -g) + b(x -g) -r 1 D 1 - (x -g) 2 x2 -x 2 ∆ - 1,2 v 1 (x -g) = -ρv 2 (x) + bx -r 2 D 2 -∆ 1,2 - (x -g) 2 x2 -x 2 ∆ - 1,2 v 2 (x) = H 2 (x) + x2 -(x -g) 2 x2 -x 2 ∆ - 1,2 -∆ 1,2 v 2 (x) ≤ x2 -(x -g) 2 x2 -x 2 ∆ - 1,2 -∆ 1,2 v 2 (x).
However, we have

(x 2 -(x -g) 2 )∆ - 1,2 -(x 2 -x 2 )∆ 1,2 = -bg(x 2 -x 2 ) + g(2x -g))(∆ 1,2 -bg) = g 2(r 1 D 1 -r 2 D 2 )x -g∆ - 1,2 -b(δ 1,2 -g) 2 ≤ 0.
Therefore, A 1 V 1 ≤ 0 on (D 1 , +∞). This allows us to assert that v 1 = V 1 and especially that S1 = (y * 1 , +∞). 

Definition 4 . 1

 41 Let i ∈ I N and x ∈ (D i , +∞). x is a left-boundary of D i if there exists ε > 0 and a sequence (y n ) n∈N with values in (D i , x) \ D i such that [x, x + ε] ∈ D i and lim n→+∞ y n = x.

Corollary 4 . 2

 42 Let m ∈ I N such that (b -r m )D m = max i∈I N (b -r i )D i .1) x *m ∈ S m and Dm = (x * m , +∞).
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 511 Figure 1: Switching regions: case (b -r 1 )D 1 > (b -r 2 )D 2 .
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 2 Figure 2: Switching regions: case (b -r 1 )D 1 < (b -r 2 )D 2 .

  2.)If S1 = ∅, then x * 1 ∈ S 1 .Using the arguments from 1.) of Theorem 4.2, we may obtainC 1 = [D 1 , x * 1 ), and D 1 = [x * 1 , +∞) where ρv 1 (x * 1 ) = bx * 1 -r 1 D 1 .

a) If x * 1 +

 1 δ 1,2 -g < x * 2 , then using Proposition 4.1, we have y * 1 > x * 1 and x * 1 ∈ S 1 . So it follows from Corollary 4.1 that ρv 1 (x * 1 ) = bx * 1 -r 1 D 1 . Moreover, we have D1 = (x * 1 , +∞) and from Lemma 4.4, we have y * 1 + δ 1,2 -g = x * 2 .

Figure 3 :Figure 4 :

 34 Figure 3: Optimal values for managers (v i ) Vs shareholders' value (u i ) for increasing penalty P .
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and V (x) = x -x + V (x), x ≥ x where V (x) = bx -rD ρ .

If (b -rD) ≤ -ρP , then x = D and the optimal value function V (x) = x -D -P .

This result directly derives from Corollary 4.1. 2

Throughout this section, we now assume that N = 2, in which case, we will get a complete description of the different regions. We will see that the most important parameter to consider is the so-called "drifts" ((b -r i )D i ) i=1,2 and in particular their relative positions. To avoid cases with trivial solution, i.e. immediate consumption, we will assume that

We now distinguish the two following cases:

Throughout Theorem 5.1 and Theorem 5.2, we provide a complete resolution to our problem in each case.

We have

1) If S 2 = ∅ then we have

2) If S 2 = ∅ then there exists y * 2 such that S 2 = [y * 2 , +∞) and we distinguish two cases

Remark 5.1 Theorem 5.1 clearly states that it is never optimal to make growth investment through debt financing when it results in lower "drift" (b -r i )D i . However, when the firm value process exceeds the threshold, y * i , it may be optimal to switch to a lower debt regime should it result in a higher "drift" (b -r i )D i .

As D 1 < D 2 , we have x 2 > x 2 . On the other hand, we have seen that v 1 is concave so we can assert that A 2 V 2 (x) ≤ 0 on [y * 2 , +∞). This proves that v 2 = V 2 and especially that S2 = (y * 2 , +∞). 

ii) Finally, we assume that a * 2 ∈ D 2 . We set z * 2 = inf{x ≥ a * 2 : v 2 > 1} and have

2

We now turn to the case where

Theorem 5.2 We assume that (b -r 1 )D 1 < (b -r 2 )D 2 , 1) we have

2) If S1 = ∅ then we have

3) If S1 = ∅ there exists y * 1 such that S1 = (y * 1 , +∞) 

as the solution of ρv 1 (a * 1 ) = ba * 1 -r 1 D 1 and distinguish two cases:

ii) Finally, we assume that a * 1 ∈ D 1 . We set z * 1 = inf{x ≥ a * 1 : v 1 > 1} and have

Remark 5.3 The arguments used to obtain the above results in Theorems 5.1 and 5.2 in the two-regime problem may also apply to higher regime problems although the required analysis involved would be much lengthier and depends on many more parameters. It is particularly the case when we reconsider our initial multi-switching problem with a slight but realistic change to our initial model: we only allow the firm to change, i.e. increase or repay, its debt level to the one immediately above or below. This latter case may be subject to further studies in the future, but we may already obtain:

• The elementary decomposition of the switching regions becomes S i = S i,i-1 ∪ S i,i+1 .

The system of variational inequalities becomes :

• With the exception of part i) of Lemma 4.1, all the other results still hold. For results obtained by using part i) of Lemma 4.1, it suffices to slightly modify the existing proofs.

• The complete solution to our modified problem may be obtained by applying iteratively the results from Theorem 5.1 and 5.2.

Some numerical illustrations:

Below are some numerical analysis on value functions as defined in equation (2.7) versus the real value for shareholders as defined in equation (2.8) for different values of P , see Figure 3.

Finally, Figure 4 shows the contribution of the management team in creating value for shareholders for different values of P .