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Précisions : Dans la version publiée de l’article, trois espèces avaient été nommées sous 
leur ancienne dénomination scientifique : le chevaine (Leuciscus cephalus devenu Telestes 
cephalus), le toxostome (Chondrostoma toxostoma devenu Parachondrostoma toxostoma) 
et le blageon (Leuciscus souffia devenu Telestes souffia). 
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SUMMARY 

1. The River Durance, the last alpine tributary of the River Rhône, is a large, braided 

alluvial hydrosystem. Following large-scale regulation, flow downstream of the Serre-

Ponçon dam has been maintained at 1/40th of previous annual mean discharge. To 

assess the effects of historical disturbances, fish assemblages and habitat use were 

analysed during five summers in a representative reach of the middle Durance.  

2. Habitat availability and use were assessed with a multi-scale approach including the 

variables water depth, current velocity, roughness height of substratum, amount of 

woody debris and lateral/longitudinal location. Eighteen fish species were sampled by 

electrofishing in 289 habitat sample units.  

3. Partial Least Square (PLS) regression showed that taxa were mainly distributed 

according to relationships between their total length and water depth/velocity 

variables. Fish assemblage composition was also related to roughness height as well as 

distance from the bank or to the nearest large woody debris. However, PLS regression 

revealed no significant differences in habitat selection between two periods of varying 

hydromorphological stability.  

4. Fish distribution patterns and density were related to proximity to the bank and cover, 

indicating that local scale variables need to be considered in conservation and 

restoration programmes. 
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INTRODUCTION 

Natural disturbances such as floods or droughts are integral components of most freshwater 

ecosystems, and consequently organisms have evolved traits that enable them to survive, 

exploit and even depend on many kinds of disturbances (Townsend & Hildrew, 1994; Bunn & 

Arthington, 2002; Lytle & Poff, 2004). For example, fish can move to refuge areas during 

spates, avoid hostile conditions by spawning after floods and protect their eggs by excavating 

deep nests in gravel bottoms (Lytle & Poff, 2004). However, anthropogenic activities such as 

the regulation of rivers for hydropower often result in loss or modification of freshwater 

habitats (e.g. Nilsson et al., 2005), by changing river connectivity (Aarts, Van Den Brink & 

Nienhuis, 2004; Hirzinger et al., 2004), altering exchange processes (Brunke & Gonser, 1997) 

and fragmenting populations (Corbacho & Sanchez, 2001). Although fishes are primarily 

affected by alterations in hydromorphology (Ormerod, 2003), separating the effects of flow 

regulation from other anthropogenic impacts on the floodplain, such as extraction of gravel, 

water abstraction and pollution, has proven to be difficult. 

 

The riverscape is a complex and heterogeneous system including lateral floodplain water 

bodies connected to the main channel. This lateral connectivity is frequently used by riverine 

fishes as seasonal habitat and plays a functional role as spawning or nursery grounds. Habitat 

disturbances affect fish life-histories, survival, reproductive success and ultimately population 

growth rate (Copp, 1989; Molls, 1999; Borcherding et al., 2002; Dunham & Rieman, 1999). 

Although these impacts are well known, fish community responses are not well understood 

(Nilsson et al., 2005). Disturbed wetlands have less species diversity (Chipps, Perry & Perry, 

1994), and invasion of exotic and fugitive species is facilitated by habitat alterations (Meffe, 

1984; Moyle & Light, 1996). Understanding the links between fish fitness and flow regimes 
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or other habitat variables is important for an effective watercourse management (Lytle & Poff, 

2004). 

 

In classical fish habitat studies, current velocity, water depth and substratum type are often 

used to explain spatial patterns and to calibrate predictive models (Gorman & Karr, 1978; 

Bovee, 1982). However, recent studies have shown that these variables alone are not adequate 

to understand and predict fish responses (Brosse & Lek, 2000; Mugodo et al., 2006). For 

instance, in complex hydrosystems, like large gravel bed alluvial rivers associated to 

plurispecific fish communities (Souchon et al., 2002), other habitat features are needed to 

predict fish assemblages (Powers et al., 2003). Refuge availability and proximity to the 

riparian zone are two variables that have been shown to be strong predictors of fish 

assemblages (Copp & Jurajda, 1999; Schiemer, Keckeis & Flore, 2001). Both of these 

variables are proxies for the availability of refuges (Growns, Pollard & Gehrke, 1998) as well 

as shading zones, organic matter and favoured feeding areas (Gozlan et al., 1999; Hirzinger et 

al., 2004). Species richness (Powers et al., 2003) and densities (Shields, Knight & Cooper, 

1994) are also strongly correlated with channel width. 

 

Although earlier studies often considered the importance of local scale variables as drivers of 

stream diversity, recent studies have shown the importance of catchment level variables 

(Ward & Stanford, 1989; Townsend et al., 2003). Moreover, as mechanisms may operate on 

scales other than those at which patterns are observed they may be best understood by the 

assessment of relationships within smaller scale units, within large scale units (Levin, 1992; 

Moir, 2008). Consequently, relating processes identified at a local scale to large scale 

phenomena is a major challenge of both fundamental and applied ecology. For this reason, we 

describe habitat at local and mesohabitat scales. We study the importance of the classical 
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variables, water depth, current velocity and roughness height, as well as proximity to the 

bank, presence of large woody debris and channel width, as predictors of fish assemblages. 

Furthermore, using two distinct hydromorphological periods separated by almost 10 years we 

test the hypothesis that relationships between fish assemblages and spatial habitat are 

consistent among years. The study was carried out in a highly regulated river which has 

experienced stable low flow conditions and a significant decrease in minor floods since the 

construction of the Serre-Ponçon dam in late 1950’s; dam construction resulted in flows of 

1/40th of pre-regulated annual mean discharges. Finally, although much is known of the 

effects of flow regulation on salmonids (Murchie et al., 2008), our study focused on 

rheophilic cyprinids.  

 

METHODS 

Study area 

The catchment of the Durance River (14 322 km²), the last left-bank tributary of the Rhône 

River, starting at about 2400 m a.s.l. at the Franco-Italian border, merges with Rhône River 

some 320 km downstream. Having a Mediterranean climate, the Durance catchment receives 

less annual precipitation than other alpine tributaries of the Rhône (annual mean rainfall 720-

900 mm in the Durance catchment; data from Météo-France, 1961-1990, AURELHY model). 

The upper Durance has a nival flow regime, not much influenced by glacial inputs, but the 

influence of Mediterranean climate increases with decreasing altitude (Pardé, 1925).  

 

The study site is a reach of about one kilometre long, located near Manosque (Alpes-de-

Haute-Provence, Latitude: 43° 50' 26'' N, Longitude: 05° 51' 06'' E) (Fig. 1). The study 

focused on the residual channel of the initial braided alluvial river pattern (Warner, 2000). 

Before flow regulation, annual discharge averaged 140 m3.s-1, and the natural minimum flow 
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was c. 24 m3.s-1. After flow regulation, discharge has markedly decreased (to c. 3.5 m3.s-1), 

with interspersed winter or spring flood events from intermediate sub-catchments (Fig. 2). 

Low discharge has resulted in a single channel, with few connections to residual side channels 

and backwaters, an increased remoteness of favourable structures for fish, such as shade and 

cover, and a reduction in river bank heterogeneity. The physical habitat is essentially built 

around gravel point, mid-channel, diamond and diagonal bars (Kellerhals & Church, 1989). 

These features explain the main physical characteristics of the regulated middle Durance 

River (Table 1). 

 

Fish assemblage 

Fish were sampled from 289 independent homogeneous sample units by diurnal electrofishing 

(EFKO F.E.G. 8000, 400–600 V, 6–10 A) using an open-sampling technique (Lamouroux et 

al., 1999b; Thevenet & Statzner, 1999; Lamouroux et al., 2006). As larger individuals have a 

better escape response, an adapted long anode of four metres was used to prospect deep areas 

and reduce fish escape. Surfaces varied between 4.5 and 110 m2 (95% of units). Lamouroux et 

al. (1999a) showed that the area of sample units had a negligible impact on preference 

models. 

 

All individuals were identified to species (except for young stages of the two species of the 

genus Chondrostoma which were grouped), and total length (TL ± 1 mm) measured. For 

analysis, each species was divided into size or taxa classes as: taxon 1 (0 < TL ≤ 30 mm), 

taxon 2 (30 < TL ≤ 60 mm), taxon 3 (60 < TL ≤ 90 mm), taxon 4 (90 < TL ≤ 120 mm), taxon 

5 (120 < TL ≤ 150 mm), taxon 6 (150 < TL ≤ 300 mm), taxon 7 (300 < TL ≤ 450 mm) and 

taxon 8 (TL > 450). Rarest species were excluded from statistical analysis.  
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Annual sampling campaigns were carried out from July until September during five years, 

grouped in two periods (1995-1996-1997 and 2004-2005). Sampling was done when physical 

constraints linked to regulated low flow and water temperature were the highest and when all 

fish size classes, in particular the young-of-the-year, could be obtained (Gozlan et al., 1999). 

The first period was characterised by flood events between each annual campaign, whilst the 

second period was characterised by a long and stable hydrological period due to the absence 

of high flow events (Fig. 2). 

 

Habitat characteristics 

A specific digital elevation model (DEM) was developed and used to describe hydraulic 

variability in the study reach (e.g. quantification of the proportions of velocity–depth classes). 

For a given flow and for any area of the aquatic space, it was possible to quantify the 

hydraulic diversity by calculating the percentages of volumes or horizontal surfaces in a 

depth–average velocity cross-classification. This representation in the velocity–depth plane is 

known as a hydraulic signature (Le Coarer, 2005; Le Coarer, 2007). 

 

Geo-referencing of vertical measurements of depths and corresponding average velocities was 

done with a TCRA 1102 (© LEICA). Density of verticals increased according to the local 

heterogeneity of geomorphic units. Current velocities were measured using an 

electromagnetic current metre (FLO-MATE, portable model 2000). Discharge was gauged 

during each sampling period. Each year, the complete topography, depth and velocity 

measurements, gave a precise cartography of the study reach.  

 

A more exhaustive habitat description was done for each of the individual sampling sub-units 

for fish. Within each sub-unit, a minimum of nine verticals of water depth and current 
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velocity were spatialised to build a triangular irregular network (TIN) of hydraulic 

description. Using the Hydrosignature concept, we defined nine depth-velocity crossed 

classes (i.e. hydraulic classes, Table 2). The lower velocity class limit (5 cm.s-1) separates 

lentic zones and the upper value (30 cm.s-1) corresponds to the observed critical velocity for 

suspended load transport. Values for depth were chosen according to Aadland’s (1993) 

classification of stream habitat types. 

 

Substratum type was characterized by measuring roughness height (k), defined as the 

difference between the highest point on a particle and the minimal height of contact points of 

adjacent particles (Gordon, McMahon & Finlayson, 1992). A minimum of 10 values were 

measured in each sample unit and divided into five classes (Table 3). Large woody debris 

(LWD) was recorded as percent cover according to three classes (W1 < 10 %, 

10 ≤ W2 < 50 %, W3 ≥ 50 %). This form of assessment is well adapted to large systems 

presenting low density and discrete distributions of LWD (Maridet & Souchon, 1995; 

Thevenet, Citterio & Piegay, 1998). Segments were created from shorelines and cover 

percentages incremented into a GIS. The shortest distances were then measured from the 

centroid of each sample unit to each modality of cover (d_W1, d_W2 and d_W3) and to the 

bank (dBank). Channel width was also recorded (Width) (Table 3). The last two variables 

were chosen according to the asymmetry of transversal fish distribution in a channel and the 

importance of instream ecotones (Bretschko & Waidbacher, 2001). 

 

For the global approach, 10 types of visually distinguishable and biologically meaningful 

mesohabitats were identified (Table 4), and associated surfaces were evaluated each sampling 

year. Mesohabitat classes were defined according to the criteria proposed by Borsanyi (2004) 

and Malavoi & Souchon (2002). 

9 



 

 

Analysis 

Importance of habitat  

Partial Least Square regression (PLS) was used to quantify the influence of habitat variables 

on the spatial patterns of fish assemblages. As regression coefficients are not independent 

among fish taxa, they were ranked and analysis done on the first three variable ranks. 

Distances were square-root transformed and fish densities (abundance.m-2) were log (x+1)-

transformed to account heteroscedasticity and deviations from normality. As values of 

coefficients associated to distances were inversely related to proximity to these structures, the 

signs of the coefficients were reversed and referred to as: Bank, Wood1, Wood2 and Wood3. 

Bootstrapping was used to assess the distribution of the rank variables denoting the relative 

importance of each descriptive variable, according to Austin & Tu (2004) and adapted for 

study needs. 

 

In order to transpose information collected at the sample unit scale to the reach scale, we used 

10 000 simulations of the simulated surface areas of each mesohabitat, with a Dirichlet 

variable (Lange, 2002). Using parameters observed at the reach scale, we generated a 

bootstrapped data set in order to represent habitat diversity observed at the studied reach. 

Coefficients ranks were computed for the 10 000 resampled data sets using pls package for R 

(Kooistra et al., 2001). Interpretation of the results focused on the first three variable ranks 

(rank one being the number of times the descriptive variable had the most influence on fish 

presence).  

 

Importance of temporal stability 
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Temporal stability of spatial relationships between the two sampling periods was tested using 

PLS. First, the same data processing as in previous analysis (bootstrapping including PLS 

regression) was carried out but restricted to 100 PLS regressions. The resulting two rank 

matrices were simplified: only taxa from the eight dominant species (blageon – Leuciscus 

souffia, stream bleak – Alburnoides bipunctatus, chub – Leuciscus cephalus, stone loach - 

Barbatula barbatula, barbel – Barbus barbus, minnow – Phoxinus phoxinus, sofie – 

Chondrostoma toxostoma and gudgeon – Gobio gobio) and habitat variables: (i) Wood3 

(proximity to the most complex LWD), (ii) Bank (proximity to the bank), (iii) k1, kt (k2, k3 

and k4 grouped) and k5 and (iv) D1V1, D1V2, D1V3, D2V1, D2V2, D2V3 with depth limits 

(D1 ≤ 30 cm, D2 > 30 cm) and velocity limits (V1 ≤ 5 cm.s-1, 5 cm.s-1< V2 ≤ 30 cm.s-1 and V3 

> 30 cm.s-1) were used. 

 

Simulated rank distribution of each variable for each taxon was compared using a t-test. The 

resulting p-values matrix was considered as an observed situation between the two data sets. 

New data sets were generated using the assumption that spatial relationships were similar 

among years. For this, and as bootstrapped Student t-statistic asymptotic properties were not 

known (Mason & Shao, 2001), permutation tests were performed (Manly, 1997). All sample 

units were combined and permutations were carried out in order to rebuild 1000 replicates of 

both data sets including data from all years. For each permutation, the same data processing 

was undertaken and the resulting distribution of statistics from these 1000 t-tests was 

considered as a theoretical situation (i.e. if there were no fish species preferences). The 

relative positions of the p-values associated to the observed situation within the distribution of 

the 1000 p-values obtained for the theoretical situation informed us about the probability of 

the observed situation under null hypothesis of stability of relationships among years.  
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All analysis were conducted using R software version 2.2.1 © 2005 

(R_Development_Core_Team, 2005). 

 

 

RESULTS 

Fish assemblages 

The studied reach of the middle Durance was characterised by 18 fish species from six 

families and was mainly dominated by rheophilous cyprinids (Table 5). Six species made up 

85% of captures: five cyprinids (blageon, stream bleak, chub, barbel, minnow) and one 

balitorid, the stone loach. Four intermediate species counted for about 14% of captures: three 

cyprinids (nase - Chondrostoma nasus, sofie, gudgeon) and one cobitid, the spined loach 

(Cobitis bilineata). Eight rare species represented 1.3% of the total number of captures: three 

cyprinids (bleak – Alburnus alburnus, roach – Rutilus rutilus and tench – Tinca tinca), two 

percids (perch – Perca fluviatilis and Rhône streber – Zingel asper), one centrarchid 

(pumpkinseed – Lepomis gibbosus) and two salmonids (brown trout – Salmo trutta and 

rainbow trout – Oncorhynchus mykiss). Two species deserve particular attention: the Rhône 

streber, a threatened endemic species of the Rhône catchment, and the introduced spined 

loach. Thirty-one individuals of Rhône streber were recorded in 20 sample units during the 

five sampling campaigns. This species is considered as critically endangered in the 

International Union for Conservation of Nature and Natural Resources (IUCN) Red list of 

threatened species (Crivelli, 2006). The spined loach was also caught in the studied reach; 

first observed in the Durance River in 1996 after successive high floods, and captures 

increased from 14 specimens in the first period to 176 specimens in the second period. 

 

12 



Most individuals of the fish assemblage consisted of young-of-the-year and small species (c. 

75 percent were < 90 mm). Only 0.65% of total fish catch were longer than 300 mm. For 

large cyprinids, adults > 300 mm accounted 0.8%, 2% and 6.5% of chub, barbel and nase, 

respectively. 

 

 

Habitat characteristics 

Instream flow varied from 3.5 to 7 m3.s-1, and width of active channel varied from 7 to 202 m 

(mean 33 m) during the study period (Table 1). Cross-section flow velocities (mean 0.44 m.s-

1, range 0.05 - 1.85 m.s-1) and water depth (mean 0.36 m, range 0.04 - 1.11 m) showed a 

predominance of shallow and lentic habitats. Deep areas > 60 cm covered 13.5% of the reach 

compared to 26.2% for shallow areas (d < 15 cm, Table 2). The proportion of large and 

shallow riffles increased. A first topographical survey of 3 300 m resulted in the presence of 

10 riffles of 25 m or more with a depth < 15 cm (Dumont et al., 1993). 

 

During regulated flow conditions the alluvial forest is almost always far from the channel and 

reached only during floods. Inputs of large woody debris from riparian forest to the channel 

were highly reduced. The scarcity of immersed LWD was indirectly shown by the average 

minimal distance between sample units and woody debris (d_W3: 64 m, d_W2: 81 m, d_W1: 

84 m, Table 3), i.e. twice the width of the active channel. 

 

The first 16 principal components of the PLS regression were kept in order to explain at least 

25 % of the spatial patterns individual taxa. Including more components did not improve 

model fit. The first three ranks obtained from the coefficients of the PLS regression 

(Appendix 1) revealed strong relationships between fish length and hydraulic classes. A well 
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defined pattern for the largest species (chub, barbel and nase) was exhibited. Some hydraulic 

classes were strongly avoided, such as d1v1 by large taxa, d1v4 by minnow and d4v1 by 

bleak (Aal 2 & 3), blageon (Lso 4 & 5), chub (Lce 2 to 6), nase (Cna 4 & 5) and all taxa of 

spined loach. 

 

Habitat characteristics were important predictors of fish assemblage composition. Presence or 

proximity of LWD had a significant effect on the largest specimens of sofie, gudgeon, perch, 

chub, blageon, nase and barbel, and also on all size classes of stream bleak. LWD was also 

the most important variable for nase (Cna 6), gudgeon (Ggo 4 & 5) and perch (Pfl 6). By 

contrast, other taxa, bleak (Aal 3 & 4), young sofie (Cto 3) and barbel (Bbs 3) and Rhône 

streber (Zas 2) were negatively correlated with LWD. A positive effect of bank proximity was 

also observed for almost all species, particularly for the youngest fishes, in relation to low 

depths close to the bank. Bank proximity was also important for some large taxa such as chub, 

barbel and perch. Conversely, bank proximity was not important for spined loach, and Rhône 

streber was negatively correlated with this variable. Regarding channel width, most of the 

species occupied the narrow sections of the river, except Rhône streber (taxa 3, 4 & 5) which 

showed a preference for large channels and an avoidance of bank proximity. All sizes of 

species caught in lentic sub-units (chub, spined loach, perch) but also some rheophilous taxa 

(bleak, gudgeon, blageon) were associated to the lowest roughness height values (k1). The 

largest rheophilic species (nase, sofie, barbel, blageon) were associated to the highest k values 

(k5) recorded in narrow and curved sections of the channel with the highest hydraulic classes. 

In some areas, rheophilic species were associated to heavy blocks used for bank stabilisation.  

 

Our results show the importance of habitat for the endangered Rhône streber and two loaches 

(stone and spined loach). Small individuals (< 60 mm) were mainly associated with d2v3 
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while the larger individuals (> 60 mm) were only associated with d2v4 (d2v3 were partly 

avoided). Rhône streber inhabited mid-channels in wide sections. Roughness height followed 

a gradient in intermediate k classes according to the fish size (k4 was avoided by taxa 3 and 

4). The stone loach was mainly found in fast-flowing shallow zones (overall < 0.05 m) and 

appeared to be directly influenced by proximity to the bank or to the largest woody debris. By 

contrast, the spined loach was only observed in null velocity areas; according to rank values, 

this species was associated to the presence of very fine (k1) substratum.  

 

Temporal variability 

Hydromorphological changes in the river bed and instream LWD after high-level floods 

showed the most marked changes between the two time periods (Fig. 2). Although % bank 

line with LWD did not differ among years (range 2.6% in 1996 to 7% in 1995), distance to 

the nearest and highest complex LWD (d_W3) did differ between the two periods (Period 1: 

99 ± 21 m, Period 2: 35 ± 5 m, Mann-Whitney test, P < 0.001) (Table 6). Distances to the 

bank did not differ (Period 1: 4.9 ± 0.8 m, Period 2: 6.1 ± 0.8 m, P = 0.078), whereas 

roughness height classes differed significantly for k1 and k5. Silted areas increased in 2005 

and roughness height increased in the last two years (Table 3).  

 

As the river channel was not restructured between 2004 and 2005, the sampled surface 

associated to k1 in 2005 (10.8 %) was about twice that of other years (mean 5.3%). 

Furthermore, in the second period, a reach section was running along rocks protecting a 

motorway, increasing "artificially" high roughness height values (sampled surface associated 

to k5 was about 2.5% in 2004-2005, whereas it was less than 0.6% for the other three years). 
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In spite of changes in habitat characteristics, no major differences in fish-habitat relationships 

were noted between the study periods (Table 6). The importance of bank characteristics was 

the same between periods except for stream bleak (Abi 4). Only one strong ecological change 

concerned proximity to the nearest large woody debris (blageon, Lso 5) and roughness height 

(stream bleak, Abi 2 for k1). Similarly, few differences were noted for hydraulic classes 

between periods (Table 2). The most important changes were noted in D2V1 class for chub 

(Lce 2 & 6) and in D2V3 for barbel (Bbs 6). Observed differences in hydrosignatures were 

mainly related to deep classes (d > 60 cm). A deepening of the channel against the artificial 

bank reinforcement consecutive to its lateral migration explained the highest proportion of 

deep classes during the second period.  

 

 

DISCUSSION 

River topography and quantitative hydraulic characterisation of habitat (Le Coarer & Dumont, 

1995; Le Coarer, 2005; Le Coarer, 2007) were used to define the hydraulic heterogeneity of 

each sub-unit. Traditionally, water depth and current velocity are considered as independent 

parameters, although they are intimately associated, for example, in characterisation of 

physical flow (Stewardson & McMahon, 2002), ecological mesohabitat evaluation (Orth, 

1995) and fish habitat use (Mosley, 1983; Aadland, 1993). Bivariate classes (depth/velocity) 

and use of fish size classes highlighted taxa distributions according to the size, physiological 

adaptation and ecological affinity to hydraulic conditions. Taxa followed well-defined gradual 

distribution in hydraulic classes.  

 

Our results show the importance of habitat characteristics for fish assemblages, but also that 

depths used by taxa, especially large individuals, were probably a "compulsory" adjustment to 
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physical conditions rather than a real preference in the Durance (Boyer, 2004). Only 13.5% of 

the study reaches consisted of deep mesohabitat (d > 60 cm), which is known to be important 

in the life history of large rheophilous species (Baras & Cherry, 1990; Lucas & Batley, 1996; 

Huber & Kirchhofer, 1998; Allouche, Thevenet & Gaudin, 1999). Hence, the scarcity of deep 

mesohabitat is likely responsible for the low number of large individuals recorded in our 

study. Only 0.8% of chub, 2% of barbel and 6.5% of nase individuals captured were > 300 

mm. Although sampling effort may have underestimated the density of large individuals, our 

findings support previous studies on the regulated Durance (Bouchard, 1996; Dumont et al., 

1993). The low number of large individuals could also be associated to fitness which may be 

negatively affected by physical constraints, such as low availability of LWD, decrease in 

mean current velocity, lack of deep areas and alteration of temperature patterns. All of these 

disturbances have been shown to affect the growth rate of salmonids (Swales, 1988; Fausch & 

Northcote, 1992) and chub (Bouchard et al., 1998) in the river Durance.  

 

The finding that substratum roughness height value (k) was a robust predictor of fish 

assemblages was expected as it indirectly estimates hydraulic shelter created by substratum 

elements. A previous study in a salmonid-rich part of the regulated Durance showed a 

significant positive relationship between mean size of brown trout and mean k value in sub-

units (Carrel et al., 1992). The importance of the k1 class is related to fine sediments 

associated with low velocity; only Cobitis bilineata can be considered as having a real affinity 

to fine sediment substratum (Slavik et al., 2000). Intermediate k classes had no clear influence 

on the spatial patterns of individual taxa, with the exception of Rhône streber. Our results 

corroborate Rhône streber habitat observations on the Beaume River, a tributary of the 

Ardèche River (Labonne, Allouche & Gaudin, 2003). The k5 class appears naturally in the 

17 



deepest areas and in artificial rocks protecting the bank (second period). The large substrate 

elements are mainly used as cover for the largest specimens. 

 

Woody debris was among the first three variables selected in our models, and its importance 

is clearly highlighted regarding the influence of LWD on rank values. This strong relationship 

is likely related to the overall low amount of LWD in the study reaches, but also its 

importance for instream hydrology and shelter. The largest woody debris (and associated 

distances: d_W2 and d_W3) had the most influence on fish assemblages. Thevenet, Citterio & 

Piegay (1998) showed that wood jams containing large wood had greater potential for aquatic 

communities. Likewise, Angradi et al. (2004) showed the importance of LWD for increasing 

habitat heterogeneity, by increasing the hydraulic roughness of the bed and creating specific 

habitats, for fish assemblages.  

 

Species richness and spatial responses of taxa were relatively stable, despite large 

hydromorphological changes during flood events. The main differences between the study 

periods were associated with changes in morphological characteristics following natural high 

flood events and siltation during long periods of stable low flow. The significant changes in 

distances to the nearest LWD observed between the two periods could be linked to migration 

patterns of the channel, thereby underpinning the importance of contact with forested bank. 

Our results showed low LWD densities in the channel in addition to the highest densities 

unusually being found in the channel sections reaching overhanging residual alluvial forests. 

Differences observed for Wood3 were explained by greater distances to these LWD during 

the first period. For example, distances for blageon to the nearest largest LWD were clearly 

distinct between the first (mean 78.3 m) and second (14.5 m) periods. For bank variability, the 

differences observed for stream bleak were explained by the shorter distance to the bank 
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recorded the first year (1.8 ± 1.1 m in 1995) compared to the other years (6.1 ± 0.9 m). The 

only difference exhibited in roughness height was associated with stream bleak for k1 and 

was related to the increase in silted areas in 2005. 

 

Spatio-temporal relationships for hydraulic classes showed the regulated Durance to be 

relatively stable during the study period. Significant differences concerned chub for class 

D2V1 and barbel for class D2V3. Chub preferred habitats with low water velocity, greater 

depth and wood shelter (Appendix 1). During the first study period, chubs were often sampled 

in sub-units close to or inside wood cover, i.e. woody debris functioned as a hydraulic refuge. 

The observed differences were therefore related more to the choice of hydraulic class limits 

than to a real change in velocity preference of the species. Barbel was associated with deep, 

fast-flowing habitats located along rip rap. Despite high levels of disturbance, both fish 

assemblages and spatio-temporal relationships of individual taxa to habitat characteristics 

appeared relatively stable.  

 

Prior to large scale regulation of the middle Durance River the fish community was 

practically unknown, except for some rare historical data published in cartographical archives. 

Studies by Kreitman (1932) and Leger (1934) provide historical data on fish assemblages in 

the Rhône River and Upper Durance catchment, respectively. A comparison of current with 

past conditions showed fish assemblages in the main channel to be similar, with the exception 

of eel (Anguilla anguilla), which has totally disappeared from the middle Durance, and the 

recent arrival of Cobitis bilineata. Indeed, before the first capture of a cobitid in the Durance, 

Cobitis taenia was considered as the only spined loach present in France, mainly limited to 

the Seine and the Rhine catchments (Keith & Allardi, 2001). The diversity of hydrosystems 

inhabited by C. bilineata could explain its rapid and successful colonisation of the River 
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Durance (Kottelat & Freyhof, 2007). By contrast, the distribution of the endemic percid 

Zingel asper has dramatically decreased in the Rhône River catchment (Laroche & Durand, 

2004). Therefore, a population of the endemic Zingel asper in the highly regulated middle 

Durance can be considered as a positive element for its conservation. 

 

Many studies have demonstrated that an efficient restoration plan cannot rely solely on small-

scale actions such as implantation of artificial instream structures or rehabilitation of the main 

channel (Pretty et al., 2003). Potential recovery of fish assemblages in the Durance River is 

driven by the necessity of promoting the development of lateral and off-channel habitats 

within the river corridor. Sustainable management implies an efficient rehabilitation scheme 

including a regulated instream flow that should be more adapted to fish needs. Coupling 

information on mesohabitat and at reach scale was demonstrated to be the best way of 

assessing and predicting fish spatial assemblages (Parasiewicz & Walker, 2007). Although 

restoration would require improving natural hydro-geomorphological dynamics in order to 

increase habitat heterogeneity, with connections to remnant side channels or backwaters, it 

would be most effective when used together with other strategies such as water quality 

management. Consequently, explaining how these abiotic and biotic factors interact over a 

range of temporal and spatial scales should be a major goal of lotic fish ecologists (Schlosser, 

1995). 

 

In regulated rivers, many landscape attributes have been shown to have strong effects on 

processes determining fish population dynamics. The functional terrestrial-aquatic ecotone 

and its influence on temporal and spatial variation in resource or cover supply were shown to 

significantly affect the distribution fish species and assemblages. Large-scale spatial habitat 

relationships and their effects on resource use and fish movement are likely to be most 
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relevant for modelling. Presence of refuges from harsh environmental conditions and their 

influence on fish survival and emigration/immigration rates must be taken into account to 

increase fish populations.  
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Figure 1: The Durance River basin, its main tributary network (Strahler order ≥ 3) and the study site 
located near Manosque (Alpes-de-Haute-Provence). A thick grey line outlines the canal supplying 14 
hydropower stations from Serre-Ponçon dam to Berre Lagoon. For clarity, all hydropower stations are 
omitted from the map. Escale and La Brillanne are gauging stations (see Figure 2). The bottom-right 
insert shows the studied river reach during the two final years, 2004 and 2005. Document sources: 
U.R. Hydrobiologie - Cemagref Aix-en-Provence, ©IGN, BD CARTHAGE® RMC. 
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Figure 2 - Time-series of mean daily discharge of the Durance River at Escale and at La Brillanne for the two study periods: 
1995-1997 and 2003-2006. At Escale (44°05’11”N, 6°00’45”E), natural discharge is reconstructed and close to the historical 
Durance stream flow. At La Brillanne (43°56’04”N, 5°53’37”E), current discharge corresponds to regulated instream flow and 
includes partial flows from tributaries located between the two gauging stations. Data from the French Hydrology Data Bank 
HYDRO of the Ministry for Ecology, Sustainable Development and Spatial Planning (http://www.hydro.eaufrance.fr/). 
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Table 1 – Main hydromorphological variables of the study site. Mean values were calculated with 1164 transects at 5 m intervals along the curvilinear axis 
of the channel. W: width of the channel, dm: mean depth of transect, dM: maximal depth of transect, V: mean velocity and Slope: surface water slope. 
 

    W (m)  dm (m) dM (m)  V (m.s-1)   Slope (%) 
Mean   32.8  0.32 0.59  0.42   0.39 
Standard deviation  16.2 0.18 0.32 0.24  0.54 
Minimum  7.4 0.04 0.06 0.05  0.01 
Maximum   202.5  1.11 2.05  1.85   3.05 

 

 

 

Table 2 – Variables and their codes obtained by depth (d) and current velocity (v) cross tabulation. 
The numerical value of each variable is the percentage area of the cross class in the total area considered. The sum of the 16 variables of the cross table 
equals 100%. Values are indicated for the whole five year period and for both distinct periods. 
 
 

depth (cm) 

d > 60 d4V1 d4V2 d4V3 d4V4 2.3 4.5 4.6 2.1

30 < d ≤ 60 d3V1 d3V2 d3V3 d3V4 2.3 9.4 10.9 11.5

15 < d ≤ 30 d2V1 d2V2 d2V3 d2V4 2.0 7.7 11.0 5.4

0 < d ≤ 15 d1V1 d1V2 d1V3 d1V4 8.6 12.9 4.3 0.4

0 < v ≤ 5 5 < v ≤ 30 30 < v ≤ 60 v > 60 0 < v ≤ 5 5 < v ≤ 30 30 < v ≤ 60 v > 60 Velocity (cm.s -1 )

depth (cm) 

d > 60 0.1 3.1 5.8 0.9 4.7 6.0 3.3 3.4

30 < d ≤ 60 1.6 11.9 10.8 10.6 3.1 6.8 11.1 12.4

15 < d ≤ 30 1.8 9.3 11.8 5.5 2.3 6.0 10.2 5.2

0 < d ≤ 15 9.2 13.7 3.4 0.4 7.9 12.0 5.3 0.4

0 < v ≤ 5 5 < v ≤ 30 30 < v ≤ 60 v > 60 0 < v ≤ 5 5 < v ≤ 30 30 < v ≤ 60 v > 60 Velocity (cm.s -1 )

First period : 1995 to 1997 Second period : 2004 - 2005

Total ( 5 year period)Codes
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Table 3 – Habitat variables, their modalities and values for each year. Minimal distances were calculated from the sample unit centroid to the nearest three cover modalities and to the nearest bank. The width of the 
channel was measured at the level of the sample unit centroid and on a line perpendicular to the water current direction. The frequency distribution of roughness height values in a given sample unit gives the percentage 
of each size class (variable ki). 
 
 

< 10 % d_W1 282  (± 282) [5 - 861] 80 (± 96) [0.3 - 348] 30 (± 22) [0.8 - 80] 58 (± 62) [0.6 - 285] 37 (± 42) [0.1 - 199] 
< 50 % d_W2 52 (± 60) [0.1 - 191] 191 (± 136) [1.2 - 464] 52 (± 33) [2.1 - 110] 48 (± 53) [0.4 - 226] 53 (± 57) [0.3 - 244] 
> 50 % d_W3 137  (± 183) [0.1 - 574 100 (± 90) [0.1 - 329] 46 (± 37) [0.2 - 113] 34 (± 34) [0.01 - 154] 36 (± 33) [0.2 - 155] 

Distance to the bank (m) dBank 4 (± 4) [0.1 - 21] 5 (± 4) [0.3 - 19] 6 (± 5) [0.4 - 19] 6 (± 6) [0.1 - 27] 6 (± 5) [0.1 - 20] 
Chenal width (m) Width 20 (± 12) [4 - 48] 18 (± 10) [3 - 46] 27 (± 12) [4 - 44] 25 (± 12) [2 - 55] 25 (± 11) [6 - 50] 

[ 0 - 0.0625 cm [ k1 3.9 (± 16.3) [0 - 100] 8.4 (± 23.6) [0 - 100] 8.7 (± 25.5) [0 - 100] 6.1 (± 17.6) [0 - 100] 22.7 (± 34) [0 - 100] 

Variables and Codes 
Cover percentage 

Other variables 

Substrate roughness height

and distance associated

1997 2004

Mean (± sd) [Min. - Max.] Mean (± sd) [Min. - Max.] Mean (± sd) [Min. - Max.] 
2005 

and frequencies (ki) 

Mean (± sd) [Min. - Max.] [Min. - Max.]Mean (± sd)

1995 1996

[0 - 64.7] 
[0 - 90] 
[0 - 80] 
[0 - 90] 

14.6 (± 17.2) 
39.7 (± 26.7) 
19.8 (± 23.2) 
3.1 (± 12.8) 

[0 - 78.6]
[0 - 100]
[0 - 75]

[0 - 78.9]

22.3 (± 21.6)
49.4 (± 24.3)
17.9 (± 18.2)
4.2 (± 14.4)

[0 - 76.9]
[0 - 80]
[0 - 70]
[0 - 0]

22.7 (± 20.1) 
44.7 (± 23.2) 
23.8 (± 19.7) 

0 (± 0) 

[0 - 44.4]
[0 - 86.6]
[0 - 86.6]
[0 - 12.5]

7.9 (± 12.1)
47.1 (± 19.7)
35.9 (± 22.9)

0.6 (± 2.2)

[0 - 93.3]
[0 - 92.3]
[0 - 76.9]

[0 - 10]

18.8  (± 22.7) 
47.7 (± 20.3) 
29.3 (± 24.5) 

0.2 (± 1.6) 

k2
k3
k4
k5

[ 0.0625 - 1.6 cm [ 
[ 1.6 - 6.4 cm [ 
[ 6.4 - 25.6 cm [ 
[ 25.6 - 204.8 cm [ 

 
 
 
Table 4 - Definition and codes of the 10 mesohabitats according to the following physical variables: wave height of the water surface, surface water slope, current velocity and depth [adapted from Malavoi & Souchon 
(2002) and Borsany et al. (2004)]. 
 

Water surface Slope Velocity Depth 
  > 60 cm 

  
> 30 cm.s-1 

< 60 cm 
 

> 0.4% 
< 30 cm.s-1  

Waves < 5cm  > 60 cm 
 

> 30 cm.s-1 
< 60 cm 

  > 60 cm 
  

< 0.4% 
< 30 cm.s-1 

< 60 cm 
  > 60 cm 
  

> 30 cm.s-1 
< 60 cm 

Waves > 5cm 
> 0.4% 

< 30 cm.s-1  
  > 60 cm 
 

> 30 cm.s-1 
< 60 cm 

  > 60 cm 
  

< 0.4% 
< 30 cm.s-1 

< 60 cm 
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Table 5 – List of the 18 species sampled in the middle Durance study site and their abbreviation (Abb.). For each species, total number of fish caught (N), relative abundance (%), number of sample units (Nsampl) and 
species occurrence (Occ.) in percentage, minimal (TLm) and maximal (TLM) total length in mm are indicated. The last column indicates the three groups of species according to their relative abundance. Group 1: main 
species, > 5%. Group 2: intermediate species, from 1 to 5%. Group 3: rare species, < 1%. Five species were excluded from data analysis: roach, tench, the two salmonids and pumpkinseed. 
 
 

      Abb. N % Nsampl Occ. TLm TLM Group
Cyprinidae                  
 Leuciscus souffia Blageon Lso 2318 19.46 191 0.66 17 165 1
 Alburnoides bipunctatus Stream bleak Abi 2045 17.17 191 0.66 11 132 1
 Leuciscus cephalus Chub Lce 1730 14.52 165 0.57 17 558 1
 Barbus barbus Barbel Bbs 1463 12.28 197 0.68 16 610 1
 Phoxinus phoxinus Minnow Pph 965 8.10 95 0.33 14 68 1
 Chondrostoma nasus Nase Cna 520 4.36 92 0.32 28 525 2
 Chondrostoma toxostoma Sofie Cto 480 4.03 89 0.31 20 237 2
 Gobio gobio Gudgeon Ggo 449 3.77 104 0.36 15 130 2
 Alburnus alburnus Bleak Aal 45 0.38 25 0.09 18 160 3
 Rutilus rutilus Roach Rru 6 0.05 5 0.02 32 107 3
  Tinca tinca Tench Tti 1 0.01 1 < 0.01 173 173 3
Balitoridae                 
  Barbatula barbatula Stone loach Bba 1599 13.42 160 0.55 22 85 1
Cobitidae                 
  Cobitis bilineata Spined loach Cbi 190 1.59 48 0.17 31 102 2
Percidae                 
 Perca fluviatilis Perch Pfl 51 0.43 19 0.07 66 190 3
  Zingel asper Rhône streber Zas 31 0.26 20 0.07 40 155 3
Centrarchidae                 
  Lepomis gibbosus Pumpkinseed Lgi 5 0.04 4 0.01 85 97 3
Salmonidae                 
 Salmo trutta Brown trout Str 12 0.10 10 0.03 61 240 3
  Oncorhynchus mykiss Rainbow trout Omy 3 0.03 2 0.01 290 350 3
  Total number of fish     11913            

 



Pph_1 Pph_2 Abi_2 Abi_3 Abi_4 Ggo_2 Ggo_3 Ggo_4 Lso_1 Lso_2 Lso_3 Lso_4 Lso_5 Cho_2 Cto_4 Cto_5 Cto_6
Wood3 * * * ***

Bank *
k1 **
kt
k5

D1V1 * *
D1V2 *
D1V3 *
D2V1 *
D2V2
D2V3

Period 1 171 506 185 766 85 70 121 45 90 459 324 123 26 141 11 15 21
Period 2 99 171 433 194 255 63 39 96 25 518 314 360 71 76 36 31 89

Bbs_2 Bbs_3 Bbs_4 Bbs_5 Bbs_6 Lce_1 Lce_2 Lce_3 Lce_4 Lce_5 Lce_6 Bba_2 Bba_3
Wood3 *

Bank

k1
kt
k5

D1V1
D1V2
D1V3 *
D2V1 ** * **
D2V2
D2V3 **

Period 1 158 106 95 44 201 188 230 172 118 68 65 776 129
Period 2 224 67 154 157 173 61 329 129 176 74 106 484 121

Sofie

Stone loachChubBarbel

Minnow Stream bleak Gudgeon Blageon
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Table 6 – Analysis of temporal effects: p-values of t-test for comparison between two time periods (1995-1996-1997 and 2004-2005). Abbreviations were explained in Methods - Analysis - Importance of temporal stability. 
Total abundances were mentioned for each period and for each taxon. Critical values were adjusted with a Dunn Sidak procedure to account for multiple comparisons (Sokal & Rohf, 1995). The correction of the multiple 
comparisons will lead to conservative tests (Sokal & Rohf, 1995) therefore an upper alpha risk than the usual 0.05 could be assumed and we suggest 0.2. Significances were coded as standard proposed by (Leahey, 
2005): *p <= 0.2, **p <= 0.1, ***p <= 0.05. Variables considered as having no relevant influence on fish presence according to results from previous analysis are shown as grey.  

 
 

 

 



Appendix 1 – Number of times (expressed in percentages) each variable belongs to the first three ones explaining fish presence. Abbreviations were previously explained in part Methods. Information about sign of PLS 
coefficients was kept in order to inform about attractiveness or avoidance of relationships. For simplification and readability of the tables, percentages less than 5% have not been indicated. Values were formatted as 
following: italic (from 5 to 25), italic bold (from 25 to 50) and bold (over 50). 
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Coef (+)
Rk_1 to 3 Pph_1 Pph_2 Pph_3 Abi_1 Abi_2 Abi_3 Abi_4 Aal_1 Aal_2 Aal_3 Aal_4 Ggo_1 Ggo_2 Ggo_3 Ggo_4 Ggo_5 Lso_1 Lso_2 Lso_3 Lso_4 Lso_5 Lso_6 Cho_1 Cho_2 Cto_3 Cto_4 Cto_5 Cto_6

Wood1 14 11 14 11 10 23 15 11 6 8 6 24 5 10 20 5 21
Wood2 39 55 11 7 38 66 9 19 37 16 8
Wood3 11 25 21 12 7 16 13 16
Bank 28 62 9 74 21 35 31 37 29 23 18 6 10 15 27 17 5 10 41 30 10 7
Width 7 8
k1 6 93 14 10 36 10 25 23 53 5 9 8
k2 11 40 18 12 16
k3 22
k4 11 20 23
k5 23 23
d1v1 23 53 61 54 10
d1v2 23 40 22 56
d1v3 52 66 62 28 23 68 62 9
d1v4 48
d2v1 60 24 17 46 5 44 30 68 7 22 65 13 26 18 8
d2v2 11 45 8 56 55 26 48 97 74 10 20 45 85 79 5
d2v3 17 10 9 6 9 26 62 17
d2v4 8 7 20
d3v1 21 11 53 6 27 23 32 68 53
d3v2 16 7 43 10 51 25 8 46
d3v3 55 23 44 7 7 10 12
d3v4 20 13 7
d4v1 7 61 23 23 6 47
d4v2 16 11 68 33 58 10 54 65 25 52 15 74 18 6
d4v3 6 5
d4v4 17

Coef (-)
Rk_1 to 3 Pph_1 Pph_2 Pph_3 Abi_1 Abi_2 Abi_3 Abi_4 Aal_1 Aal_2 Aal_3 Aal_4 Ggo_1 Ggo_2 Ggo_3 Ggo_4 Ggo_5 Lso_1 Lso_2 Lso_3 Lso_4 Lso_5 Lso_6 Cho_1 Cho_2 Cto_3 Cto_4 Cto_5 Cto_6

Wood1 6 11 9 33
Wood2 78 16 75 78 11 7 18 76
Wood3 24 7 6 6 18 7
Bank
Width 9 18 87 30 8 31 9 12 20 81 20 6 12 66 21 12 19 41 17 41 53 71 37
k1 25 38
k2 7 21
k3
k4 8 27 14 6 18 10 10 16 27 9
k5 9 18 13 10 7 6 18 18 6
d1v1 6 41 10 56 7 12 53 66 16 42 63 38 11 42 44 30
d1v2 5
d1v3 8 7
d1v4 29 22 38 10 10 14 26 22
d2v1 9 13 5 17
d2v2 10
d2v3
d2v4
d3v1 9 23 6 30 7 10
d3v2 7 14
d3v3 6
d3v4
d4v1 6 39 30 7 48 70 61
d4v2 5
d4v3
d4v4

Leuciscus souffiaPhoxinus phoxinus Chondrostoma toxostomaGobio gobioAlburnus alburnusAlburnoides bipunctatus

Phoxinus phoxinus Chondrostoma toxostomaGobio gobio Leuciscus souffiaAlburnoides bipunctatus Alburnus alburnus
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Coef (+)
Rk_1 to 3 Lce_1 Lce_2 Lce_3 Lce_4 Lce_5 Lce_6 Lce_7 Lce_8 Bbs_1 Bbs_2 Bbs_3 Bbs_4 Bbs_5 Bbs_6 Bbs_7 Bbs_8 Cho_1 Cho_2 Cna_3 Cna_4 Cna_5 Cna_6 Cna_7 Cna_8

Wood1 7 5 6 6 20 22 5 6
Wood2 9 11 57 41 30 12 10 8 47 31 29 47 10 11
Wood3 8 31 6 36 9 20 40 13
Bank 17 20 26 9 15 14 38 9 12 20 14 16 28 37 15 41 30 17
Width
k1 43 57 45 23 56 7 45 39 14 40
k2 13 13 53 50 7 16 7
k3 11
k4 7 19 23
k5 13 60 37 56 20
d1v1 91 53 10
d1v2 54 36 56
d1v3 23 38 74 62
d1v4 12 6 22
d2v1 75 24 9 16 11 23 6 16 15 18 11
d2v2 6 7 23 70 30 20 61 44 38 18
d2v3 17 67 7 62 8
d2v4 15 60
d3v1 60 73 80 79 82 23 54 57 27 70 80
d3v2 11 25 8 9
d3v3 38 6 9 37
d3v4 17 5 11 13 27 15 9 13
d4v1 7
d4v2 6 7 9 5 9 74 65 16
d4v3 5 12 10 37 43
d4v4 43 71 87 85

Coef (-)
Rk_1 to 3 Lce_1 Lce_2 Lce_3 Lce_4 Lce_5 Lce_6 Lce_7 Lce_8 Bbs_1 Bbs_2 Bbs_3 Bbs_4 Bbs_5 Bbs_6 Bbs_7 Bbs_8 Cho_1 Cho_2 Cna_3 Cna_4 Cna_5 Cna_6 Cna_7 Cna_8

Wood1 9 13 10
Wood2 56 24 9
Wood3 7 7 6 10
Bank 8
Width 11 7 30 7 18 31 21 44 7 37 41 17 51 17 14 14 13 8
k1 6 11 7
k2 18 11 7
k3 5
k4 7 8 11 8
k5 10 18
d1v1 19 33 30 12 13 21 12 41 23 32 13 11 17 14 17 17
d1v2 7 15 8
d1v3 5 6 18 7
d1v4 13 15 13 22
d2v1 11 13 10 9 8 8 5 23 18
d2v2 11
d2v3 5 9 13
d2v4 9 16 5
d3v1 20 8 7 15
d3v2 5 9 12
d3v3 10 6 16 18
d3v4
d4v1 64 77 80 66 67 10 35 23 73 80
d4v2 10 22 6 18 14 5 6 9
d4v3
d4v4

Leuciscus cephalus Barbus barbus Chondrostoma nasus

Chondrostoma nasusLeuciscus cephalus Barbus barbus
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Coef (+)
Rk_1 to 3 Bba_1 Bba_2 Bba_3 Cbi_2 Cbi_3 Cbi_4 Pfl_3 Pfl_4 Pfl_5 Pfl_6 Zas_2 Zas_3 Zas_4 Zas_5

Wood1 7 15 23 24
Wood2 11 11 21 47 67 20
Wood3 6 14 17 7
Bank 15 6 8 25 15 9
Width 6 13 12 30
k1 17 91 69 97 63 55 48
k2 12
k3 56 44
k4 6 45
k5 43
d1v1 31 88 29
d1v2 67 93 36 61
d1v3 30 77 77 12 5
d1v4 43 38 44
d2v1 7 30 15 35 34
d2v2 5 58
d2v3 28 6 7 72
d2v4 11 14 14 80 70
d3v1 6 35 68 75 83 84
d3v2 25
d3v3 5 16 19
d3v4 39
d4v1 54 61 32
d4v2
d4v3
d4v4

Coef (-)
Rk_1 to 3 Bba_1 Bba_2 Bba_3 Cbi_2 Cbi_3 Cbi_4 Pfl_3 Pfl_4 Pfl_5 Pfl_6 Zas_2 Zas_3 Zas_4 Zas_5

Wood1 7
Wood2 12 20 43
Wood3 11 9
Bank 31 6 31
Width 9 13 36
k1
k2 7 22 22 26 22 9
k3 7
k4 42 36
k5 5
d1v1 12 7 7 7
d1v2 16
d1v3 21
d1v4 9 8
d2v1 19 15 29 7
d2v2 5 8
d2v3 12 14 6
d2v4
d3v1
d3v2 11 8 16
d3v3 5 13
d3v4
d4v1 8 9 40 76 76 73
d4v2 5 7
d4v3
d4v4 14

Zingel asper

Zingel asperBarbatuta barbatula Cobitis bilineata Perca fluviatilis

Cobitis bilineata Perca fluviatilisBarbatuta barbatula
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