
HAL Id: hal-00653240
https://hal.science/hal-00653240

Submitted on 19 Dec 2011

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

AnKLe: Detecting Attacks in Large Scale Systems via
Information Divergence

Emmanuelle Anceaume, Yann Busnel, Sébastien Gambs

To cite this version:
Emmanuelle Anceaume, Yann Busnel, Sébastien Gambs. AnKLe: Detecting Attacks in Large Scale
Systems via Information Divergence. 2011. �hal-00653240�

https://hal.science/hal-00653240
https://hal.archives-ouvertes.fr

AnKLe: Detecting Attacks in Large Scale

Systems via Information Divergence

Emmanuelle Anceaume

IRISA / CNRS

Rennes, France

emmanuelle.anceaume@irisa.fr

Yann Busnel

LINA / Université de Nantes

Nantes, France

Yann.Busnel@univ-nantes.fr

Sébastien Gambs

IRISA / Université de Rennes 1

INRIA – Rennes Bretagne Atlantique

Rennes, France

sebastien.gambs@irisa.fr

Abstract—In this paper, we consider the setting
of large scale distributed systems, in which each
node needs to quickly process a huge amount of
data received in the form of a stream that may
have been tampered with by an adversary. In this
situation, a fundamental problem is how to detect
and quantify the amount of work performed by the
adversary. To address this issue, we propose AnKLe
(for Attack-tolerant eNhanced Kullback-Leibler di-
vergence Estimator), a novel algorithm for estimating
the KL divergence of an observed stream compared
to the expected one. AnKLe combines sampling
techniques and information-theoretic methods. It is
very efficient, both in terms of space and time
complexities, and requires only a single pass over
the data stream. Experimental results show that the
estimation provided by AnKLe remains accurate even
for different adversarial settings for which the quality
of other methods dramatically decreases.

Index Terms—Data Stream; Kullback-Leibler Di-
vergence; Sampling; Byzantine Adversary; Scalabil-
ity; Performance Analysis.

I. INTRODUCTION

The main objective of this paper is to propose

an algorithm for estimating the similarity between

an observed data stream and the expected (i.e.

idealized) one in the context of massive data

streams. More precisely, we consider the setting

of large scale distributed systems, in which each

node needs to quickly process a huge amount of

data. Typically, this data corresponds to IP network

traffic, sensors readings, nodes identifiers or any

other data issued from distributed applications. For

instance, in IP network management, the analysis

of the stream may be used to detect the presence of

outliers or intrusions when changes in the commu-

nication patterns occur [1], to estimate the heaviest

users or the more popular sites [2], or to dy-

namically dimension routers. In sensors networks,

probabilistic laws modeling data streams are used

in tracking applications for estimating the position

of target sensors [3], or for correlating geographical

or environmental informations [4], [5]. Finally, in

large scale and dynamic systems, uniform sam-

pling is one of the fundamental primitive [6] that

allows for instance, by analyzing the information

gathered across the network, to estimate the size

of the system, its topological organization, or its

available resources so that efficient dissemination,

load-balancing or data-caching algorithms can be

designed and implemented [7], [8].

In the context of massive data streams, nodes

need to quickly process on the fly the flow of data.

Moreover, nodes can only locally store very limited

data and perform few operations on this data.

Additionally, it is often the case that if some data

has not been locally stored for further processing,

once it has been read, it cannot be read anymore

(this refers to the one-pass data streaming model).

The problem of detecting changes or outliers in

a data stream is similar to the problem of identi-

fying patterns that do not conform to the expected

behavior, which has been an active area of research

for many decades. For instance, depending on the

specificities of the domain considered and the type

of outliers considered, different methods have been

designed, namely classification-based, clustering-

based, nearest neighbor based, statistical, spectral,

and information theory. A comprehensive survey

of these techniques, their advantages and their

drawbacks is given in [9]. A common feature of

these techniques is their space complexity and

their computational cost, as they rely on full space

algorithms for analyzing their data.

Given our constraint settings — one-pass anal-

ysis of a huge amount of data with limited re-

sources, both in space and time— we propose

an algorithm to detect changes in the observed

stream with respect to an expected behavior by

relying on sampling techniques and information-

theoretic methods. More precisely, by adequately

sampling the observed data stream, we estimate

with high accuracy the distance between the ex-

pected stream and the observed one, and this even

if the stream has been tampered with by an ad-

versary. The metric, we use in our context is the

Kullback-Leibler (KL) divergence, which can be

viewed as an extension of the Shannon entropy and

is often referred to as the relative entropy [10].

Citing Chakrabarti et al., [11], “[...] rationale of

estimating entropy-based distances is that there

are intimate connections between the randomness

of traffic sequences (formalized as the entropy)

and the propagation of malicious events. Indeed,

detecting sudden changes in a stream may be a

good indicator of attacks”.

Our main contribution is the proposition of An-

KLe (Attack-tolerant eNhanced Kullback-Leibler

divergence Estimator), an algorithm that estimates

the relative entropy between the observed stream

and the expected ones in the context of mas-

sive data streams. As introduced above, AnKLe

combines information-theoretic and sampling tech-

niques to estimate accurately the relative entropy,

while using only a memory of small size to cope

with the very strict space constraint. Extensive

simulations indicate that while AnKLe rely on

sampling techniques, the accuracy of the estimation

is very high. AnKLe, as a data streaming algo-

rithm, benefits from their desired properties such

as low computational and storage costs and one-

pass processing of the stream. Therefore, AnKLe

is perfectly adapted to the setting in which data

must be read and process quickly. Finally, An-

KLe is versatile enough to cope with any type of

input distribution, including distribution that have

been generated by an adversary. To the best of

our knowledge, an algorithm combining all these

strengths for the estimation of relative entropy has

never been published before in the literature.

The paper is organized as follows. First, Sec-

tion II reviews the related work on the estima-

tion of the relative entropy of data streams while

Section III-A describes the data stream model

as well as the adversary model considered. Sec-

tion III-B briefly introduces the concepts of in-

formation theory that we intensively use in this

work. Section IV-A presents the different buildings

blocks of our algorithm and finally Section IV-B

describes AnKLe, our data streaming algorithm

for estimating the relative entropy of a stream. In

Section V, we empirically evaluate the accuracy of

the estimation provided by AnKLe by comparing

it to the exact value of the KL divergence on dif-

ferent data streams and also to adapted versions of

state-of-the-art estimator-based algorithms, namely,

Alon et al. [12] and Chakrabrti et al. [13]. Finally,

we conclude in Section VI.

II. RELATED WORK

In this paper, we consider the Kullback-Leibler

(i.e., the relative entropy) estimation problem. In

information theory, the concept of entropy corre-

sponds to the uncertainty of a random variable, and

as a special case, the entropy of a stream quantifies

the randomness of a data stream. On the other hand,

relative entropy measures the difference between

two distributions, and therefore the data stream

relative entropy quantifies the amount of informa-

tion separating one specific observed stream from

expected ones.

Previous works have proposed efficient algo-

rithms (in sublinear space, and sometimes even

polylogarithmic space, in the size of the stream) to

accurately estimate the entropy of a data stream.

Most of these works rely on the seminal algorithm

designed by Alon, Matias and Szegedy [12]. In

their work, the authors estimate the k-th frequency

moment Fk of a data stream, a statistic directly

related to the input stream (cf., Section III-B). For

instance, the frequency moment F0 corresponds to

the number of distinct items in a stream while F1

represents the size of the stream. Subsequently to

this work, Guha et al. [14] have considered the

entropy estimation problem in the random stream

model, in which items are randomly distributed in

the stream. Chakrabarti et al. [11] have studied the

same problem but assuming the adversarial stream

model, in which the items are ordered according to

an adversarial strategy. Furthermore, Chakrabarti et

al. [11], [13] and Lall et al. [15] have considered

the challenging issue of estimating the entropy

accurately when the entropy is strictly less than

one. Such streams have a few items with a high

occurrence frequency while all the other items

appear approximately with the same low frequency.

In order to guarantee a small relative estimation

error in this setting, one needs to decompose the

analysis of the stream into two parts, one part

keeping the highly frequent items and the other part

comprising the items with the same low frequency.

More details will be given in Section IV-B.

Estimating the relative entropy of data streams

has also been shown to be an interesting tool

in the security and dependability community. For

instance, Cachin [16] defines the security of a

steganographic system in terms of the Kullback-

Leibler entropy between the distributions of the

covertext and the stegotext. Specifically, if the

relative entropy is less than or equal to a given

parameter ε then the stegosystem is considered

ε-secure, while if the relative entropy is equal

to zero (i.e., ε = 0), then the stegosystem is

perfectly secure. Anceaume et al. [17] have pro-

posed a characterization of the adversarial power to

bias uniform and ergodic sampling in large scale

system. This characterization is done in terms of

the relative entropy between a stream composed

of node identifiers and a uniform stream. More

precisely, the authors have derived lower bounds on

the work that an adversary has to exert to bias this

input stream so that uniform and ergodic sampling

does not hold.

A fundamental issue is to derive efficient al-

gorithms both in space and time to estimate the

relative entropy in presence of huge amount of

data.

III. SYSTEM MODEL AND BACKGROUND

A. System Model

We consider a system in which a node P receives

a large data stream σ = a1, a2, . . . , am, where

the i-th element ai of the stream is called an

item. This node P might be a router that watches

TCP/IP packets [2], a stegosystem [16] or a peer

sampling component [17]. In the following, we

describe a single instance of P , but clearly multiple

instances of P may co-exist in a system. The value

u of an item is assumed to be drawn from a

large universe N and the length of the stream m
is very high (e.g., 232). Moreover, items can be

repeated multiple times in the stream. The number

of distinct items in the stream is denoted by n,

and thus, we have n ≤ m. We suppose that items

arrive regularly and quickly, and due to memory

constraints, need to be processed sequentially and

in an online manner. Therefore, node P can locally

store only a small fraction of the items and perform

simple operations on them. The algorithms we

consider in this work are characterized by the fact

that they can approximate some function on σ
with a very limited amount of memory (typically

sublinear or polylogarithmic in the size of the

data stream m). We refer the reader to [18] for a

detailed description of data streaming models and

algorithms.

a) Adversary Model: We suppose that the

adversary is omnipotent in the sense that it may

actively tamper with the data stream of any node by

observing, inserting, dropping or re-ordering items

of their input stream. The activity of the adversary

can be detected by an honest node provided that it

can accurately estimate the divergence between the

observed stream and the ideal one. The presence of

such a divergence is important as it may be a good

indicator of attacks. For instance, in large scale

systems, it might be used as an alarm to prevent

the adversary from poisoning routing tables (also

called eclipse attacks [19]) by freezing routing

tables updates as long as the relative entropy is too

high. We suppose that the algorithm used by a node

to estimate the divergence is public knowledge

(i.e., to avoid some kind of security by obscurity),

however the adversary has not access to the local

random coins used in the algorithm (if any).

B. Preliminaries

Prior to describing our algorithm for estimating

the KL divergence of a stream in a single pass

using sublinear space, we first present notations

and background on data streams analysis that make

this paper self-contained.

Entropy. Intuitively, the entropy is a measure of

the randomness of a data stream σ. The entropy

Hσ is minimum (i.e., equal to zero) when all the

items in the stream are the same, and it reaches its

maximum (i.e., equal to logm)1 when all the items

in the stream are distinct. Specifically, we have

Hσ = −
∑

u∈N

pu log pu,

where pu = mu/m, for each u ∈ N , with mu =
|{j : aj = u}| representing the number of times

the value u appears in the stream σ (by convention,

0 log 0 = 0). It is commonly called the frequency

of the item u. The norm of the entropy is defined

as FH =
∑

u∈N mu logmu.

Kullback-Leibler divergence. The Kullback-

Leibler (KL) divergence [20], also called the rela-

tive entropy, is a robust metric for measuring the

statistical difference between two data streams. The

KL divergence is a member of a larger class of

distances known as the Ali-Silvey distances [21].

Given two probability distributions on events p =
{p1, . . . , pn} and q = {q1, . . . , qn}, the Kullback-

Leibler divergence between pu relative to qu is

defined as the expected value of the likelihood ratio

with respect to qu:

D(p||q) =
∑

u∈N

pu log
pu
qu

= H(p, q)−H(p),

where H(p) = −
∑

pu log pu is the (empirical)

entropy of p and H(p, q) = −
∑

pu log qu is the

cross entropy of p and q. As we use a logarithm

in base 2, the divergence is measured in bits.

When pn = qn, the KL divergence is minimal

and is equal to zero. Let p(U) be the uniform

distribution corresponding to a uniform stream

1Thereafter, we will denote by log the logarithm in base 2.

(i.e., ∀u ∈ σ, p
(U)
u = 1

n
), and q be the probability

distribution corresponding to the input stream. In

the rest of this paper and according to the classical

use of the KL-divergence, we consider D(q||p(U))
as a measure of the divergence of the current

stream from the ideal one. While all the distance

measures in the Ali-Silvey distances are applicable

to quantifying statistical differences between data

streams, the KL divergence is particularly suited to

our context since it gives rise to a small number of

false positives when the two data streams are not

significantly different.

Frequency moments. Frequency moments are

important statistical tools that have been introduced

by Alon et al. [12]. Computing frequency moments

Fk allows to quantify the amount of skew in a

data stream. Among the remarkable moments, F0

represents the number of distinct elements in a

stream while F1 corresponds to the size m of the

stream. For each k ≥ 0, the k-th frequency moment

Fk of σ is defined as

Fk =
∑

u∈N

mk
u,

where mu is defined as above.

2-universal Hash Functions. In the following,

we intensively use hash functions randomly picked

from a 2-universal hash family. A collection H of

hash functions h : {1, . . . ,M} → {0, . . . ,M ′} is

said to be 2-universal if for every two different

items x, y ∈ [M],

Ph∈H{h(x) = h(y)} ≤
1

M ′
.

Randomized (ε, δ)-approximation Algorithm. A

randomized algorithm A is said to be an (ε, δ)-
approximation of a function φ on σ if for any

sequence of items in the input stream σ, A outputs

φ̂ such that P{| φ̂−φ |> εφ} < δ, where ε, δ > 0
are given as parameters of the algorithm.

IV. DETECTING ADVERSARIAL BEHAVIORS VIA

KL DIVERGENCE ESTIMATION

A. Building Blocks

In this section, we describe three algorithms that

form the building blocks of the AnKLe algorithm.

The first one, due to Alon et al. [12] estimates the

k-th frequency moment of a stream. Although we

do not need such a quantity, we adopt the structure

of their algorithm to estimate the relative entropy

of a stream. The second algorithm due to Bar-

Yossef et al. [22] estimates the number of distinct

items in a stream. In our context this amounts to

estimating n. Finally the third algorithm, proposed

by Misra and Gries [23], estimates the k most

frequent items of a stream. All these algorithms

have been designed in the stream data model (cf.

Section III-A). For self-containment reasons, we

briefly review these building blocks and describe

their theoretical guarantees.

1) Estimating the kth Moment of a Stream:

The AnKLe algorithm is inspired from the method

of Alon, Matias and Szegedy [12] to approximate

the KL divergence of a stream. In the following,

we refer to this algorithm as the AMS algorithm.

Briefly, the core of the AMS algorithm is a ba-

sic estimator, which takes the form of a random

variable X whose mean value is exactly equal to

the kth frequency moment of a stream and whose

variance is very small. Several basic estimators

are computed on the stream (specifically s1 × s2
independent basic estimators Xij , for 1 ≤ i ≤ s1
and 1 ≤ j ≤ s2), and the final estimator Y is set

to be

Y = median1≤j≤s2

(

1

s1

s1
∑

i=1

Xij

)

.

Alon et al. [12] have shown that for any ε, δ ∈
(0, 1), if s1 ≥ V ar[X]/(ε2E[X]2) and s2 =
4 log(1/δ), then Y is a (ε, δ)-approximation of

E[X] (i.e., P{| E[X]− Y |> εE[X]} < δ).

2) Estimating the Number of Items in the

Stream: The problem of estimating the number

of distinct elements has received a lot of attention

in the data stream model. First, the seminal work

of Flajolet and Martin [24] has shown that it is

possible to compute such an estimate using only

logarithmic space in n by relying on properties

of hash functions. Afterwards, follow-up enhance-

ments have improved the accuracy of the estima-

tion [22]. (A comprehensive survey describing the

literature on distinct elements in the data stream

model is presented by Gibbons in [25].) Thereafter,

we briefly sketch the BJKST algorithm proposed

by Bar-Yossef et al. [22], which is so far the most

efficient space and time algorithm for approximat-

ing the number of distinct elements in a stream

in a single pass (and this even if the stream is

adversarially ordered).

The BJKST algorithm is based on the coordi-

nating sampling algorithm of Gibbons and Tirtha-

pura [26]. Let σ = a1, · · · , am be a a stream of

items such that ai = v ∈ [2r] and h1, · · · , hk

be a set of k pairwise independent universal hash

functions that map symbols vi from [2r] onto [2r].
Moreover, S1, · · · , Sk is a set of k buffers of size

t. The algorithm consists in running k instances

of the same procedure, such that procedure j uses

Algorithm 1: BJKST algorithm

Input: An input stream σ; k and t settings;

Output: The estimate F̂0 of the number of

distinct elements in the stream

Choose k 2-universal hash functions1

h : [n]→ [n];
Choose k 2-universal hash functions2

g : [n]→ [O(log n/ε2)];
Initialization of k buffers Sj of size t;3

for j ∈ [1. . k] do ℓj = 0;Sj = ∅;4

for ai ∈ σ do5

v = ai;6

for j = 1 to k do7

b=the largest r ≥ 0 such that the r8

rightmost bits in hj(v) are all 0;

if b ≥ ℓj and (g(v, b)) 6∈ Sj then9

Sj = Sj ∪ {(g(v, b))};10

while | Sj |> t do11

Sj = Sj \ {g(v
′, b′)} with12

b′ = ℓj ;

ℓj = ℓj + 1;13

return F̂0 = median1≤j≤k2
ℓj | Sj |;14

hash function hj . The hash function hj determines

the “level” of items from the stream such that half

of the items have a level equal to 1, a quarter of

them have a level equal to 2, . . . , until finally 1
2i

of them have a level equal to i.

Initially, the current level of a particular ℓj is

set to be 0. Afterwards, items are read from the

stream, and by hashing them, one can deduce their

level in the following way: item ai has level i if

the i rightmost bits of hj(ai) are all set to 0. If the

level of the read item is greater than or equal to

the current level ℓj then this item is stored (once)

in Sj together with its level. The current level ℓj is

incremented when more than t items have a level

greater than or equal to ℓj . Afterwards, all the

items with a level equal to ℓj are removed from

buffer Sj . When this procedure stops, at level ℓj
each item is in buffer Sj with probability 1/2ℓj .

To ensure that the estimate F̂0 = 2ℓj | Sj | is

a (ε, δ)-approximation of F0, k = 1/δ instances

of the procedure are executed, and F̂0 is set to

be median1≤j≤k2
ℓj | Sj |. The BJKST algorithm

improves upon the original coordinating algorithm

from Gibbons and Tirthapura mainly by decreasing

the space bound. This is achieved by using k
additional universal hash function g to store the

hash of the items in buffers Sj instead of the items

themselves [22]. The pseudo-code of the algorithm

is shown in Algorithm 1.

Bar-Yossef et al. [22] have shown that for any

ε, their algorithm outputs F̂0 such that

P{|F̂0 − F0| ≤ ε} ≥ 1− δ,

where δ = 1/3. The worst-case running time for

each input symbol is O(r+1/ε2(log(1/ε)+log r)),
and the total space required by the algorithm is

O(r + 1/ε2(log(1/ε) + log r)) bits, where O(r)
represents the space needed for implementing each

hash function.

3) Determining the Most Frequent Identifiers of

a Stream: As for counting the number of distinct

items in a stream, the problem of determining the

k most frequent items in a stream has also been

studied extensively in the data stream literature.

Thereafter, we describe a deterministic algorithm

that outputs the k most frequent items in a stream

as well as an estimate m̂u for the frequency mu

of each item, if mu > m/k. This algorithm due

to Misra and Gries [23] maintains k counters such

that for each counter, its key is the item read from

the stream and its value is related to the frequency

of items. Initially, all the counters are set to (–, 0).
Afterwards, when an item is read from the stream,

if that item has already a counter associated to it,

then this counter is incremented. If this is not the

case and if there are still free counters available,

then one of these free counters is allocated to this

new item and its value is set to 1. Otherwise,

all the allocated counters are decremented by one,

and if after this operation some of them are equal

to 0 then their keys are erased and the counters

are released. The pseudo-code of the Misra Gries

algorithm is presented in Algorithm 2.

The Misra Gries [23] algorithm with parameter k
provides, for each item u in the stream, an estimate

m̂u satisfying

mu −
m

k
≤ m̂u ≤ mu.

The algorithm uses a space of O(k(log n+logm))
bits.

B. The AnKLe algorithm

This section presents AnKLe, the algorithm we

propose for computing the KL divergence of a

stream. Our starting point is the re-writing of the

KL divergence as follows. From Definition 1, we

Algorithm 2: Misra-Gries algorithm

Input: An input stream σ; a precision

parameter k;

Output: The set of the k most frequent items

in a stream as well as an estimate of

their frequency

for j ∈ [0. . k] do A[j]← (⊥,⊥);1

for ai ∈ σ do2

v = ai;3

if ∃u such that the item of A[u] is s then4

increment the count value of A[u];
else5

if ∃u′ such that A[u′] = (⊥,⊥) then6

A[u′] = (v, 1)7

else for i = 1 to k do8

Decrement the count of A[i];9

if the count value of A[i] = 0 then10

A[i] = (⊥,⊥)11

return A;12

have

D(qσ||p
(U))

=

n
∑

i=1

qi log (qi)−
n
∑

i=1

qi log
(

p
(U)
i

)

=
1

m

(

n
∑

i=1

mi log
(mi

m

)

−
n
∑

i=1

mi log

(

1

n

)

)

= log(n)− log(m) +
1

m

n
∑

i=1

mi log (mi) . (1)

Thus estimating the KL-divergence amounts in

(1) estimating the number of distinct items in the

stream (i.e., F0) in order to obtain a good ap-

proximation of log(n), (2) determining the k most

frequent items in the stream, and (3) estimating the
∑n

i=1 mi log (mi), which corresponds to the norm

of the entropy FH .

AnKLe algorithm we propose for estimating the

KL divergence is presented in Algorithm 3. It

consists of two phases, the first one (lines 3–17)

is executed upon reception of the items of the

stream, while the second one (lines 18–26) is run

when m items have been read from the stream.

The first phase is composed of three tasks (T1, T2

and T3), which are executed in parallel. Task T1

(see line 5) estimates the number of distinct items

present in the stream, task T2 (see line 8) identifies

the k most frequent items in the stream, and T3

samples random items in the stream in order to

compute their exact frequency. Specifically, Task

T3 (lines 11–17) consists in running a sampling

estimator X on the stream. The basic estimator

X = Xi,j is designed so that its mean value

is equal to the norm of the entropy FH and its

variance is small. More precisely, we have

X = m(r log r − (r − 1) log(r − 1)) (2)

where r is the random variable representing the

number of occurrence of an item ℓ in the stream.

This item ℓ is such that its position j in the stream

is a random number in [m]. The random variable r
counts the number of times ℓ appears in the stream

from position j onwards. Formally, r is defined as

r =| {j : j ≥ ℓ, aj = aℓ} | .

We can show as in [12], [15], that the basic

estimator X is unbiased (i.e., the expectation of

X is equal to FH). Specifically,

E[X] =
1

m

n
∑

i=1

mi
∑

j=1

m(j log j − (j − 1) log(j − 1))

=
m

m

n
∑

i=1

mi log(mi)

= FH . (3)

To improve the accuracy of the estimation, s1×
s2 such basic estimators Xij (for 1 ≤ i ≤ s1 and

1 ≤ j ≤ s2) are used, each one sampling a random

position in the stream. From the implementation

point of view, tracking these estimators consists in

storing s1 × s2 counters, each one counting the

number of occurrences of an item whose position

has been randomly chosen in the stream. When

item u is read from the input stream, if u has

already one or more counters assigned to it then

all these counters are incremented. In addition, if

the position at which u has been read in the stream

is one of the chosen locations, then a counter is

assigned to u, and its value is set to 1. Thus for

each of these “tracked” items, an exact count of

their frequency is continuously maintained starting

from a random position in the stream.

The post-processing phase of AnKLe algorithm

estimates the KL divergence of the input stream

according to Relation (1). This phase is executed

when m items have been read from the input

stream. In this work, we suppose that m is a param-

eter of the algorithm, however by using techniques

proposed in Chakrabarti et al. [13] we can extend

our solution to streams whose size is a priori un-

known. To accurately estimate the KL divergence

of the stream, one needs to cope with patterns in

Algorithm 3. AnKLe algorithm

Input: An input stream σ of length m, k (number of counters in the Misra-Gries algorithm), s1
and s2 (size of the AMS-based matrix)

Output: An estimation of D(qσ||p
(U)), the KL divergence between the observed stream and the

uniform one

Choose s1 × s2 random integers in [1. .m];1

for u1 ∈ [0. . s1], u2 ∈ [0. . s2] do S[u1, u2]← (⊥,⊥);2

for aj ∈ σ do3

v = aj ;4

begin Task T1:5

F̂0 ← BJKST Algorithm (Algorithm 1) fed with v6

end7

begin Task T2:8

F̂ ← Misra-Gries Algorithm (Algorithm 2) fed with v9

end10

begin Task T3:11

forall entries (u1, u2) of matrix S such that (s(u1,u2), r(u1,u2)) 6= (⊥,⊥) do12

if s(u1,u2) = s then13

r(u1,u2) ← r(u1,u2) + 1;14

if j is one the s1 × s2 random integers then15

assign (v, 1) to the first unused entry of S;16

end17

forall entries (u1, u2) of matrix S do18

if (s(u1,u2),−) ∈ F̂ then19

Xu1,u2
← 0 // s(u1,u2) is one of the frequent items returned by Task T2;20

else21

Xu1,u2
← m

(

r(u1,u2) log r(u1,u2) − (r(u1,u2) − 1) log(r(u1,u2) − 1)
)

;22

YS ← average of all non null entries Xu1,u2
;23

Y
F̂
←
∑

(si,ri)∈F̂
ri log ri;24

p← 1−max

(

0,
min

(

YS , YF̂

)

−m

10 ·m

)

;
25

return D = log F̂0 − logm+ p
m

(

YS + Y
F̂

)

;26

which a small number of items occur with a very

high frequency with respect to the other items.

When such patterns occur, the basic estimator X
alone is unable to compute the norm of the entropy

in bounded space [13]. Indeed, by analogy of the

calculation performed in [12], the variance of the

estimator grows with the norm of the entropy. Thus

in presence of high frequency patterns, one needs

to estimate the relative entropy using a different

approach. In Chakrabarti et al., the authors propose

to decompose the computation of the entropy as the

sum of the entropy of the most frequent items and

the estimation of the entropy of the remaining items

of the stream. In AnKLe, we extend their method to

deal with any stream distribution in order to guar-

antee that whatever the strategy of the adversary,

the error on the estimation is kept small (as shown

in Section V). Specifically, the basic estimator X
is computed on unfrequent items (cf., lines 18–23)

as done in Relation (3), while the contribution of

highly frequent items on the norm of the entropy

is directly computed as
∑

(si,ri)∈F̂
ri log ri (cf.,

lines 24). The set F̂ represents the set of highly

frequent items dynamically computed in Task T2.

Finally, to prevent some of the items to appear

in both terms, we weight the contribution of both

terms by p (cf., line 26).

V. PERFORMANCE ANALYSIS

In this section, we evaluate the accuracy of

AnKLe by comparing its estimation with the exact

value of the KL divergence computed between

the observed input stream and the uniform one.

We also compare AnKLe to adapted versions of

the estimator-based algorithms of Alon et al. [12]

and Chakrabarti et al. [13]. In the former case,

the original estimator computes the k-th frequency

moment of a stream, while in the latter case, the

original estimator measures the entropy of a stream.

In both cases, the adapted versions compute instead

the norm of the entropy.

All the experiments have been conducted on

synthetic traces of streams whose distributions are

shown in Figure 1. (Note that we use a logarithmic

scale for the y-coordinate of all the distributions).

More precisely, all the generated streams have a

length of m = 200, 000 items. We have tested 750
different settings of the following parameters: n,

the number of distinct items in the stream, s1 and

s2, which are related to size of the estimator matrix

in Task T3, and k, the number of counters used in

Task T2. For each setting of parameters, we have

conducted 10 trials of the same experiment and

compute the average and the standard deviation.

Except from the uniform distribution and the

zipf distribution with parameter α = 1, that model

respectively an ideal stream in which each item

appears exactly with the same frequency (cf. Fig-

ure 1(a)) and a realistic one in absence of any

attacks (cf. Figure 1(d)), the other four distribu-

tions capture different adversarial strategies. More

precisely:

• Figure 1(b) shows a distribution modeling

streams in which the frequency of a large

quantity of items is significantly higher than

the frequency of the remaining items. This

type of stream might reflect sybil attacks in

which the adversary aims at over-representing

a large number of node identifiers that it owns.

• Figure 1(e) depicts a distribution modeling

streams in which there is a small number of

highly frequent items. This type of stream

might correspond to an eclipse attack in which

the objective of the adversary is to poison the

routing tables of honest nodes.

• Figures 1(c) and 1(f) displays distributions

modeling streams in which a very small num-

ber of items have a very high frequency2.

These distributions might illustrate streams in

2Pascal distribution is also known as Negative Binomial
distribution.

which very few items (typically 1, 2 or 3) are

over-pushed by the adversary.

Table 1 summarizes the results obtained for the

AnKLe, AMS and CCM estimators, averaged over

45,000 experiments (i.e. 750 different settings with

10 repetitions for each setting, over 6 distributions).

The results clearly show that AnKLe outperforms

the estimator CCM for all the distributions, even

in scenario in which CCM should excel (i.e.,

Figure 1(f)), as this corresponds to a stream in

which a very frequent item exists in the observed

stream. Compared to the AMS estimator, the results

obtained with AnKLe are often really better than or

sometimes comparable to it for all the distributions,

with the exception of the zipf distribution with

α = 2. But even for this specific distribution,

the standard deviation of AnKLe is four times

smaller than the one of AMS (i.e., 0.09 versus

0.36), thus demonstrating that AnKLe provides a

more robust and stable estimation than AMS on

this distribution.

Figure 2 shows the evolution of the KL di-

vergence estimation as a function of n, k, s1
and s2. In all the figures, the x-coordinate repre-

sents the number of distinct items in the stream

as a ratio of its length m. For each value of

n ∈ {m/100, . . . ,m/20}, all the other param-

eters k, s1 et s2 also vary in the experiments.

More precisely, the parameter k takes a value

in {0.1n, . . . , n}, s1 ∈ {m/100, . . . ,m/20}, and

s2 ∈ {m/100, . . . ,m/20}. The main observation

that can be drawn from Figure 2(a) is that the CCM

estimator behaves relatively badly in presence of

a small number of distinct items with frequency

uniformly distributed in the stream. However, its

accuracy increases when the number of distinct

items increases. The other two estimators are very

close to the real value of the KL divergence,

with moreover a clear advantage for AnKLe. This

observation is further confirmed in Figure 2(b)

that corresponds to a zoom of Figure 2(a). This

figure demonstrates that the estimation provided

by AnKLe is very good. In average, the AnKLe

estimation overlaps with the real value of the KL

divergence, contrary to AMS, and its standard

deviation remains small, for any values of n, and

for any variations of k, s1, and s2. Figure 2(c)

and its zoom in (cf. Figure 2(d)) further validate

the above results. In particular, we observe that

CCM is clearly not adapted to uniform and near

uniform streams, while AMS and AnKLe provide

very good estimates for these distributions. For

instance, the zoom in Figure 2(d) shows that these

(a) Uniform (b) Poisson (c) Pascal

(d) Zipf - α = 1 (e) Zipf - α = 2 (f) Zipf - α = 4

Fig. 1. Shape of distributions used for evaluating estimators. The y-ordinate is logarithmic

Distribution Exact AnKLe AMS CCM

Uniform
average 0.018240161 0.027314791 0.253219967 -1.161750384
std. dev. 0.00271478 0.029827495 0.071137525 0.015038305

Zipf – α = 1
average 0.825819381 0.688826548 1.055650933 -8.313990878
std. dev. 0.027970186 0.142217553 0.293984322 0.858649847

Zipf – α = 2
average 2.58717975 2.999794044 2.827368288 0.866992924
std. dev. 0.031286484 0.092712953 0.369015065 0.237650647

Zipf – α = 4
average 3.611623614 3.631385192 3.85458675 3.532833916
std. dev. 0.018752397 0.130210517 0.333661261 0.030785665

Pascal
average 3.40688118 3.357277524 3.650869233 2.148588258
std. dev. 0.017502656 0.075845977 0.317275996 0.205970693

Poisson
average 0.957558622 0.743131204 1.197167903 -2.089271044
std. dev. 0.013611449 0.123500666 0.193894289 0.082006954

TABLE I
SUMMARY OF PERFORMANCES

two estimators are pretty close to the exact value

of the divergence, but still once more AnKLe pro-

vides a better robustness to parameters variations.

However, Figures 2(e) and 2(f) demonstrate that

CCM is more adapted to streams in which a very

small fraction of items occur more frequently than

the remaining ones. This is clearly shown in Fig-

ure 2(e). The estimation of AnKLe in presence of

such streams still remains good. In average, AnKLe

overlaps with the real value of the KL divergence,

but its standard deviation is a little higher than

the one of CCM for the Poisson distribution (cf.,

Table I).

Figures 3(a) and 3(b) show the KL divergence

estimation as a function of s1 and s2. For each

value of s1, s2 is increased from m/5000 to m/90.

Several observations can be drawn from both fig-

ures. First, the robustness of CCM estimator greatly

improves with increasing values of s1, as the cone-

shaped curves converge for s1 > m/500. On one

hand, the value towards which the CCM converges

under-estimates the KL divergence. Thus, both s1
and s2 have a greater impact on CCM robustness

than on its accuracy. On the other hand, variations

of both s1 and s2 have not impact on AMS robust-

ness. This feature does not appear in AnKLe as

the weight given to Task T2 makes it preponderant

with respect to Task T3, limiting accordingly the

lack of robustness of Task T3.

Finally, Figures 4(a) and 4(b) show the KL

divergence estimation as a function of k. The main

observation drawn from these figures is that AnKLe

fully overlaps with the exact value of the KL diver-

gence, which clearly demonstrates the robustness

of this estimator in presence of any input streams.

Regarding CCM, we can observe that when the

number of counters k is less than 0.1n, then

the Misra-Gries algorithm under-estimates the k
most frequent items, which degrades the estimation

of CCM. This confirms the theoretical bound of

k ≥ ⌈7ε−1⌉ shown in [13]. On the other hand,

variations of parameter k has not impact on AMS

as this estimator does not decompose its computa-

tion according to items frequency characteristics.

To summarize, experiments have validated the

impressive accuracy and robustness of AnKLe in

presence of a very large spectrum of distributions.

This illustrates the importance of the weighting

factor applied to both terms of the estimator.

-3

-2.5

-2

-1.5

-1

-0.5

 0

 0.5

m/100 m/50 m/33 m/25 m/20

D
iv

er
g

en
ce

n value

AMS

CCM
Exact
AMS
CCM

AnKLe

(a) Distribution: Uniform

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

m/100 m/50 m/33 m/25 m/20

D
iv

er
g

en
ce

n value

Exact
AMS

AnKLe

(b) Distribution: Uniform (Closer view)

-25

-20

-15

-10

-5

 0

 5

m/100 m/50 m/33 m/25 m/20

D
iv

er
g

en
ce

n value

CCM Exact
AMS
CCM

AnKLe

(c) Distribution: Zipf – α = 1

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1.1

 1.2

 1.3

 1.4

 1.5

m/100 m/50 m/33 m/25 m/20

D
iv

er
g

en
ce

n value

Exact
AMS

AnKLe

(d) Distribution: Zipf – α = 1 (Closer view)

 2.4

 2.6

 2.8

 3

 3.2

 3.4

 3.6

 3.8

 4

 4.2

 4.4

 4.6

m/100 m/50 m/33 m/25 m/20

D
iv

er
g

en
ce

n value

AMS

CCM

Exact
AMS
CCM

AnKLe

(e) Distribution: Zipf – α = 4

-8

-6

-4

-2

 0

 2

 4

 6

m/100 m/50 m/33 m/25 m/20

D
iv

er
g

en
ce

n value

AMS

CCM

Exact
AMS
CCM

AnKLe

(f) Distribution: Pascal

Fig. 2. KL divergence estimation as a function of n, k, s1 and s2

VI. CONCLUSION AND FUTURE WORKS

In the setting of large scale distributed systems,

node receives continuously huge amount of data

in the form of a stream that they need to be able

to process and analyze on the fly without being

able to store the whole stream due to memory

constraints. A challenging issue in this setting is

to able to detect if the observed stream is conform

to the expected one or if it has been tampered with

by an adversary. Indeed, an important divergence

between the observed stream and the expected one

is usually the indication that an attack is being

conducted.

In this paper, we have proposed AnKLe, a novel

algorithm for estimating the KL divergence be-

tween the observed stream and the uniform one.

AnKLe is very efficient both in terms of space

and time, and requires only a single pass over the

data stream. Simulations also show that AnKLe

performs always better, in terms of accuracy and

robustness, than other state-of-the-art estimator-

based algorithms such as AMS [12] and CCM [13].

We left as future work the exact theoretical

analysis of the behavior of the algorithm. In par-

ticular, we want to characterize how the different

-5

-4

-3

-2

-1

 0

 1

 2

 3

 4

m/5000
m/1000

m/500
m/333

m/250
m/200

m/166
m/143

m/125
m/111

m/100
m/90

D
iv

er
g

en
ce

s1 value

Exact
AMS
CCM

AnKLe

(a) Pascal Distribution. Settings: n = m/125 – k = 0.1n

-10

-8

-6

-4

-2

 0

 2

m/5000
m/1000

m/500
m/333

m/250
m/200

m/166
m/143

m/125
m/111

m/100
m/90

D
iv

er
g

en
ce

s1 value

Exact
AMS
CCM

AnKLe

(b) Poisson Distribution. Settings: n = m/125 – k = 0.1n

Fig. 3. KL divergence estimation as a function of s1 and s2

-4

-3

-2

-1

 0

 1

 2

 3

 4

0.1n 0.2n 0.3n 0.4n 0.5n 0.6n

D
iv

er
g

en
ce

k value

Exact
AMS
CCM

AnKLe

(a) Pascal Distribution. Settings: n = m/100 and s1 =

s2 = m/80

-7

-6

-5

-4

-3

-2

-1

 0

 1

 2

0.1n 0.2n 0.3n 0.4n 0.5n 0.6n

D
iv

er
g

en
ce

k value

Exact
AMS
CCM

AnKLe

(b) Poisson Distribution. Settings: n = m/100 and s1 =

s2 = m/80

Fig. 4. KL divergence estimation as a function of k

parameters impact the precision of the estimation

and the space complexity of AnKLe (and vice-

versa). Moreover, while currently the length of

the stream m is a parameter that has to be fixed

in advance, we will design online version of the

algorithm for which the length is not specified in

advance by using standard windowing techniques.

This corresponds to realistic situations in which the

nodes regularly receive new data that they need to

take into account to update their estimator.

REFERENCES

[1] B. K. Subhabrata, E. Krishnamurthy, S. Sen, Y. Zhang,
and Y. Chen, “Sketch-based change detection: Methods,
evaluation, and applications,” in Internet Measurement

Conference, 2003, pp. 234–247.

[2] E. D. Demaine, R. López-Ortiz, and J. I. Munro, “Fre-
quency estimation of internet packet streams with limited
space,” in In Proceedings of the 10th Annual European

Symposium on Algorithms. Springer-Verlag, 2002, pp.
348–360.

[3] J. Bruck, J. Gao, and A. A. Jiang, “Localization and
routing in sensor networks by local angle information,”
ACM Transaction on Sensor Networks, vol. 5, pp.
7:1–7:31, February 2009. [Online]. Available: http:
//doi.acm.org/10.1145/1464420.1464427

[4] Y. Busnel, M. Bertier, and A.-M. Kermarrec, “SOLIST
or How To Look For a Needle in a Haystack?” in
the 4th IEEE International Conference on Wireless and

Mobile Computing, Networking and Communications

(WiMob’2008), Avignon, France, October 2008.

[5] M. Chu, H. Haussecker, and F. Zhao, “Scalable
information-driven sensor querying and routing for ad hoc
heterogeneous sensor networks,” International Journal of

High Performance Computing Applications, vol. 16, no. 3,
pp. 293–313, 2002.

[6] Y. Busnel, R. Beraldi, and R. Baldoni, “On the uniformity
of peer sampling based on view shuffling,” Elsevier Jour-

nal of Parallel and Distributed Computing, vol. 71, no. 8,
pp. 1165–1176, August 2011.

[7] M. Bertier, Y. Busnel, and A.-M. Kermarrec, “On Gossip
and Populations,” in Proceedings of the 16th International

Colloquium on Structural Information and Communica-

tion Complexity (SIROCCO), 2009.

[8] E. Anceaume, Y. Busnel, and S. Gambs, “Uniform and
Ergodic Sampling in Unstructured Peer-to-Peer Systems
with Malicious Nodes,” in Proceedings of the 14th inter-

national conference on Principles of distributed systems

(OPODIS), vol. 6490, 2010, pp. 64–78.

[9] V. Chandola, A. Banerjee, and V. Kumar, “Anomaly
detection: A survey,” ACM Computing Surveys, vol. 41,
no. 3, pp. 1–58, 2009.

[10] T. Cover and J. Thomas, “Elements of information theory,”
Wiley New York, 1991.

[11] A. Chakrabarti, K. D. Ba, and S. Muthukrishnan, “Es-
timating entropy and entropy norm on data streams,”

in In Proceedings of the 23rd International Symposium

on Theoretical Aspects of Computer Science (STACS).
Springer, 2006.

[12] N. Alon, Y. Matias, and M. Szegedy, “The space com-
plexity of approximating the frequency moments,” in
Proceedings of the twenty-eighth annual ACM symposium

on Theory of computing (STOC), 1996, pp. 20–29.
[13] A. Chakrabarti, G. Cormode, and A. McGregor, “A near-

optimal algorithm for computing the entropy of a stream,”
in In ACM-SIAM Symposium on Discrete Algorithms,
2007, pp. 328–335.

[14] S. Guha, A. McGregor, and S. Venkatasubramanian,
“Streaming and sublinear approximation of entropy and
information distances,” in Proceedings of the Seventeenth

Annual ACM-SIAM Symposium on Discrete Algorithms

(SODA), 2006, pp. 733–742.
[15] A. Lall, V. Sekar, M. Ogihara, J. Xu, and H. Zhang,

“Data streaming algorithms for estimating entropy of
network traffic,” in Proceedings of the joint international

conference on Measurement and modeling of computer

systems (SIGMETRICS). ACM, 2006.
[16] C. Cachin, “An information-theoretic model for steganog-

raphy,” Information and Computation, vol. 192, no. 1, pp.
41–56, 2004.

[17] E. Anceaume, Y. Busnel, and S. Gambs, “Characterizing
the adversarial power in uniform and ergodic node sam-
pling,” in Proceedings of the 1st International Workshop

on Algorithms and Models for Distributed Event Process-

ing (AlMoDEP). ACM, 2011.
[18] Muthukrishnan, Data Streams: Algorithms and Applica-

tions. Now Publishers Inc., 2005.
[19] E. Sit and R. Morris, “Security considerations for peer-

to-peer distributed hash tables,” in Proc. for the 1st Int’l

Workshop on Peer-to-Peer Systems (IPTPS), 2002.
[20] S. Kullback and R. A. Leibler, “On information and

sufficiency,” The Annals of Mathematical Statistics,
vol. 22, no. 1, pp. 79–86, 1951. [Online]. Available:
http://dx.doi.org/10.2307/2236703

[21] S. M. Ali and S. D. Silvey, “General Class of Coefficients
of Divergence of One Distribution from Another,” Journal

of the Royal Statistical Society. Series B (Methodological),
vol. 28, no. 1, pp. 131–142, 1966.

[22] Z. Bar-Yossef, T. S. Jayram, R. Kumar, D. Sivakumar,
and L. Trevisan, “Counting distinct elements in a data
stream,” in Proceedings of the 6th International Workshop

on Randomization and Approximation Techniques (RAN-

DOM). Springer-Verlag, 2002, pp. 1–10.
[23] J. Misra and D. Gries, “Finding repeated elements,” Sci-

ence of Computer Programming, vol. 2, no. 2, pp. 143–
152, 1982.

[24] P. Flajolet and G. N. Martin, “Probabilistic counting al-
gorithms for data base applications,” Journal of Computer

and System Sciences, vol. 31, no. 2, pp. 182–209, 1985.
[25] P. Gibbons, Data Streams Management: Processing High-

Speed Data Streams. Elsevier, 2007, ch. Distinct-Values
Estimation over Data Streams.

[26] P. B. Gibbons and S. Tirthapura, “Estimating simple
functions on the union of data streams,” in Proceedings

of the Thirteenth Annual ACM Symposium on Parallel

Algorithms and Architectures (SPAA), 2001, pp. 281–291.

