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A stochastic variational inequality is proposed to modeklsto-plastic oscillator excited by a filtered
white noise. We prove the ergodic properties of the procedscharacterize the corresponding invari-
ant measure. This extends Bensoussan-Turi’s method (BegtenDirichlet Problems Related to the
Invariant Measure of Elasto-Plastic Oscillators, AMO, 2pWith a significant additional difficulty of
increasing the dimension. Two points boundary value prohile dimension 1 is replaced by elliptic
equations in dimension 2. In the present context, Khasrimskethod (Stochastic Stability of Differ-
ential Equations, Sijthoff and Noordhof,1980) leads toghely of degenerate Dirichlet problems with
partial differential equations and nonlocal boundary dtoiks.

Keywords: Random vibration, ergodic diffusion, stochastic vadatl inequalities

1. Introduction

Nonlinear oscillators subjected to vibrations represseful models for predicting the response of me-
chanical structures when stressed beyond the elastic vtien the excitation is a white noise, it has
received considerable interest over the past decades.ravimps work (1), the authors have considered
the response of a white noise excited elasto-plastic asmilusing a stochastic variational inequality
formulation. The results in (1) provide a framework to asgég accuracy of calculations made in the
literature (see e.g., (4; 5; 6), and the references theréinjhis paper, instead of considering white
noise input signal whose power spectral density (PSD) isteon, we consider an excitation with a
non-constant PSD which could be a more realistic framewaik consider the excitation as the veloc-
ity of a “reflected” Ornstein-Uhlenbeck process. Therefommparing with the elasto plastic oscillator
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excited by white noise, a third process occurs in the vamatiinequality. Consides(t) andw(t), two
independent Wiener processes aftd an Ornstein-Ulhenbeck reflected process

dx(t) = —ax(t)dt + dw(t) + L= A& — L)1y 0E2 (1..1)
We have—L < x(t) < L. In this model, the stochastic excitation is given by
—BX(t)dt + dwi(t).
The stochastic variational inequality model is given by:
dx(t) = —ax(t)dt + dw(t) + Lo 0&" — Lixe)—1) dE2,
dy(t) = —(Bx(t) +coy(t) + kZ(t))dt + dWi(t),

(dz(t) —y(t)dt)({ —=(t)) = (1.2)
1ZI<Y,
|z(t)| <.

Whenp # 0, x(t) is involved in the dynamic of(t) and then this model will be referred as the 2d case
Whereas iff3 = 0, x(t) is not involved in the dynamic of(t) and then(y(t),z(t)) satisfy the elasto-
plastic oscillator problem of (1) which will be referred &&tld case

Notation 1..1 Introduce the operators

1 1
Au:= éuyy—k Euxx— axuy — (BX+ coy + Kz)uy + YUy,

1 1
B u:= Euyy+ Euxx— axuy — (Bx+ coy +KY)uy,

1 1
B_u:= 2ty 5 o OXU— (Bx+coy —KY)uy
The infinitesimal generator of the procesét), y(t),z(t)), denoted by\ is given by:

) Ap if ze]-Y,Y[,
AN {Bi(p if 27— +Y,+y > 0.

Notation 1..2
O :=(—LL)xRx(-Y,)Y); 0" :=(-L,L)x(0,4+») x{Y}; & :=(-L,L)x (—»,0)x {-Y}.
As the main result of the paper we prove the following:

THEOREM 1..3 There exists one and only one probability measuwsa &'U &~ U & satisfying

/Aqodv+/‘ B,qodv+/ BLpdv =0, V¢ smooth
Jo Jo- o+
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Moreover,v has a probability density functian such that
/ m(X, Y, z)dxdydz+ / ‘ m(x,y,Y )dxdy + / ‘ m(x,y, —Y)dxdy = 1,
o Jo+ Jo-
where
o {M(X,Y,2), (X,Y,2) € 0} is the elastic component,
e {m(x,y,Y), (x,y) € 0"} is the positive plastic component,
e and{m(x,y,—Y), (xYy) € &~} isthe negative plastic component.

In addition,m satisfies in the sense of distributions the following edprain &,

0 0 om 10°m 14°m _
aa—X[XH‘]er—y[(BXJrCOerkZ)m]*yEﬁLEWJrEa—yZ*0 ino,
and on the boundary
d 9 19°m 10%m L
ym+d—X[X”ﬂﬂLa—y[(ﬁXJrCowakY)mHQWﬂL5(9—y2—O’ in &
- m+i[xm]+i[([3x+ ka)m]+}@+}@fO in o~
Ym+ 5% oy Coy 20x2 20y

m=0, in(—L,L)x (=%,0)x{Y}U(-L,L)x (0,0)x {=Y}.

The proof will be based on solving a sequence of interior asterir Dirichlet problems, which are
interesting in themselves. We will put in parallel the 1d &ddcases, in order to facilitate the reader’s
work. In the 1d case, the variabtedisappearsf{ = 0), we will still use the notatiod\, B ,B_ for the
operators defined above without

Let us mention that our study presents a mathematical sttberause it generalizes the method
proposed by the first author and J. Turi (1) in the case of migheension. Non-local boundary con-
ditions expressed in the form of differential equations imehsion 1 are replaced by elliptic partial
differential equations (PDESs) in dimension 2. In the firstesathere are two semi-explicit solutions.
Thus, the non-local boundary conditions are reduced to twkmown numbers. In the second case, we
do not know explicit formulas for solutions of the both eligopon the boundary. In this context, these
two solutions depend on two unknown functions respectideljned on the seét-L,L).

In addition, the choice of the excitation (1..1) is also matiéd by two technical considerations:

o the first is to forcex(t) (through the processés, £2) to evolve in the compact sétL,L]. Thus,
as part of our proof, a compactness argument allows to shewerdpodic property of the triple
(x(t),y(t),z(t)). Note that this is not a problem in terms of applications duse if we choosk
large enough, then the procegs) is similar to an Ornstein-Ulhenbeck process.

e the second is the uncorrelationwft) andwit). In our approach, based on PDEs associated to
the triple (x(t),y(t),z(t)), we avoid the appearance of cross-derivative terms in thir@tesimal
generatorA. In the case where(t) andw(t) are correlated, these cross-derivative terms yield
more technical difficulties.
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2. Theinterior Dirichlet problem

In this section, we prove existence and unigueness to th@gengous interior Dirichlet problem.

2.1. Some background on the interior Dirichlet problem in the ade
Let us recall the interior Dirichlet problem from (1). Lgt > 0,

Notation 2..1
D1:=(=y1,y1) X (=Y,Y); Dj :=(0,y1) x{Y}; Dy :=(-y1,0)x{-Y}

and
D =(-y1+&Yy1—¢€)x(-Y,Y),e>0.

Denoter; :=inf{t > 0,|y(t)| = y1} and considep € L*(-Y,Y). We will use the following notation
Ep(-) :=E{- |(y(0),z(0)) = p}. Itis shown thaff, , (¢(z(11))) solves a nonlocal Dirichlet problem:
Findn € L*(D1) N€°(D%),Ve > 0 such that

An=0inD;, Byn=0inDj, B_n=0inD] (2..1)
with
r’(%—vz) = QO(Z), 0(7)7172) = 07 if FAS (7Y5Y)

Sincen(y1,Y) = @(Y) andn(—y1,—Y) = 0, there are semi-explicit solutions by solving ordinarfy di
ferential equations fon on the boundary a =Y, andz= —Y respectively,

ny,Y)=nvi(y.y) +e(Y)10y), 0<y<vyi ny,—Y)=n-vl(-yy), -y1<y<o0,
whereny andn_y are constants, and

 JPexp(coA? + 2kYA )dA

I(a,b):= .
(@b) J3* exp(coA 2+ 2KYA )dA

The nonlocal condition is restricted to the value of these twnstants. Based on these semi-explicit
expressions a subsiétof H(D, ) is defined for proving existence of the solution to (2..1) , by

ve HY(Dy),
V(=Y1,2) = 9(2), V(-¥1,2) =0,
Ki=q V(¥.Y) =wl(y.y1) +@(Y)I(0y), 0<y<y1

V(ya _Y) :nyl(_)Tl,y), _ﬁ <Y<0
W,V_y are constant with |viy| < ||@||L=.

The seK is convex and not empty i(z) € H1(-Y,Y). We takev(y,z) = ¢(2)! (0,)14y~0;-
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2.2. The interior Dirichlet problem in the 2d case
Notation 2..2
Al = (7L L) X (7%-5%-) X (7Y7Y)7
Af = (_ (0 yl {Y} Ai = (_LvL) X (_)71,0) X {_Y}
and
Af = (—L,L) x (—y1+¢€,y1—€) x (=VY,Y),Ve > 0.

Denotet; := inf{t > 0,]y(t)| = y1} and considerp € L*((—L,L) x (=Y,Y)). Similarly as before
we use the notatioBp(-) := E{- [(x(0),y(0),2(0)) = p}. We want to defin , (¢(x(T1),2(T1))) as
the solution of the interior Dirichlet problem stated below

Problem 1 Findn € L*(A1) N€°(Af),Ve > 0 such that

An=0in4;, Byn=0in4], B.n=0in4;

and
nX(iL7y7z) = 0 in (ya Z) € (_}7 )7) ( =Y Y)
r](X,)Tl,Z) = @(X, Z) in (sz) € (_L L) X (
rI(X7 —%_,Z) = 0 in (sz) € (_L L) X (

This is formal. We should consider the casepafmooth first and precise the functional space, then
proceed with the regularization.

As in the 1d-case, this problem is a nonlocal problem but thendary condition are in two dimen-
sions. Thus we need to solve partial differential equatfong) on the boundary a=Y, andz= -Y
respectively. Here we do not have semi-explicit solutiodgiedn (x,y,Y) solves

Bin=0on(—L,L) x (0,y1) with nx(£L,y,Y) =0, n(xy1,Y)= @(x,2) (2..2)
with n(x,0,Y) = nvy(x), andn(x,y,—Y) solves
B_n =0on(-L,L) x (—=y1,0) with ny(+L,y,—Y) =0, n(x,—y1,—Y)=0 (2..3)
with n(x,0,—Y) = n_y(x) whereny (x) andny (x) are unknown function withjny ||L.» < ||@||L~. Next,
we give a convenient formulation of the boundary condit®n)-(2..3).
2.2..1 Boundary conditions

In order to reformulate Problem 1, we consider first the dqn&..2) on the boundarg;". Define
BT (x,y) the solution of the mixed Dirichlet-Neuman problem

BB = 0, in (—L,L) x (0,y1),
Bi(tLy) = 0 in (0,y1),
2..4)
B+(X7)71> = (p(X,Y), in (7L,L)a
BT (x,0) = 0, in (—L,L).
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PROPOSITION2..3 If @(x,Y) € HY(—L,L) then there exists a unique solution to the equation (2..4)
BT eHY(-L.L) x (0.y1)) satisfying B[l <[]

Proof. DefineDy := (—L,L) x (0,y1) and consider oki1(D{) the bilinear form
1 n
by (¢, X) =3 /D+ (&xXx + &yXy) dxdy + /D , (ax&x+ (coy +KY + Bx)&y) xdxdly.
EY Y

For A sufficiently largeby (&, x) + A (€, x) is coercive. Now, define the convex set
KY = {E S Hl(D¢)7E(Xay_l) = (p(X,Y) andE(X,O) = 0}

which is not empty since(x,Y) H%(—L,L). Takez € Ky with ||Z||.» < ||@||L~, we define, to be
the unique solution of

by(x.x —&r) A6 X —&)) = A(z X —&)), &) € Ky,Vx €Ky (2..5)

We have defined a maf, (z) = &, from Ky — Ky. Let us check that

[€xll> < [l =C. (2..6)

Indeed, in (2..5) we takg = &, — (&, —C)* € Ky. Hence
—bv (&, (&) —C)F) = A (&, (&4 —C)") = A(z (& —C)F)

and

by (6 —C)", (& —C)") +Al(& —C) "Iz < —A(z+C, (& —C) ).
Sincez+C > 0 it follows that(&, —C)™ = 0, hencef, <C. Similarly, we check that—&, —C)™ =0,
hence we have (2..6). Consider then the sequéfickefined by

by (&5 X =X AT X =& 2 A X - &Y (2.7)
with
&) €Ky, [Rll= < |l
We can take£2(x,y) = yequo(x,Y). From (2..6), we hav@E/{‘HLW(Dw < C and from (2..7), we have
HE/?HHl(Dw < C'. Then, we can consider a subsequence, also denot&fidych that
& —¢& in H1(Dy) weakly and inL* (DY) weakly «
also,
&N & in L2(Dy) strongly.

From (2..7) we obtain
by(§,x—§)>0,  &eKy,Vx eKy.
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We conclude easily thdtis a solution of (2..4) als@pé ||~ < ||@||L=. Now, in order to prove uniqueness,
we must prove that a solutiche H1(DJ) satisfying

B+&=0in(—L,L) x (0,y1)
éx(—L,y)=4&(L,y)=0 (2..8)
E(val) = E(X,O) =0

is identically zero.
Considery := & then we have

Bix+ax+B&=0inDy,
x(=Ly) = x(L,y) =0,
X(xy1) = Xx(x,0) =0,
hencex € H}(DS). This implies
& € L2(DY), &yx € L2(DY).

From equation (2..8) we deduég, € L?(D{). Henceé € H2(D{). In particular,é is continuous on
DJ. We have|& ||~ =0, soé = 0. O
Now, consider the following convex sets,

Kym = {x" € HY(~L,L) x (0,y1)) satisfying(2.10);  x"(xy1)=0; [Ix*e <M} (2.9)

where _
S5 TS O U Xy W) + (axxd + (Bx+ coy -+ KY) X ) dxdy = O,
Vi € H((~L,L) x (0,%2)) with $(x,0) = (x.§1) = O. (2-10)
and
Koywm = {x~ € HY((~L,L) x (-¥1,0)) satisfying(2..12); X~ (x,—y1) =0; [[X [l» <M}
(2..11)
where Lo
JELI5 3 Ot W+ Xy W) + (axxyc + (Bx+coy — KY) x, ) @hdxdy =0,
2..12)

Y € HY((—L,L) x (—y1,0)) with @(x,0) = @(x,—y1) = 0.
These sets are not empty since they contain 0.
REMARK 2..1 e Vri(y) function ofy such thatrr(0) =0,
{xm xeKym} and {xm xecKym} areH!—bounded
o If X € Kyjg| - denotingw := B+ + x, we have
Biw=0 and  maw(x,0)|,|w(xy1)]) <@L,

S0 a maximum principle impliefw||L» < || @||L-
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Using the set&y |4 andK_y 4|, the following result gives a convenient formulation of ti@und-
ary conditions in Problem 1.

PROPOSITION 2..4 The Problem 1 can be reformulated in the following wayd fij € L*(41) N
€°(A%),Ve > 0 such that

An=0inA1, nXxy,Y)=BT(xY) €Kyjg, NXY,—Y) €K yq

and
nX(iLaya Z) = Oa in (ya Z) € (7%-5 _1) X (7Y7Y)a
n(xvﬁvz) - (p(xv Z)v in (Xv Z) € (7L7L) X (7Y5Y)a
n(xa —>717Z) = Oa n (sz) € (_LvL) X (_YaY)

Proof. First, we can obtain the generic solution of (2..2) by coesity any functiory ™ which satisfies
XJr € Hl((_L7L) X (Oaﬁ))

and
B+X+ = Oa X)zr(j:Lay) = 07 X+(X7>Tl) =0. (213)

Note that we have not defined the valuexof for y = 0, hencex™ is certainly not unique. We add the
condition thaty* is bounded by ¢||_.~. We define in a similar way the functigpr such that

X~ €HY(~L,L) x (-¥1,0))

and
B.X" =0, X (#Ly)=0, X (x—y1)=0. (2..14)

Then, interpreting (2..13) as (2..10) and (2..14) as (2rd@ectively, we obtaiy™ ¢ Ky g @andx~ €
K_y,¢- HENce, the set of solutions of (2..2) and (2..3) can beevriéts follows

nxY.Y) =B (xy) € Ky jg).¥y>0; n(xy,—Y) €K yq, y<O.

]
2.2..2 Approximation (part 1)
We study Problem 1 by a regularization method in the nextgsitipn. DefineA? := A+ %%.
PROPOSITION2..5 The following problem: find)¢ € L*(A;) N"HY(A;) such thaf|né||L= < ||@||L~,
ANt =0inA1, n*(xY,Y)=Bi(xy) €Ky, NEXY,—Y) € Koy g (2..15)
and
n)z(;(il-aya Z) - Oa in (ya Z) € (__la%.) X (_Y7_Y)a
n;(xy,£Y) = 0 in (x,Fy) € (-L,L) x (0,y1),
né(x,y1,2) = @2, in (x,2) € (—L,L)x(-Y,)Y),
nE(X, 7)7172) = Oa in (Xv Z) € (7L7L) X (7Y5Y)a

has a unique solution.
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Asinthe 1d case, we formulate a variational inequality tavprexistence of solutions. In the present
context, we consider a convex subsetbf(4;) which is adapted to the two dimensional boundary
condition by

WeH A1), [Yllo <[],

Y(xy1,2) = @(x,2), for(x,z) € (—L,L) x (=Y,Y),
K=<¢ W(x,—y1,2)=0, for(xz) e (—L,L)x(-Y,Y),

W Y) = BTXY) € Ky jg|es

Wl Y) €K Y@l

PROPOSITION2..6 The seK is a closed non-empty subsettef(4; ).

Proof. The fact thatk is closed follows from the continuity of the trace operatdlow, pick the
function,

wx.2) = L[00x2) = 3 00Y) — 3000 Lyso + (55 + 5B Y Lgooy. (2.16)
We have
(X yl7 ) (o(x’ Z))
Yx,—y,2) = 0,
(X Y, ) = B+(X7y)a y> O,
Ygxy,-Y) = 0, y<O.

So, if p(x,2) € HY(dA1), e(x,Y) € HY(—L,L), then the functiony defined by (2..14) belongs . O

REMARK 2..2 Ifue K andw € H(A;) with w(x, +y1,2) = 0 andw(x,y,£Y) = 0, for 0< +y < y; then
u+weKk.

Consider the bilinear form

a(uyv) = % A { €uzV2 + uyVy + Uy vy Fdxdydz
J A1

+ / (BX+ coy + kz)uyvdxdydz — / yuvdxdydz+ / o Xukvdxdydz.
4 4 Jay

Equation (2..15) is formulated as followgu,v—u) >0, VYveK,ueK.
Proof of Proposition 2..5. First, existence is proved by variational argument. kaufficiently large
a(u,v) + A (u,v) is coercive orH(4;) and forf € L?(4;) we can solve the variational inequality

a(uv—u)+A(uv—u) = (f,v—u), YWeK,ueK.
We define the map = T, w whereu is the unique solution of
a(uv—u)+A(u,v—u) = A(w,v—u), YWeK,ueK.
The following lemma shows thdy, is a contracting map. (see proof in Appendix)

LEMMA 2..1 If [|[w]|L= < ||@||L> then|ul|L= < [|@||L».
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Moreover, taking/ = up € K we deduce
a(u,u) + A |ul%, < a(u,uo) + A (U, o) + A yjuo — ul 1.

That implies
[Ullha(ay <M,

for a constanM which depends only of, &, H! norm ofug andy.
Now, we define

K={weK: Wi < ||, |[wyz < M}

We haveT), : L?(4;1) — L2(4;) is continuous, mapK into itself andK is a compact subset &f. Then
Schauder’s theorem implidg has a fixed pointi € K which satisfies

a(u,v—u) >0, YveK.

Let us check that is solution of (2..15). Azl € K, we have

B.u = 0 in AT
Bu =0 in A~
U(X,%,Z) = QD(X, Z) in (_L, L) X (—Y,Y)
u(x,—y1,2 = 0 in  (—L,L)x (=Y,Y)
Moreover,
o 1 V(X,£y1,2) =0
We A = {VEH (A1) such that{ VY, £Y) =0, 0<4y<wi [’

we haveu+v e K anda(u,v) > 0. Then,
Afu=0inthe sense?”’

and integration by parts gives

_/ / UZ(XayaY)V(XayaY)dXdyf _/ / UZ(Xaya 7Y)V(X7y7 7Y)dXdy
2) L)y 2./-LJo

YooY Vi oY
+/ 7/ UX(Lvyvz)V(Laya Z)dydz_/f/ UX(_Lvyvz)V(_Lvyvz)ddeZ 0.
J=y1J=Y -y1J/-Y

Uniqueness of the solution to problem (2..15) comes ffloifi= < ||@||L«- O

2.2..3 Approximation (part 2)

When ¢ is smooth, we can exhibit a solution to the problem (2..17¢klyacting a converging sub-
sequence ofj¢. Let 6 a smooth fonction such th#&(+y;) = 0. Denoter(y) := yPO(y)? for some

p. g
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PROPOSITION2..7 The following problem: find) € L®(4A;) such thatyme H(4,),

An=0in41, NXYY)=B+(XY) €Ky, MY, =Y) €K y g (2..17)
and
r]X(iLay) Z) - 0 in (ya Z) € (_%.a _1) X (_Y7Y)a
r](X,)Tl,Z) = @(X, Z) in (X7 Z) € (_L7 L) X (_YaY)a
U(X7 7%.5 Z) = 0 in (Xv Z) € (7L7 L) X (7Y5Y)a

has a unique solution.

As in the 1d case, the key ingredient of the proof is to bouritbumly the norm of first derivative
w.r.t. zusing the auxiliary functiomnt.
Proof. From the previous section, we hayg¢||» < ||@||», hencené — n in L*x. We also have
a(n¢,up—n%) > 0, for someyy € K. So, we deduce estimates in the following lemma: (see proof i
Appendix)

LEMMA 2..2 We have
£\2 . £\2 . £\2
e/ (ns)“dxdydz < C; / (ng)“dxdydz < C; / (ny)“dxdydz < C.
Ay A Ay

Itis licit to test (2..15) withn£y?P~1629. We have

/Al (§n§z+ %n§y+ %nfﬁynzg —axng — (Bx+coy+kz)ng ) nEy**16% = 0.
So, we obtain
Ja, (N0 <
L8 JSH (N (Y Y))2 + (nF (x.Y,Y))2}y?P~ 16 %dxdly
O L(NE(Y, )+ (NE(x,y, ~Y))2}|yl2P~L6%idxcly
+ 3 fa,nEnE ((2p— 1)y?P26%4+ y?P~12q6'629-1) 4 2(Bx + Coy -+ k2)y?P~1621) dxdydz
+  Ja, NENE (axy?P~16%%)dxdydz

(2..18)
Moreover, Remark 2..1 allows to bound the two integrals anlibundary that yields the following
estimate:

Inzmlz <Cr

Denotingv® := N, we havel|Vé|| 1 (s, < C: so we can extract a weakly converging subsequence

V¢ — vin H(4;) andv = nme H1(A;). We can check that satisfies the boundary condition of
Problem 1. First, let us check that

my)An =0inH Y (A), TY)MK(+L,y,2) =0in (H3((—L,L) x (—y1,%2)))"
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As V¢ € H2(A;) andtAsné = 0, we have
—A*V* = f(n,ny) instrong sense

with f(n,ny) := —3{n"'n®+21'ng} + (coy+ kz+ ax)m'n®.
We obtain that’g € H1(A1), (x,y,+Y) = 0 and@(x, +y1,2) =0,

£ 1/ 1 wio= [ f(nf.ne
Z/Al\éfszrz/Alv:ictHz/Al\/‘ifpx+/Al(a><\/§+(BX+cOy+kz)v§ y\é)(ﬂ—./Alf(n 1Y) @.

Now, whene goes to 0, we have
2/ Vy(lwrz/ chn<+/ axvx+(Bx+coy+kzvy yvZ / f(n.ny)o®

We deduce we have iH~1(4,), firstly —Av= f(n,ny) which is equivalent tatAn = 0 and secondly
that choice of test function impliesny(£L,y,z) =0 in (H 2 ((—L,L) x (=y1,y1))'-
Then, we check that

nXY.Y) =BT (xy) €Ky g NX%Y,—Y) €K yq|-

We know thatn® € H1(4,), its trace is well defined and satisfies

y(ne)(xy,Y) = xE+B" XTF €Ky g y>0

y(nF)(xy,=Y) =x"% X f €K yjg; y<O
with

X5 < el (2..19)
We also have ¢, x ¢ satisfy respectively (2..20) and (2..21)
PR 06 S Wt Xy S Wy) + (xS + (Bx-+ oy +KY) Xy €)@y = O,

Vi € HY((~L,L) x (0,y1)) with @(x,0) = g(x,y1) = 0 (2..20)

and
T % B 06 Wt Xy Suy) + (ax + (Bx+ oy — KY) xy ) @ hdxdy = 0,

Vi € HY((—L,L) x (—¥1,0)) with ¢(x,0) = Y(x, ~¥1) = 0. (2..21)

First, we study convergence of the sequexéé and we deduce the PDEs satisfied byglirg x*¢.
In particular (2..19) implies

X8 = x*Tin L2((~L,L) x (0,y1)) weakly,
X% — x~inL?((—L,L) x (—y1,0)) weakly.
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And (2..20) and (2..21) imply
[x™¢mye <C  and xTem— x*min H! weakly,

X Myt <C and xfm— x~min H! weakly.

Denoteé ¢ := x™¢y?. From (2..20), we obtaiB, & "¢ = 0in (—L,L) x (—y1,y1), in H71((—L,L) x
(0,y1)). Since the operatdB, is strictly elliptic thené ¢ € H2((—L,L) x (0,y1)). We also have
SE(£Ly) =0in (H2(0,71)). As &€ € H2(A;) and B, x € = 0, we obtain

—B,ETE =g(x™,x,¢) inastrong sense

with g(x "%, xy ¥) := — “{1 2y(ax+coy +KkY)} — 2yxy €. We obtain that/yy € HY((—L,L) x
(0,y1)), W(x,0) = Y(x.y1) =

L
// SE Ut & wy)+(axfx*’£+(BX+Coy+kY)Ey+’f—yE§’f)w:[Lfo axs, x)w
Now, whene goes to 0, we have
L 1 L v
[ [ 5 wer & )+ (0 + (B ey +k0g —v& o= [ [Tatxw

We deduce that it ~((—L,L) x (0,y1)), we firstly have-B, £+ = g(x™, Xy ), which is equivalent to

y’B, x™ = 0 and secondly that choice of test functions imp§i&g; (+L,y) = 0 in (H 2 ((0,y1))). To
summarize, we have
& e HY((-L,L) x (0.%1)

and _ _
_B+E+ = g(X+aX¢) In (_LaL) X (07)’1)7
&(£Ly) = 0 in - (0,y1),
&fxy) = 0 in (-LL)
Hence
mx " e HY((-L,L) x (0%), Xl < [[@llLe
and _
mixT™ = 0 in (—L,L)x(0,y1),
nx (£Ly) = 0 in  (On), (2..22)
Xt(xy) = 0 in (-LL)

Similarly, we have
X~ e HY((-L.L) x (-¥1.0)),  [Ix" Il < [l@llee

and _
myx~ = 0 in (—L,L)x(—y1,0),

mXx (£Ly) = 0 in (-y1,0), (2..23)
nx (x,—y1) = 0 in (-L,L).
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First, y(rn¢) — m(x* +BF) in HY((~L,L) x (0,y1)) weakly. Secondly, the weak convergence of
€ — 1 in H(4;) implies the weak convergence pfriné) — y(mm) in H%(dAl). By uniqueness
of the limit, we deduce/(mmn) = i(x* + B). Finally, we verify that

n(xy1,2) = @(x2); N(xy1,2) =0.

Using Green formula, we obtain

Vg € HY(4y), ‘n§w+ neyy = ‘ pyn(y)do
-A]_ A]_

Jon,

Now, we can lek tend to 0, we obtain

Y € HY(Ay), /A my+ [ ney= [ oury)do

A

2.2..4 Approximation (part 3)

Now, ¢ € L®(d4;), we introduce a sequence of functi¢gX k > 0} ¢ H(d4;) such thaigk — @ in
L?(d41). We denotenX the solution of the Problem 2..17 witk as boundary condition. From the
previous section we havgk € L®(4;) satisfiesrt(y)nk € H(4,),

AnK=0ind1, n*x YY) = BT(XY) €Ky g, MY —Y) €K v g

and
nX(*Ly.2) = 0 N (y,2) € (~Y1,y1) x (=Y, Y),
nk(xaﬁvz) = (pk(xa Z) in (Xa Z) € (7L5L) X (7Y7Y)7
nk(X, 7)7172) =0 in (Xa Z) € (7L5L) X (7Y7Y)

wherep%*(x,y) € HY((—L,L) x (0,y1)) solves the problem (2..4) with*(x,Y) as boundary condition.
Moreover||nX||o < || @]l and||B¥||« < ||@||». Let us check that the sequerg€has a limit.

PROPOSITION2..8 We have

BYT(x,y) = BT in L2((—L,L) x (0,y1)) weakly,
Bt (x,y) — mB* in HY((~L,L) x (0,y1))weakly

and the limitB* solves the problem (2..4) witfa(x,Y) as boundary condition.
Proof. We havevy € HY((—L,L) x (0,y1)) with ((x,0) = ¢s(x,y1) =0,

%// (Bf’+‘l’x+ﬁyk’+wy)+//(GXBXK’++(Coy+ kY + BX) BT =0, (2..24)

In particular, the choice oy = r(y)B%* with 71(0) = 71(y1) = O gives

] (B (B )+ [ ) BB+ [ (@xBl oy v+ PO PR =0
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//(Tf)t“r) <Cp; and //(rr k)2 < C

We deduce that we can extract a subsequence such that we have

This implies

Bkt — BtinL2weakly and mB%T — BT in H! weakly.

Now, denoteyX := ri(y)B%". We haveB, yk = —B“( — (Bx+Coy+KY) 1) — BT 1. Also Vi €
HY((=L,L) x (0,y1)) with ¢s(x,0) = (x,y1) =

%//(vkaﬁ Ky) +// (rxy + (coy +KY + BX) ) @ (2..25)
_//{ ﬁ“ — (Bx+coy+KY) 1) — Bt b,
Whenk goes to+ in (2..25), we obtain

BiB" =0, B (£Ly)=

Then, from (2..26),

vy € H2AHE, //Bk*wyy: 7//[33',"+wy+/q0kwyﬁ(x)da, (2..26)

we deduce taking limit whek goes to+-co

Wy € H2AHE, //;mpyy: f//Berlper/‘(pwyﬁ(x)da

and we obtain the Dirichlet boundary condition

B+(Xa%>:(p(X7Y)a B+(X70):O-

THEOREM2..9 The Problem 1 has a unique solution.

Proof. TestingAn* with n62, we obtain

%//(’hlf( 5 /’159 2// 2(00') + //%Y+kz+[3x 2(0%) + = //aez

-3 / ax(n'*0)?(x)do+ / y02(n%2ri(2)do.

J[nerz<c: [[msor<c

Testing(An) with nky?P-1624, we deduce the following lemma

So, we have
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LEMMA 2..3 We have
Ja, (N2 < LI I LNEOGYY)2 4 (N0 Y Y))21y?P-L62d xdly
305 L2 Lm0y, =Y))2 + (nf(x , —Y))2} y2P~6%dxdly
(P— 1) [, (k) (nkm)yP 26911 q [, (nk6)(nkmyP-169-20'  (2..27)
Ja, (Coy+kz+ Bx) (n6) (nFm)yP~te%1
Ja, aX(n%6)(n¥m)yP-169.

Moreover,|nkmj 2 < Cr.

+ o+ o+ o+

Denotingv¥ := nkr, we havq\vk”Hl(Al) < €, so we can extract a weakly converging subsequence

VK = vin H1(A;) andv = nme H(4,). Similarly as before, we can check thpsatisfies the boundary
condition of Problem 1 which is summarized in the followiegima. (see proof in Appendix).

LEMMA 2..4 We havet(y)An =0inH1(4;), m(y)nx(£L,y,2) =0in (H%((—L,L) X (=y1,91)))’s
n(xayaY) _B+(Xay) € KY,H(pH; r](X,y, _Y) € KfY,H(pHa and n(xaylaz) = (p(X,Z); n(xaylvz) =0.
a

2.2..5 Local regularity in the interior Dirichlet problem

In this section, we derive local regularity properties @ thnctionv related to the interior problem. We
recall thatv := 1 € H1(4;) and we have

1 1
- éVxx - EVyy‘f' Po(X, Y, Z)Vy + A XV — YVz = N P1(X, Y, Z) 4 NyP2(Y) (2..28)

where we denote

i

v
Po(x.Y:2) i= Bx+coy+kz  pr(x¥,2) i= = — po(x.Y; 2, pay) =T (y).

Lety <yi,
Notation 2..10

M%) = {(x¥.2)€l1, |y-wi[>9d, |y+yi|>6}
21(8,y) = {(xY,2 €41(0), |z-Y|>y}
Hi(0) := H(-Y,Y;HY(—L,L;HY(—y+6,y—9)))

Recall thatn € Hi(6) meansy, Nx, Ny, Nz, Nxy: Nxz: Nzys Nxyz € LZ(A1(5))-
ProPOSITION2..11 We have
¥3,y>0, neHi(d); neb°41(d)); neH(M(3,y)), (2..29)

and
[Mlhy3) < Mss N llHzay(5,y)) < Ma. (2..30)
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Moreover, the trace af aty =y, denoted byh(x, z) := n(x,y, z) satisfies
he HY(—L,L) x (=Y,Y))NE°((—L,L) x (=Y,Y)). (2..31)

Proof.
The proof relies on the following estimates (see proof in &mgix). We have

TP € L2(A1); Ny € L2(A1);  nyyTP € L2(4y),

YT € L2(Ay);  nyyPTe € L2(4y).

For p andq large enough, we have

My € L?(A1);  nyyyPrd € L?(A1);  p(DNuy®r € L2(A1);  p(2)N2y°d € L (4y).

3. Theexterior Dirichlet problem

In this section, we prove existence and uniqueness to thegeneous exterior Dirichlet problem.

3.1. Some background on the exterior Dirichlet problem in the dskc
Notation 3..1
Dd = (_007_y) X (_YvY)a DU = (>7)+°°) X (_YvY)a
D:=DguUDy, D':=(y,4+®)x{Y}, D = (-, -y)x{-Y}
and
Df:=Dn{ly| >y+e},e>0.

Let us recall the exterior Dirichlet problem from (1). Deeat:= inf{t > 0,|y(t)| = y} and con-
siderhs. € L*(=Y,Y). Itis shown that€y, (h.(z(T))) solves a Dirichlet problem: Find € L*(D) N
%¢°(D¥?),Ve > 0 such that

Al =0inD, B, =0,inD* (3..1)

with
{(xy,2 =h(2, -Y<z<Y.

By solving the ordinary differential equation on the bounyithere is

Zy(y,£Y) = Kexp(coy? + 2KYy).

As a bounded solution is souglt,must be 0. Hence] (y,£Y) = h.(+Y) and then problem 3..1 was
recastin (1) by
A =0inD, {(y,+Y)=hy(£Y), inD* (3..2)

with
{(xy,z) =hi(2), -Y<z<Y.
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3.2. The exterior Dirichlet problem in the 2d case

Notation 3..2
Ad = (7L7L) X (70057)7) X (7Y5Y)7 AU = (7L7L) X ()77+°°) X (7Y5Y)

A=A0AqUlDy, AT = (—L,L)x (y,+0) x {Y}, A :=(-L,L)x (=, —y) x {-Y}

and
Af =AM {ly| >y+e}e>0.

Due to the symmetry in the exterior Dirichlet problem, we cansider positive values gfonly. De-
noteT := inf{t > 0,y(t) =y} and consideh € L*((—L,L) x (-Y,Y)), we definel,,, (h(x(T),z(T)))
as the solution of the exterior Dirichlet Problem 2:

Problem 2 Find{ € L®(Ay) N€°(A%),Ve > 0 such that

A7 =0ind,, B, =0inA*

and
ZX(:H-vyv Z) = 07 in (ya Z) € ()77+°°) X (7Y5Y)7
Z(Xa}TaZ) = h(Xa Z)a in (Xv Z) € (7L7L) X (7Y5Y)
3.2..1 Boundary condition
Find{" € L®(A*) such that
B,{"=0inA", (3..3)
and
G(xLyz = 0 N (%,2) € (y,+o) x (=Y,Y),
Z+(Xa}772) = h(X, Z) in (Xv Z) € (7L7L) X (7Y5Y)
Define y o
S e Vvl g ¥
1 +\ AT X y
Hy(A™) = {u.A — R, ./A+71+y2 dxdy<oo}.

PROPOSITION3..3 Assume that there exidtse H3(A™) such thaH (x,y) = h(x,Y).

Then there exists one and only one solution to the problerB)(&ith
{HeHzi(AT), [Tl <IN Y) e

Proof. First, we prove uniqueness. It is sufficient to prove thatéftvaveB, . { = 0, {x(£L,y) =0 and
(x,y) = 0 with { bounded then we obtaifi= 0. Setu(x,y) := {(x,y) exp(—2y?) then

1 1 1
5Uxx+gUyy—aXLk—Uy(BX+kY)+ucO(—%y2—y(BX+kY)+§) = 0, (xy)ed™,

U(ELy) = 0, y>vy,
ux,y) = 0, xe(—L,L).
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We can assume that2y? — y(Bx-+KkY)+3 <0, y>y(ysufficiently large). Let us prove that=0.
Indeed ifu has a positive maximum if cannot beyat c. But then this contradicts maximum principle
from (3..3). Similarily, we cannot have a negative minimum.

Now, we adress existence. Let

U :
WS (A7) = JueHz(a™), [ullwg(a+) = [lull= + </ 1+y27 dxdy) <@

We define a bilinear form oH1(A*+) x W3 (A*) by

1 UxVx vy

auYv) = 3 ) Ay 2/ 1+y2 Ay - / Ay
‘ (BX+ coy +KY)uyv
_dxd / dxd
a/ (1+y2> a (1+y?)? Y
We next define
ay(u,v) :=a(u,v) + y/A TyZ)dXdy
We finally define a bilinear form oH}(A*) x H}(A*) by
_ 1 UV 3 UyVy
ays(uv) = 2 ue (1+y2) —dxd y+2/ 1+y2) dxdy /+ (1+y2)3dxdy
a/‘ Xidxdyqt/ (Bx+Cco——- y-y +Coy+ kY)idxdy
(1+y?)? 1+9y (1+y?)?
7d d
Y e @
If ve W(AT),
Co(y—Y)Oy v
ay,5(u,v) =ay(u,v) — e 140y (1+y2)2dxdy
If ue W} (A*), we can compute
a,s(uu) = 1 u7)%dxd +}/ u7§dxd —2/ WY xd
YT 2 e WP 2 e P e
XUxU (Bx+coy +KY)
/ 7(1+y2) dxdy+ - —(1+y) uyudxdy
@ w? 1 dy-y Ay—y)y
> - 5~ > | dxdy
2 Jar (1+y?)2 [1+0y (140y)2 (1+0y)(1+Y?)

w2
+V/A+ 7(1+y2)2dxdy
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And see that
17 u2 17 u2 ©uuy
> = % _/ — Y dxdy— / _ WUy
ay,5(U,u) 2./A+ (1+y2)2dxdy+ 5 o (1+y2>2dxdy 2. . (1+y2)3dXdy

XUyU (BX+ coy +KY)

a/A+ mdxdy+ /N Wuyudxdy
Co w

I e

and the right hand does not depend@rMoreover, we can define a constgndepending only on the
constantsx, 3,¢o, Y, k, Y but not ond such that

ay5(WV) > a0|lVIFy4) 80 >0. (3..4)
The constandy depends only om, 3,¢o,Y,k, Y. If f(X,y) is bounded, we consider the problem

f(v—u)
—u) = .
ays5(u,v u)/y/A+ (1+y2)2dxdy WwekK, uekK (3..5)

where
K:={veHi(A"), v(xy)=h(xY)}

which is not empty from the assumption. Then from the coéxci8..4) and results of the theory of
Variational Inequalities (3..5) has one and only one sofuti,s(f) (writing u for uys(f) to simplify
notation). Ifw € H3(A™) satisfiesn(x,y) = 0 thenu+w € K, hence

: fw
ay,5(u,w) = V./A+ dedy

and thus also

1.1 Yy _ +
— 5 Uk 2Uyy+aXUx+(BX+001+5y+COy+kY)Uy+W = yf, (xy)ead,
Uu(xLy) = 0, Y& (Y, +»),
ux,y) = hxY), xe(-L,+L).
Also if
Mt :=max{[[h(.,Y)[e, || f[L=}
then
uys(f)llLe < M.
Moreover,
© f(H—u)
—u > [ S
ayé(uaH U) = V/A+ (1+y2)2dXdy
hence

f(H—u)
ays(u,u) <ays(uH) — V/A+ dedy
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and
Co(y—y)oy uH
as(uH) = ay(U,H)f.A+ 17 0y) (1+y2)2dxdy
< ClullyganHllwga+) + M, Y) o

whereC depends only on constards 3, coy, k,Y. From (3..4), we deduce easily that
||Uy6(f)||H2}(A+) < Gy(f). (3..6)
Letting & — 0, we obtain
s — uy(f) in HZ(A') weaklyandin L*(AT) weakly+, u,(f)eK

We deduce easily from (3..5) thay(f) satisfies

y(U,v—u) y/ 1+y2 dxdy 3..7)

VVGWZZI_(A+)7 vekK, ueK, HUH°°<Mf’ HUHHzl(A*) <Cv(f)

where again we write for u,(f). The solution of (3..7) is unique. Indeed, we first claim that
a(u,w) = / W ixd YweWH(AT), w(xy)=0
) =Yy A+ (1+y2)2 ¥ 2 ) ,Y)=0.

But then iful, u? are two solutions

Ry u - dxd ay (U, ut —u?) = fLuzdxd
(1+y2) Y aylu, V ¥

2
ay(ulvul,u ):y 14y

1

hencea, (u! — u?,ut — u?) = 0. However, from (3..4) we also have

ay(vV) > aolM[Byas),  WEHZ(AT)

Thereforeu® — u? = 0. We next consider a sequenfewith % = ||h(.,Y)||.= given by the solution of

"(v—¢™Y

A G R N eavar

dxdy (3.8)
where

{MreK, wewg(at), vekK, [|I™H e <max((lh(,Y) I, (14" I)
Considering, we have
a@tv-gh<y [ L)
e S e (14?2

Takev = ¢ — (¢* — 97, which is admissible, then

dxdy

(g - o

8¢ (=) <y | ATy Y
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and
O —H)*

(=0 ) = (@ ) -y | S dxay<O

from the assumptions. Therefofé! — °)* = 0 which implies¢* < ¢° and also
1l < JIAC,Y) .
Then by induction if" < "2, ||Z"|L= < |[h(.,Y)]|L=. We obtain™* < Z", [|Z" Y| < [|h(.,Y)]|Le.

Also ni71 n+1
(@ sy [ S axay
(Zn+1 Zn+l) < a (ZnJrl Z y/ Ziyz)m»l)dxdy
n+1 n n+1
< al™th +v/ 1fy2 dxdy—y | 75 ((ZHyZ) Jaxdy
Hence

12 gy < Sy (12 hagias) + IRVl )
The sequencé” — { is monotone decreasing a@d — { in H3(A™) weakly, { € K, [|{]|L» <
(., Y) |-
Hence in the limit,

al{,v—0)=0, WeW(AT),veK, ZeK, |Z|<|h(,Y)|Le (3..9)

and( is solution of equation (3..3). O

3.2..2 The Cauchy problem

The exterior Dirichlet Problem 2 is equivalent to

Al = 0 (%¥,2) € (—L,L) x (y,0) x (=Y,Y),
{((x,y,2 = h(x2, (x,2) € (—L,L) x (:Y Y) (3..10)
(X Y, ) = Z+(Xay)7 (Xay) € (_LvL) X (y7oo),
ZX(:H— Y, ) = 07 (y,Z) € (_,oo) X (7Y,Y)
with
B,.{t = 0, (%,y) € (—=L,L) x (y,0),
Z+(va) = h(x,Y), x€ (—L,L),
&Ly = 0, y € (¥,)
and

1€l < IhCY) L
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This is a Cauchy problem, withtaking place of time andk, y) as the space variable. We write it as
1/1 1
Zz‘f’)_/ EZyy'i‘ éZxx—axe—(Bx+coy+kz)Zy =0 (3..11)
and using the notation

1/1 1
o (Zu(X,y) := -y ( Uyy + 5 thoc — O XU — (BXx+ coy + kz)uy)

we obtain
~L a2 = 0, (xy) eAt,z<Y,
Z(vavY) = Z+(Xay)7 (Xay) € ( ) ( oo), (312)
i(+Ly.z) = 0, (V:2) € (¥, 0) X (=Y,Y),
{(xy,2) = h(x2), (X2 €(-L,L)x(=Y,Y).

So it is a Cauchy problem with mixed Dirichlet-Neuman bougdanditions. We consider the space
H2(A*), with a new norm

= [ 12 bt xty+ [ Y
- y (14y?)? (1+y?)?

which is not equivalent to

2.2 2
2 Uy + Uy / u
uj|c= ——5axdy + ——— dxdy.
Il /m (1+y?)?2 ar (T+y22
The norm inL3(A*) is defined by

u2
2= [ ey < ul

We define orH3(A*) the bilinear continuous form

L w1 uv(143y%)
A (Z)(u,v) = 2.A+7y(1+y2)2dXdy 2y VI y2R dxdy

(axux + (Bx+ Coy + kz)uy) v
dxdly.
+/A+ y(1+y?)? i

Moreover,

_ ol Sty 1/ wu(l+3y)
o (2)(u,u) = > A+y(1+y2)2dXdy_2.A+ (112 dxdy

+/A+ (axuy+ (BX+ coy + k2)uy) Y ixcly

y(1+y?)?
1 d -y
u2 _( y—-y )

"2 )n T Pdy Y1 y2)2 cixdly
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and for|z] <Y,
2.2 2
Ug + Uy / u
< —— 2 dxdy—b —————dx
% S YTy Ty (T2 v
where the constantg, by depend only o, 3,¢o,k,y,Y. Therefore also,
2 w
< (2u,u>> aolluly ) - b/A+ Tyt
The problem (3..12) is equivalent to

44

~(5, W) +7()(¢w) =0, Ywe HI(AT), w(xy) =0 (3..13)

and
(YY) =2 (xy) , {(xY,2) =h(x2).
We assume that there exists

H(2) e HY(-Y,Y;HI(AT)) with H(2)(x,y) =h(x,2), Vxz (3..14)

Writing Z(X,y, 2) ={(x,¥,2) —H(2)(x,y), we deduce

~(GEwW s @@ w = (BEKY).W-SDH@W, WweHKAY), wxy)=0.
Z(Xv va) = Z+(Xa y) —H (Y) (Xa y)
((x¥2) = 0
Under this form, we obtain one and only one solution
{(xy,2) € L2(-Y,Y; H3o(AT)), %(x,y,z) €L?(-Y,Y;H3,(A"))

WhereHiO(A+) denotes the subspacet$}(A+) of function which vanish ag. We now prove that
[¢llee < [[h(,Y) e (3..15)

We wiill consider
Af ={-L<x<L, y<y<R}

for Rlarge. We begin with an approximation of the boundary céonif * with g solution of (we
delete +)

%ZR,XX+ %ZR,yy— UXZR,X - (BX+COy+ kY)ZR,y = 07 (x,y) € (_L7 L) X (va)a
X L7 = 07 _700 )
drx(£L.Y) ye(y,») (3..16)
R(%Y) = h(xY), xe(-L,L),
ZR(Xv R) = 07 Xe (7L5L)

We can assumk > 0, otherwise we decompobe= h* —h~. We extend{r(x,y) by O fory > R. The
sequence of function&(x,y) is increasing and|(r||.» < ||h(.,Y)|l~. LetB(y)=1if0<y< % and
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0 if y > 1 be a smooth function. We may assuyne ’;. Letve W} (A™),v e K and test (3..16) with

V(%) —{r
(1+y?)?

which vanishes ag = yandy = R. Settingr(y) = 6(%), we obtain,

17/ ZR,X(VXBR - ZR,X) VyeR - ZR,y)

11 dry(
2 [ SRR CRx) g —/ ’

) v dxdy (3..17)

10 GryvOe g [ 2ry(vER—CRYY
+ 2R AL (1+ y2)2 dxdy s 1+ y2)3y dxdy
ax¢r(V6R — ¢r) (Bx+Coy +KY) - B
/AE (1+y?)? axdy+ ax (14?2 {ry(VBr — {r)dxdy = 0.

and thus alsa({r,v6r — {r) = 0. Recalling that
u2
W)y [ oy alulfy,.,
we get
80l| l1Zy(+) < &R, V6R) +CIINC,Y)| e,

from which we deduce easily,
4RIz a+) <€

We then consider the limit
{r — { monotoneincreasing {r— ¢ in Hi(AT) weakly

Hence,

a(¢,v) <a((,q)

which implies that{ is the solution{ ™ of (3..3). We next consider the approximation of (3..10) for
y<y< R We write

AR = O, (x,y) € AR X (=V,Y),

GROGYY) = Zr(xy), (xy)€aF,
R(X,Y,2) = h(x,2), (X2 € (—L,L)x(=Y,Y), (3..18)
{r(X,R2) = 0O, (x,2) € (—=L,L) x (-VY,Y),

{rx(£Ly,2) = 0, (¥.2) € (Y;R) x (=Y,Y)

We write (3..18) as a Cauchy problem

IR () = O, in A,
RGYVR) = r(xY), (xy)€dg,

rx(£Ly,2) = 0, ¥:2) € (¥,R) x (=Y,Y), (3.19)
&Rx¥%2) = h(x2, (x2e(-LL)x(-Y.Y),
R(X,R2z = 0, (%,2) € (—L,L) x (-V,Y)
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and extendr by 0 fory > R. If we H3(A*),w(x,y) = 0, we can write

—(52.WR) + </ (2)(¢r,6rW) = O,
RxYY) = g(xy), (xy)€ag, (3..20)
ZR(XAZZ) = h(X, Z)v (Xv Z) € (7L7L) X (7Y5Y)
However, from (3..19), we deduce

¢RIl < [[h(,Y) e (3.21)
We can pass to the limitin (3..21) and check thgt— ¢ solution of (3..13). This proves (3..15).

3.3. Local regularity in the exterior Dirichlet problem

In this section, we derive local regularity properties af #olution to the exterior Dirichlet problem.
Recall thaty < vy,

Notation 3..4
A4(0) :={(xY,2) €Ay, y<-Y—0}, Ayd):={(xVy,2) €Ay, Yy>y+9},
A (8) :=0q(B)NA~, AT () :=Ay(8)NAT,
Ag(0,y) i ={(X,Y,2) € Aq(0), —-Y+y<z}, Aud,y):={(XV,2) €Ay), z<Y-—y},
Ha(8) == HY(=Y,Y;HY(—L,L;HY(—y1 — 8,~y1 + 9))),

Hy(8) := HY(=Y,Y;HY(—L,L;HY (Y1 — 8,1+ 9)))

and

A(8) :=A4(8)UAu(d), A(3,Y) :=244(3,Y)UAu(S,Y), H():=Hqd(8)NHu(9).

Again, thanks to the symmetry in the exterior Dirichlet desh, we consider only positive values
of y.

PrROPOSITION3..5 [Local regularity of the exterior Dirichlet problem]atave
V3,y>0, {eHy(d); Ze€%°Au(d)); {eH*Au(d,y)), (3..22)

and
1€]Ikue) < Mgl 1€ ]Inz(ays,) < Mzjg)- (3.23)

Moreover, the trace of aty = yj, denotedy(x, z) := {(x,Y, z) satisfies
ge HY((-L,L) x (=Y,Y))nE°((—L,L) x (=Y,Y)).

PROPOSITIONS3..6 [Local regularity of the exterior Dirichlet problem tre boundary = Y] We have
¥8>0, ¢eH(A7(9); [Zllnza+(s) < Majg)- (3..24)

Similar results hold for negative valuesyfProofs of Proposition 3..5 and Proposition 3..6 rely on
similar estimates related to the local regularity of theiiar Dirichlet problem.
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4. Theergodic operator P
Notation 4..1

M= (L L) x {71} x (=Y,Y); T :=(=L,L) x {#¥} x (=Y,Y)
and

M:=run® r=r-urt

4.1. Construction of the operatd?

Considerg := (@_, ;) € L°°(I'_l). Following the same procedure of the 1d case, we first solee th
interior Dirichlet problem fom with the boundary condition

n = @ inf,
n = @ inf.

Then
[Nl < max(|[@: || [|-])-

Then, we solve the exterior Dirichlet problem #mwith the boundary condition
{ = n inrt,
{ = n 1in r-.

1]l < fInflee <l -

Then

Forp; € I, let us define

4.2. Probabilistic interpretation of the operatdt?

Let us recall from Khasminskii (7) the probabilistic integgation of the operatd®. Forp I and for
p1 € 1, we denote by (p;.) the distribution ofz(11) starting frompand byy(ps;.) the distribution of
z(1) starting fromp;. We showed

n(p) = [ WAy and Z(py) = [n()APLY).

Also, using Fubini theorem we can write

where
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By construction, the operaté@ris the transition probability associated to the Markov ohai

{(X(ﬂ,k)ay(ﬂ,k)a Z(ﬂ.,k))}k}o

whereT; o =0 and

T i=inf{t > Tk, [YUO)| =Y} Tiker = inf{t > Ter,  |y(t)] = vt

Note thatTy, 1 = To 67, andTy k.1 = Ty 0 65, , where is the shift operator.

4.3. Ergodic property forP
THEOREM4..2 The operatdp is ergodic.
Proof. A Borel subset of; can be written a8 := B_ x {y;} UB, x {—y1} with B,.,B_ are Borel
subsets of—L,L) x (-Y,Y). We have

B+ = {(sz) : (X,%_,Z) € B} andB_ = {(Xa Z) : (Xa 7)7152) € B}
also

1B+ (Xa Z) = 1B(Xa%-7 Z)! 1B— (Xa Z) = 1B(Xa 7)717 Z)'

Considerg, = 1g, and@_ = 1g_ in the interior Dirichlet problem, then

(xy1,2)  ify=w

P(1s)(x.Y;2) ={ {(x V1,2 ify= V1.

Letp,pe I, define
Ap.(B) == P(1s)(p) — P(18)(f).
We will prove the ergodic property of the operaibm the four following steps.

1. Doob’scriterion from (3).
The operateuP is ergodic if we prove the following Doob’s criterion

supApp(B) <1, Vp,pe I, andvB.

2. Negation of Doob’scriterion.
Suppose Doob’s criterion is not verified. Then, there exgtssequencepy = (X, Yk, Z), Pk :
(%, Yk, Z) in 1 and a sequence of Borel subBgtsuch that

Apipic(Bk) — 1.

Denoten andZ* the solution of the interior and exterior Dirichlet problemith ¢, = 1g,, and
¢_ =1g_,, whereB, andB_y are deduced frorBy as previously. We have

Ape i (Bi) = 70 Vi Z) — 74(Ri Vi Z)-
Now, extracting a subsequencemfand gy, we deduce

pk— p° and px— p* inry.
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Also,
and

From (3..22), we know that
1¢4l(3) < M11 and|[*lhz(as,y)) < M2a

then
{“eH(3) C6°(A(9)),

k—2* in H(3) weakly,
{* e 6%A(9)), 4..1)
and

=7 in E%A3,y)).
From (3..23), we know that

HZkHHZ(Ai(a)) < Mg,
S0, we obtain

k=7 in €0%a%9)). (4..2)

PropPOsITION4..3 Under the hypothesis thRtis not ergodic, we havé*(p*) = 1.

Proof. We must have lin,., Z(px) = 1.

(@) If |z.| <Y orzy, = —Yy; then (4..1) implies lin,. Z¥(px) = *(ps)-

(b) If .y, = Yyi then (4..2) implies lim_, {¥(x, =y1,£Y) = {*(ps). Indeed, as for alk >
0,k is continuous, there existg > k such tha{{¥(pg, ) — {X(Xg,, £Y1, £Y)| < 27X Also,
liMkse0 4(Poy) = IMi00 CK(Xa s Y1, £Y) = T4 (p*).

O

3. Contradiction.
Suppose* = (X*,y1,Z°) and set

Iii=nhn{x=+L}; Z:=hn{z=Y}.

Maximum principle for parabolic operator appliedddimpliesp* € =; U =,. Thenp* cannot be
in =1 because of the Neuman condition grfccannot be irE, because of the boundary condition
z=Y. A similar argument yields a contradiction wigh = (x*, —y1,7").

4. Conclusion. .
From ergodic theory, there exists a unique probability megu= (y;, ;") on; andK,p >0
such that

vn= 0, < K| ¢|lexp(—pn).  (4..3)

Po- [[ osdn 9~ [ oty 19

O
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5. The nonhomogeneousinterior Dirichlet problem

Considerf a bounded function oA, we want to definéy , ;) (for_l f(x(s),y(5),2(s))ds) as the solution
of the non-homogeneous interior Dirichlet Problem 3:

Problem 3 Find x € L*(4;1) N%°(A$), Ve > 0 such that

Ax+f = 0 in A
Bix+f = 0 in Af,
XX, £ty1,z2 = 0 in (=L,L)x(-Y,Y),
Xx(£Ly,2) = 0 in (=y1,y1) x (=Y,Y).

Consider

®(x,Y,2) := expA (CokZ + Coy?); A > 1.
THEOREMS5..1 The Problem 3 has a unique solution. Moreover, we have
I X|lLe < eXpA (CokY?+ Cof),

whereA depends orf.

Proof. The uniqueness of a solution of Problem 3 is argued as thaien&gs for the homogeneous
Dirichlet interior problem. The existence can be provenigyregularization technique used previously.
Now, we give & bound fory. We have

&=0; @x=0
B =2YQAP;, @y =2C0A P+ (2C0AY)?Q
¢ =2z20kA @
and
1 1 5
Y@ — axg— @(BX+Coy+ KD + 5@y + S0 = —2BCoAXyp— 2NV P+ CoA @+ 2(coAy)

CoA @ — CoA 2Bxyp + 2(cay)?A (A — 1)@
CoA (1—2BLY1) @+ 2(Coy)°A (A — 1)@

> |Ifl

WV

wherey; can be chosen ay2< Tlu andA > max(1, %).
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Using thatp(x,y, £Y) = expA (cokY?2) expA (c2y?) we obtain forz=Y,0 <y < y1.

1 1 1
—OXG— B(BX+CoY TKY) + 5@yt St = —@ YY) (Coy +KY+BX) + S @y(x YY)
= Acp(%Y,Y)(1—2(KY+ BX)y+2co(A — 1)y?)

Aco@(X,Y,Y)(1—2(KY + BL)y+ 2Co(A — 1)y?)

(KY + BL)?
20(A - 1))

\%

WV

Aco(l

vV

11,

if A > max(zm, 1+ M). Similar estimates hold fa= —Y,—y; <y < 0. Consideu := ¢— X,
thenu satisfies the following inequalities

Au>0in4;; Byu>0inAf (5..1)

and the following boundary conditions

u(x,xy1,2) = expA(cokZ+coy?)) in(—L,L)x (-V.Y),

w(Ly2) = 0 in (=¥2,91) % (=Y, Y). (5.2)

The maximum ofi cannot be attained if\; or on the boundaries= +Y,x = £L. It can only be attained
fory=y; ory=y;. Hence,
U(x,¥,2) < exp(A (CokY? + co¥?))
which implies
X(%Y;2) = —exp(A (CokY? + co%))-

Now, consider = —(@+ x), thenv satisfies inequalities (5..3)

Av<0ind;; Biv<0inAf (5..3)

and the boundary condition (5..4)

v(X,ty1,2) = —exp(A(cokZ+coy?)) in (—L,L) x (-Y,Y),

Vx(j:L5y) Z) =0 in (_)Tl;%_) x (—Y,Y) (54)

Again, the minimum of/ cannot be attained iA; or on the boundaries= +Y,x = +L. Hence
V(%,¥,2) > —exp(A (cokY? + co5))

which implies
X(%¥,2) < exp(A (cokY? + cof) ).



32 of 46 A. Bensoussan, L. Mertz

Now, let us derive some estimates on derivatives. Met= exp(A (cokY? + coy12)). Using the test
function mo(x,y,2) = exp(—co(y? + kZ)) exp(—ax?) we obtain now a priori estimates on the partial
derivatives ofy. We test (3) withmgx

/ X2mo + / xZmp = / yx2mp — yxZmo+ 2 / f xmo— / CoBXX Mo
A A dAl,z:Y dAl,z:fY A A

< / yxzmo—/ yxzmo+2/ fx
JoA1,2=Y,y>0 041,2=-Y,y<0 JAL

< C(M).
Hence,
| gmo<om ;[ ximo<com.
A Ay
We have then,

[ PxPmo <o) and [ (v2x)%mo < (M)
1 1
The functiony is smooth outside a neighborhoodyof 0. O

6. The nonhomogeneousexterior Dirichlet problem

Consider the function
W(y) :=log(y) + K, K such that logy;) + K >0
and the space of functions
B Xy ={uy, uel®A)}.
We want to definel . (fo f(X(s),¥(s),z(s))ds) as the solution of the nonhomogeneous exterior
Dirichlet Problem 4:

Problem 4 Find & € X3 N%°(A¢),Ve > 0 such as

AE+f = 0 in A,

B,.é+f = 0 in AT,

Exy,2 = 0 in (—=L,L)x(=Y,Y),
&(xL,y,z) = 0 in (y,+0)x(-Y,Y).

THEOREMG6..1 The Problem 4 has a unique solution. Moreover, we hayéy) < &(X,y,2) < Y(y).
Proof. We justify uniqueness of the solution takifig= 0 and setting
E=wy?, o>1
We showw = 0. In particularw satisfies
£ = wye
& = W & =wt Fwag gt G =wy”
G = Wod®i &y =y + 2wy war (Y (Yy)* Y (a - 1)
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then
1 1
SWaod? + S {wyth” + 2wy ar gy war (G (g2 (a - 1)}
—(Coy+ kz-+ BX){wyth” + war gy @1} — axwp + ywsp® = 0.

Collecting terms related tg?, we obtain

1 1 Wy By | (w)?
> W+ é{Wyy+2WyaE +Wa(wy+ 02 (a—1)}
+(—coy — kz— Bx){wy+wa%} — aXWx+ YW, = 0,

which implies forze (-Y,Y) andy >y,

2
}Wxx-f— 1-Wyy-i-Wy{a% —co—kz— Bx} +%{}wyy+ (a—1) (‘-I:l);)

2 2 2
—(Coy +kz+ Bx)a gy} — axvg+yw, =0
andforz=Y; y>y,

_ 2
%WXX+%Wyy+Wy{a% 7%—kaﬁx}+W_l;¥{%wyy+ (az 1) (4’4;;)

— (Coy +KY + BX)a gy} — axwg+yw, =0

and

We can finda > 1 with a — 1 small so that

(W)? _ e, (a—1y
v S Y2 gy +K) ©

Sincew — 0 asy — o, a positive maximum can be attained only for a finjte But this is impossible
from the equation. Sw is negativey < 0. But,w is also positivew > 0. Hence = 0 and uniqueness
follows.

Now, existence is demonstrated by the following approxiomat

AERL =0, in AR,

B ER+f=0,inAg,
{(xy,2 =0, &(xR2=0,
&(£L,y,z) =0.

%‘l’yy— (coy+kz+Bx)+ (a—1)

UsinguR = ER— , we obtain
AR > 0, in Ag,

BLuR >0, in Ag,
uR(xY,2) = —y(y),
WR(+L,y,2) = 0.
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NecessarilyuR < 0. The sequencgR is monotone increasing and converges towards a solutidrud_e
show estimates on. Supposd > 0, we will show that 06< & < (. Then,

B(—ooy—ke—PY) + 30y = VI (~Cy—kz— B~ 5
< v[%(fCoyka)fziyz]
< v[%(fCoyka)fziyz]
< -va if)7>2k%.

Definey such thats2 > || f||. We then have, setting= & — ¢,
Au>0,inA
B.u>0,inA"
u(x,y,2) = —y(y)
ux(*L,y,z2) =0

It follows thatu < 0.
We can show similarly tha§ + ¢ > 0. Hence, we have

—U<E<Y.

7. Theoperator T and theinvariant measure v
7.1. Construction of the operatdr

Considerf € L*(0), following the same procedure of the 1d case, we first soleeiriterior non-
homogeneous Dirichlet problem fgrwith f at the right hand side, then we solve the exterior non-
homogeneous Dirichlet problem fgrwith f at the right hand side angl as a boundary condition.

Also, for anyp; € I, we define the operator

Tf(p1) =& (pa)-
This defines a linear operator frolf? (I'_l) inL>(Iy).

7.2. Probabilistic interpretation of the operatdr

For anyA a Borel subset of’, consider the two following measures of occupatiodfy the process
(x(t),y(t),z(t)) starting atp € &, namely

{ vy (p;A)
Ve (P; A)

Ep(Jo* 1a(x(),¥(9),29))ds)
Ep( Jo 1a(X(9),¥(5),2(5))ds).
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We have shown
/f Jdvy(p;dg) and  &(p /f )dvg (B, dq).

For anyp; € I, we have
T30 = B[ 109,909 20)d) + [-Bal [ 1099249 ay(pis

T(f) integratesf over a time cycle of the Markov chain stoppedf@nthat is(x(T1x), Y(T1k), Z(T1k))-

7.3. Construction of the invariant measuve

Now, define

S5 Ty, 9)ys (drds) + f5 [y T f(r,—y1,9)y; (dr,ds)
S TA( Y, )y (drds) + [5 Yy TA(r, —ya,9)yi (dr, ds)

The denominator is well defined and is stricly positive. Nas,want to solve the complete problem

v(f):=

Problem 5 Find u such thauy ! is bounded foty| > |y] and

Au+f = 0, in O
B,u+f = 0, in ot
B.u+f = 0, in o0°
ux(£L,y,2 = 0, in {Xx==£L}n?o

Considering Problems 1, 2, 3 and 4, in the following resuliuse a functional analysis method to prove
that v is the unique invariant distribution associated to the tmhu(x(t),y(t),z(t)) of the stochastic
variational inequality (1..2).

THEOREM7..1 The Problem 5 has a unigque solution if and only(if) =

Proof. Similar arguments as the 1d case are considered. Uniquiangearanteed by the ergodic
property of the operatd®. Suppose (f)=0. We defing( the solution of the Interior non-homogeneous
Dirichlet Problem 3 and the solution of the Exterior non-homogeneous Dirichletidfem 4. We set
x°:= x and&%:= &, and fork > 0, we definex**! by

Axkrl 0, in A

B, xkt1 0, in Af,

B_x! = 0, in A4,
XHELY,2) = 0, in (=y1,y1) x (=Y.Y)

with
Xk+l(xaﬁa Z) = Ek(X,)Tj_, Z)' Xk+1(xa 7)7172) = Ek(xa 7)7172)'
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Afterwards, we definéy 1 by

AEKtL = 0, in Ay
B.&l = 0, in A,
E)I((Jrl(:l:l-vyv Z) = 07 n (}77+°°) X (7Y5Y)

with
M xY,2) = X1 (x.¥,2).
Similarly, we definegkt1 by

Al — 0, in  Aqg,
B_gk+1 0, in A4y,
E)I((Jrl(:l:l-vyv Z) = 07 In (7005 7)7) X (7Y5Y)
with
E % —%,2) = X" (%, ~¥,2).
That means
Elg=TH &ML =PENR).
Next, we set .
=0 gt & =X Xt xS
then

g =TE+P(TH) +...+PKTT).

Now, let us remark thaf* satisfies the following equation:

Axk+f = 0, in Ay,
Bixk+f = 0, in 4/,
B_x+f = 0, in A, (7.1)
X<(£L)y,z2 = 0, in (—o0,—y)x(=Y,)Y)
with . -
XK ¥1,2) = EH 1,2 X% —Y1,2) = €% —%1,2)
&k satisfies the following equations:
Afk+f = 0, in A,
B.E+f = 0, in A, (7.2)
E+Ly2 = 0, in  (y,+%)x(=Y,Y)
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and 5
Afk+f = 0, in Aq,
B.&k+f = 0, in 47, (7.3)
E)I(((:H-vyv Z) = 07 in (7005 7)7) X (7Y5Y)

Ex—¥2) = X(x,—¥.2).
The conditionv(f) = 0 means

CTEdnx) = [ TH(r,—y1,9dm(r,s)+ /_Tf(r,y_l,s)dnz(r,s) _o.
i JIy i

From the estimate (4..3), we obtained
& converges i (7).

Now, we notice thaff — x is a solution of the interior homogeneous Dirichlet probheith (XX —
X)l = &7 and&X— & is a solution of the Exterior homogeneous Dirichlet problaith (£ —

&)|F = (X*— x)|7. Then, we obtain
1€ = &lle < I = xlle < 18 e < C.
We can extract a subsequence such that
& ok

Moreover,y satisfies equation:

Ax+f = 0, in A,
B.Y+f = 0, in Af,
B_x+f = 0, in A, (7.4)
Xx(xLy.z) = 0, in (=y,y1) x (=Y,Y)
] R0Y2,2) = E0091,2) R —¥1.9) =& —V2,2)
andé satisfies equations:
AE+f = 0, in Ay,
B.é+f = 0, in A, (7..5)
G(ELy,2+f = 0, in  (J40)x (=Y,Y)
E(x¥,2) = X (x¥,2)
AE+f = 0, in Ay,
B.E+f = 0, in Ay, (7..6)
&(£Lyy,2) = 0, in (—o0,—y) x(=Y,Y)
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E(x~Y.2) = R (V. 2).
Then, we must have
X=¢& in y<+ty<y

U X indy,
& inAS

Thus, the function

is the solution of Problem 5. .
Now, suppose that Problem 5 has a unique solutioBonsidering the same sequeng&sand K, we
have thatu — ¥* is a solution of the interior homogeneous Dirichlet probbeith (u— )?k)|f1 =(u-—

Ek*l)|fl andu— &¥is a solution of the exterior homogeneous Dirichlet probfem &¥) |~ = (u— %)
Hence, . .
[u= &Ly < U= XNl < u=E Hite(m) < Iullee@
and so, .
||5k||L°°(F1) <C.

We have

Jr

~ " k .
K= (k+1) [_TE(x)dm(x)+ ZOPJ (T(f —v(f)))
J:
and since the sum is bounded, we obtain

(k+1) ;Tf(x)drf(x) is bounded.
Jn

That leads to
_Tf(x)dm(x) =0

r
That impliesv(f) = 0. O
Consider nowp a smooth function in—L,L] x R x [-Y,Y] with compact support. If we take
f= _A¢7
f(xvva) = _B+¢7

f(vav 7Y) = 7B*¢7
theng is solution of (5) for thisf. From Theorem 7..1, we have

J5L I 1% (G0t 3o axbe— (B coy -+ ka)dy + Yo} v(xy.2)
S {%‘Pyy"‘ %‘Pxx— axgx — (Bx+coy+kY) ¢y dv(x,y,Y)
b IS {50yt g axbe— (Bx+coy— KY)dy Jdv(xy, ~Y) =0
If v has a densityn, then we deduce that

ai[mei[(BH +kzm — ‘9_m+3@+}@
dy Coy de 2 dXZ 2 dyz

E =0 Iin(O,L)xRx(-Y,Y) (7.7)
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in the sense of distributions. If we test (7..7) witrand integrate by parts, we obtain
L +o0 I
,/ﬁJfW ym(x,y,\()tlﬁ(x,y,Y)dxdy+/0 /40 ym(x,y, =Y)@(x,y, —Y)dxdy

L ~00 Y 1 1
* / L / /Y M(x,2) {5 byy+ 5 $xc— aXPx— (BX+ Coy + K2 by + Y, dxdlydz = O
and comparing with (7..7)

L 0 L ptoo
[ [ ymixyigeeyvidxdys [ [T ymixy —Y)o (xy ~Y)dy
*/L /mm(x Y) {2yt = B ax— (Bx+ Coy -+ KY) gy + yo }oxd

LJo Y, 2 vy 2 XX X Coy y Y y

L (0 1 1
,[lem(X,y,fY){§¢yy+§¢xxfax¢xf(Bx+coyka)¢y7y¢v}dxdy:0

we finally deduce

d 9 19%m 19%m N
ym+5<[xni+d_y[(BX+Coy+kY)m]+§W+§d—y2_0’ ono

J d 10°’m  10°m -
*merE([X”i+0—y[(BX+COV*kY)m]+§W+§0—y2fO, ono

m=0, on(-L,L)x(~%,0)x{Y}U(-L.L)x (0,09) x {-Y}
The proof of the main result is complete.

8. Appendix: Proofsof lemmas?2..1,2..2,2..3,2..4

Proof of Lemma 2..1. Denotey = || @||.~. Notice we have
(ui V)Jr(xa :l:)?j_,Z) =0 if x € (7L7 L)7 ZAS (7Y7Y)
u—y)T(xy,£Y) = 0 ifxe(-L,L), 0<+y<yr

and
(U+y)~(x,+ty1,2 = 0 ifxe(-L,L), ze (-V,Y)
(u+y)~(xy,2£Y) = 0 ifxe(-L,L), 0< +y<yi.
Chooser=u— (u—y)" € K and we obtain

—a(u, U=y ") =AU, U=y = -Aw (u-y)")

a(u, (u=y)") +A (U (u=y)") < AW (u=y)").
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Switching the first argument by — y) in the previous inequality, we obtain
a((u=—y)", (u=y)") +A[u=y) [F2 <A(W—y,(u=y)")

andw < yimplies(u—y)™ = 0. Takingv = u+ (u+ y)~ similar arguments yieldai+y)- =0. O
Proof of Lemma 2..2. We have the following expressions,

T & 1 1
a(ns,n£)=/A (092 +5(0)? + 5 (m0)? + (Bx+kz+ coy)n®ny —yn“n; +axn®ng
J a1
and
£ 1 1
a(n®,uo) :/A 5n§qu+ Enygqu §n§U0x+(BX+ kz+ coy)Uony — YUon; -+ OXUoy .
1

Inequalitya(n¢,n¢) < a(n®,up) means

f £\2 } £\2 }/ £ 2<f/ £ }/ £
2 Al(nz) +2 Al(nX) +2 Al(ny) = 2 Alnzu02+2 AlnyUOV

1
7/ (BX+Coy+kZ)n£n§+§/ (Bx+ coy +kz)uony
A Ay

1 n
+§/ n§on+/ axnsnf—/ aXUoNy
A]_ -AJ_ Al

+/ yngnzg—/ ywng
-A]_ A]_

We apply Cauchy-Schwartz inequality to the first two terrhentwe apply Green formula to the last
one and we get

S mteg [ e [ opr<e /[ o) g

[5G 8D+l (B ayia?y

Nl

1 1 1
(205 [ W02 +aligl([ )2 +a( [ ¥u)?)
Ay Ay Ay A
, [t L %
ol [ [ iy llgl( |, )+ [ [ iuo(xy.Y)]
-LJ-y1 ZA5) -LJ-y1
L }71
[ ] Wluatxy )
J=LJ=y1

with ¢1,¢p,c3 andcy are positive constant, we get

IVeEnZlIz + InglIFz + Il < VeelVens ||z + callng iz + callng [l 2 + ca.
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Proof of Lemma 2..3. We have
~/A rl}l/(yné(yzpilezq: _/A r,)‘fngyyZPfngq / r)yrlz 2p_1)y2p7292q—‘/A n)ll(r];(yzpflquIGZq—l
1 Jag )
1 7 — —
=5 [, (27105~ 2p—1) | (mfe)(nly?® 6%
-2 / (ny0)(n7y?P16%4-2)¢’
A
1 rLb Vi B 1L % .
—LJ=y1
_(Zp_l)/ (nye)(r] T[)yp 29q 1 2q/ 9 n n-)yp leq 29/
_ 1 .
/A Msy?® 192‘1:_5/ ((nK)2) 2P~ 1%
1
T 2/ / nx X VY y2p to% 4 = / / X Y, — y2p7192q

and
/A (Coy+kz+ BX)nynzy* 6%t = | (coy-+kz+Bx)(ny8)(nzm0y" 107
1 1
/ axnknky?P-1e2a  — / ax(nke)(nkmyP~1e9.
Ay 4

Testing(An®) with nky?P~1624, we deduce
1 /L M B 1 /L ™M .
[ = 2 [ [ mzxyveteri—g [ [ ey, -y e
4)-L)w 4)-L)-y
1/t M ~ 1/t M -
3 L ooy e [ ey vy re
4J-L)y 4
1
+(p—§)/ (ny6)(nfmyP-26% 1+q/ y6)(nsmyP 16926’
+ / (cay + kz-+ BX) (1y6) (nym)yP 169+

+/ ax(nke)(nkmyP~te9.

Proof of Lemma 2..4.

1. With

!

G
f(n.ny) == —n“( — (coy+ kz+ ax)mr) -y,
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we havevy € H1(41), Y(x,y,£Y) = 0 andy(x, +y1,2) =0,

/vkt,uy+ /Vkl,llx+/ (axvi + (Bx+ Coy + k2 — yvis / f(n* my

Now, whenk goes to+o, we get

2/ vyt,uy+2/ Vxl,UX+/ (axv+ (Bx+ coy + k2)vy — yV,) @ / f(n,ny)y
We deduce that i ~1(4;) we firstly have—Av= f(n,ny) which is equivalent tatAn = 0 and
secondly that choice of test function impliggx(+L,y,z) = 0in (H 2 ((—L,L) x (=y1,y1))'-
2. (@) We know thatmn* € H1(4,), its trace is well defined and satisfies,
v ) (xy.Y) = x4+ B4F); y>0
Vm*)(xy, —Y) =mx % y<0
with
XKl < ll@lle (8.1)
andy K, x T satisfy respectively (8..2) and (8..3)
JEIHB 06 bt Xy uy) + (@006 4+ (Bx-+ coy + KY) Xy ) w} ey =,

v € HY((—L,L) x (0,y1)) with g(x,0) = ¢(x,y1) =0 (8.-2)

and
o2 3 06 e+ Xy W) + (oo + (Bx+ coy — KY) xy )@ }dxdy = 0,

Vi € HY((—L,L) x (—y1,0)) with (x,0) = @(x,—y1) = 0. (8..3)

First, we study convergence of the sequexic& and we deduce PDEs satisfied byyling x * .
In particular (8..1) implies

x K= xtinL2((—L,L) x (0,y1)) weakly,
XK= x~in |_2((—L,L) x (—y1,0)) weakly.
and equalities (8..2), (8..3) imply

X"y <C  and  xTKm— xtmin HY((—L,L) x (0,y1)) weakly,
I *mly<C and  x*m— x"min HY((-L,L) x (-y1,0)) weakly.

Denotef =k := x*ky2 andg(x T, xy ) := —x {1 - 2y(ax-+coy+KY)} — 2yx, *. From
(8..2), we haveBy &k = g(x** xy ) in (—L,L) x (=y1,¥1), in HY((~L,L) x (0,%2)).
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The operatoB, is strictly elliptic thené +* € H2((—L,L) x (0,y1)). We haves, *(£L,y) =
Oin(H 2 (0,y1)). As ETK e H2(4;) andmB, x X = 0, we have

—B, &Mk =g(x™* x*) inastrong sense

We obtain that’yy € HY((—L,L) x (0,y1)), ¢(x,0) = Y(x,y1) =0,

L .*11
/¢ /Oy S &t &7 gy) + (ax§+ (Bx+ coy + K& —y& )

= /i /0yl alx* X w.

L v Lo
/{/o E(g;wx+5;rwy)+(axE;Ur(Bx+coy+kY)Ey+nyz+)Lll:/{/0 a(x, xy) Y.

Now, whenk goes to 0, we have

We deduce that ikl ~1((—L,L) x (0,y1)) we have-B, £+ = g(x™, Xy ) which is equivalent
toy?B, x ™ = 0 and that choice of test function implig&xy (£L,y) = 0in (H 3 ((0,y1)))".

(b) Firstly, y(rn*) — m(x* 4+ B*) in HY((—L,L) x (0,y1)) weakly. Secondly, weak conver-
gence ofrtn* — 1 in H(A;) implies weak convergence gfrin*) — y(mm) in H%((Ml).
By uniqueness of the limit, we hayérmn) = i(x " +B8™1).

3. Using Green formula

wweraynray, [ nfuyr [ fu= [ dudo

Now, whenk goes too, we obtain

VY € HE (A1) NH2(4y), /A mpyy+./A' nycpyz/lm oYydo.

LEMMA 8..1 We have
NI € LZ(Al); r]XyTl2 € LZ(Al); rlyy”2 € LZ(Al)

Proof. Denotew := vy. Deriving equation (2..28) with respectxpwe obtain equality (8..4),

1 1
=5 Whoc— EWyy‘i‘/\ (X, ¥, )Wy + aXWy — YW = —BVy — aVx+ P1Nx + (P1)xN + P2(Y) Ny~ (8..4)

Testing equality (8..4) witht?, we obtain
}/ (Wxn)er}/ (Wyn)zzf/ Wyrm’wf/ /\(x,y,z)wywnzf/ AXWWTT?
2 Al 2 Al Al Al Al
+/ ywzwnz—[?/ vywn"-—a/ van2+/ P1LWIT
Al Al Al Al
+ / (PL)xNWIT + / NyyP2(y)WrT?
M A
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which means

% Al(Wxn)2+%Al(Wyn)2 - AlWy7TT[lW7/‘Al/\(X,y,Z)WyWITZ—/A1 aXVVxWsz

+/M ynzwzﬁ(z)dafB/A vywnzfa/A VWTT2
+.A PIWATT+ .A (pl)xnwn2+./A‘ NxyP2(Y)WTT
+.A (Wy")PZ(y)W—./A‘ Vi TT P2 (Y)W

Itis easy to verify thaty T, Ve T € L2(4y).

Denotew”:= v. Deriving equation (2..28), with respectstpwe obtain equality (8..5),

1. 1. . 3 L
= 5o — Sy + CoW-+ A (X,Y, 2)Wy + arxWly — YWs = Vz + p1nly + (P1)yN + NyyP2(y) + Nyp2(y)’. (8..5)

Then, we test equality (8..5) withPW, we obtain

1/ (v”vxrr)2+} ‘ Wym? = — [ Wmrw— " co(wm? — /\(x,y,z)vT/vamzf/ o X WTT
2./a, 2Jn A Ja, A Jay
- / VAT + / YW + / NyPLWIT + / N (py)yWr?
Aq JAq Aq J Ay
+ / NyyP2WIT + / Ny(p2) MW
N Jay
which means
1 . 2 1 " " 2 " . n 2 n . "
= | (Wem 4= [ (Wym) :—/ Wynn’w—/ Co(Wr) —/ A(X,Y, 2) Wy WrT
2 A 2. Ag A JAy JAy
— / OXWWIT + [ VWP + | y(Wr)?A(z)do + / Nyp1WI?
. Al A]_ BA]_ . Al
+ [ npayir [ (y—2n, + it | ny(po)
Al Al Al
Again, it is easy to verify thaty1t, vy, 1T € L2(4y). O

LEMMA 8..2 We have

Y’ € L2(A1); Ny’ € L2(Ay).

Proof.
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We test equality (8..4) wity?P~ 1%, we obtain

7% / WP~ T, = % /Al Wy P
_ %1 /‘\A&(x,y,v)yzpflnmdxdy_} //Wf(XM Py

; (2P %) / WyWayy 2P~ n2q+/ WyW, ((2p — 1)y?P~229 + y?P—12qm?i117)
=3 /\A/2 (%,y,Y)y?P~ l712qudy——/ w2(x,Y, —Y)y*P~ 1 ?dxdy
Hp—3) (70 (wyPrE) (P2 / (wy70) (wyPre%) (yP 2,
We have

/ (yPnw,)? < // WL Y.Y) + WG (x, Y, Y) }y?P~ rraixdy
-3 // (W2 (x, Y, —Y) +W2(x,y, -Y) by?P~Lrlaixdy
+p-3) 1<wyn><wzypn%<yp*2anl> o | () (wyPrE) (P2t
| Ay Wy Py | o) (PPt
+ /A 1 By (yP 1w, )yP~n 4 /A 1 av(yPTiwg)yP i
- /A 1 plvx(ypnqwz)yp’lnq’“r./; 1(;ol)xn(ypﬂ“wz)y"*ln“

—/ Pa(VyTT— Wit ) (yP 1w, yP 2.
4

For p > 2 andq > 3, some calculations givgy?m € L%(A;).
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Now, we test equality (8..5) witf?P~1712%,, we obtain
/ (yP )% < //{szy, ) +ig(x,Y,Y) }y?P~*dixdy
—4//{\A/2xy, Y)+WE(x,y, —Y) }y?*Pt%dxdy
+(p=) [, (ymyPr) P 274 - | )y (2
+ /A CoW(yP T, )yP~ 17
1
+ [ A2y (RyPre)yP L [ o gy et
1 1
~ [} vty [yt ) yPreyP
Ay Ja,
- / (P1)yn (yPTN)yP it — / (P1)xn (yP TN )yP 7.
Ay Ja,

— /A P2(Y) Ny T (YP T, ) yP 1 %2

For p > 2 andg > 2, some calculations giveg,y?m? € L2(4y). O

LeEmMA 8..3 Forp andq large enough, we have

Myl € L2 (A1), nyyyPri e L?(41);  p(@)nuay®rd € L2(M1);  p(2)NzyPrd € L2 (4y).
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