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Degenerate Dirichlet Problems Related to the Ergodic Property of an Elasto-Plastic Oscillator Excited by a Filtered White Noise *

Keywords: Random vibration, ergodic diffusion, stochastic variational inequalities

A stochastic variational inequality is proposed to model an elasto-plastic oscillator excited by a filtered white noise. We prove the ergodic properties of the process and characterize the corresponding invariant measure. This extends Bensoussan-Turi's method (Degenerate Dirichlet Problems Related to the Invariant Measure of Elasto-Plastic Oscillators, AMO, 2008) with a significant additional difficulty of increasing the dimension. Two points boundary value problem in dimension 1 is replaced by elliptic equations in dimension 2. In the present context, Khasminskii's method (Stochastic Stability of Differential Equations, Sijthoff and Noordhof,1980) leads to the study of degenerate Dirichlet problems with partial differential equations and nonlocal boundary conditions.

Introduction

Nonlinear oscillators subjected to vibrations represent useful models for predicting the response of mechanical structures when stressed beyond the elastic limit. When the excitation is a white noise, it has received considerable interest over the past decades. In a previous work [START_REF] Bensoussan | Degenerate Dirichlet Problems Related to the Invariant Measure of Elasto-Plastic Oscillators[END_REF], the authors have considered the response of a white noise excited elasto-plastic oscillator using a stochastic variational inequality formulation. The results in [START_REF] Bensoussan | Degenerate Dirichlet Problems Related to the Invariant Measure of Elasto-Plastic Oscillators[END_REF] provide a framework to assess the accuracy of calculations made in the literature (see e.g., (4; 5; 6), and the references therein). In this paper, instead of considering white noise input signal whose power spectral density (PSD) is constant, we consider an excitation with a non-constant PSD which could be a more realistic framework. We consider the excitation as the velocity of a "reflected" Ornstein-Uhlenbeck process. Therefore, comparing with the elasto plastic oscillator excited by white noise, a third process occurs in the variational inequality. Consider w(t) and w(t), two independent Wiener processes and x(t) an Ornstein-Ulhenbeck reflected process dx(t) = -αx(t)dt + dw(t) + 1 {x(t)=-L} dξ 1 t -1 {x(t)=L} dξ 2 t .

(1..1)

We have -L x(t) L. In this model, the stochastic excitation is given by -β x(t)dt + d w(t).

The stochastic variational inequality model is given by: When β = 0, x(t) is involved in the dynamic of y(t) and then this model will be referred as the 2d case. Whereas if β = 0, x(t) is not involved in the dynamic of y(t) and then (y(t), z(t)) satisfy the elastoplastic oscillator problem of (1) which will be referred as the 1d case. The infinitesimal generator of the process (x(t), y(t), z(t)), denoted by Λ is given by: • {m(x, y, z), (x, y, z) ∈ O} is the elastic component,

                 dx(t) = -
Λ : φ → Aφ if z ∈] -Y,Y [, B ± φ if z = ±Y, ±y > 0.
• {m(x, y,Y ), (x, y) ∈ O + } is the positive plastic component,

• and {m(x, y, -Y ), (x, y) ∈ O -} is the negative plastic component.

In addition, m satisfies in the sense of distributions the following equation in O,

α ∂ ∂ x [xm] + ∂ ∂ y [(β x + c 0 y + kz)m] -y ∂ m ∂ z + 1 2 ∂ 2 m ∂ x 2 + 1 2 ∂ 2 m ∂ y 2 = 0 in O,
and on the boundary

ym + ∂ ∂ x [xm] + ∂ ∂ y [(β x + c 0 y + kY )m] + 1 2 ∂ 2 m ∂ x 2 + 1 2 ∂ 2 m ∂ y 2 = 0, in O + -ym + ∂ ∂ x [xm] + ∂ ∂ y [(β x + c 0 y -kY )m] + 1 2 ∂ 2 m ∂ x 2 + 1 2 ∂ 2 m ∂ y 2 = 0, in O - m = 0, in (-L, L) × (-∞, 0) × {Y} ∪ (-L, L) × (0, ∞) × {-Y}.
The proof will be based on solving a sequence of interior and exterior Dirichlet problems, which are interesting in themselves. We will put in parallel the 1d and 2d cases, in order to facilitate the reader's work. In the 1d case, the variable x disappears (β = 0), we will still use the notation A, B + , B -for the operators defined above without x.

Let us mention that our study presents a mathematical interest because it generalizes the method proposed by the first author and J. Turi [START_REF] Bensoussan | Degenerate Dirichlet Problems Related to the Invariant Measure of Elasto-Plastic Oscillators[END_REF] in the case of higher dimension. Non-local boundary conditions expressed in the form of differential equations in dimension 1 are replaced by elliptic partial differential equations (PDEs) in dimension 2. In the first case, there are two semi-explicit solutions. Thus, the non-local boundary conditions are reduced to two unknown numbers. In the second case, we do not know explicit formulas for solutions of the both elliptic on the boundary. In this context, these two solutions depend on two unknown functions respectively defined on the set (-L, L).

In addition, the choice of the excitation (1..1) is also motivated by two technical considerations:

• the first is to force x(t) (through the processes ξ 1 , ξ 2 ) to evolve in the compact set [-L, L]. Thus, as part of our proof, a compactness argument allows to show the ergodic property of the triple (x(t), y(t), z(t)). Note that this is not a problem in terms of applications, because if we choose L large enough, then the process x(t) is similar to an Ornstein-Ulhenbeck process.

• the second is the uncorrelation of w(t) and w(t). In our approach, based on PDEs associated to the triple (x(t), y(t), z(t)), we avoid the appearance of cross-derivative terms in the infinitesimal generator Λ . In the case where w(t) and w(t) are correlated, these cross-derivative terms yield more technical difficulties.

The interior Dirichlet problem

In this section, we prove existence and uniqueness to the homogeneous interior Dirichlet problem.

Some background on the interior Dirichlet problem in the 1d case

Let us recall the interior Dirichlet problem from [START_REF] Bensoussan | Degenerate Dirichlet Problems Related to the Invariant Measure of Elasto-Plastic Oscillators[END_REF]. Let ȳ1 > 0, Notation 2..1

D 1 := (-ȳ1 , ȳ1 ) × (-Y,Y ); D + 1 := (0, ȳ1 ) × {Y }; D - 1 := (-ȳ1 , 0) × {-Y} and 
D ε 1 := (-ȳ1 + ε, ȳ1 -ε) × (-Y,Y), ε > 0.
Denote τ1 := inf{t > 0, |y(t)| = ȳ1 } and consider φ ∈ L ∞ (-Y,Y ). We will use the following notation where η Y and η -Y are constants, and

E p (•) := E{• |(y(0), z(0)) = p}. It is shown that E (y,z) (φ (z( τ1 ))) solves a nonlocal Dirichlet problem: Find η ∈ L ∞ (D 1 ) ∩ C 0 (D ε 1 ), ∀ε > 0 such that Aη = 0 in D 1 , B + η = 0 in D + 1 , B -η = 0 in D - 1 (2..1) with η( ȳ1 , z) = φ (z), η(-ȳ1 , z) = 0, if z ∈ (-Y,Y ).
I(a, b) := b a exp(c 0 λ 2 + 2kY λ )dλ ȳ1 0 exp(c 0 λ 2 + 2kY λ )dλ
.

The nonlocal condition is restricted to the value of these two constants. Based on these semi-explicit expressions a subset K of H 1 (D 1 ) is defined for proving existence of the solution to (2..1) , by

K :=                  v ∈ H 1 (D 1 ), v(-ȳ1 , z) = φ (z), v(-ȳ1 , z) = 0, v(y,Y ) = v Y I(y, ȳ1 ) + φ (Y )I(0, y), 0 y ȳ1 v(y, -Y ) = v -Y I(-ȳ1 , y), -ȳ1 y 0 v Y , v -Y are constant with |v ±Y | φ L ∞ .
The set K is convex and not empty if φ (z) ∈ H 1 (-Y,Y ). We take v(y, z) = φ (z)I(0, y)1 {y>0} . 

∆ 1 := (-L, L) × (-ȳ1 , ȳ1 ) × (-Y,Y ), ∆ + 1 := (-L, L) × (0, ȳ1 ) × {Y }, ∆ - 1 := (-L, L) × (-ȳ1 , 0) × {-Y} and ∆ ε 1 := (-L, L) × (-ȳ1 + ε, ȳ1 -ε) × (-Y,Y ), ∀ε > 0. Denote τ1 := inf{t > 0, |y(t)| = ȳ1 } and consider φ ∈ L ∞ ((-L, L) × (-Y,Y )).
Similarly as before we use the notation E p (•) := E{• |(x(0), y(0), z(0)) = p}. We want to define E (x,y,z) (φ (x( τ1 ), z( τ1 ))) as the solution of the interior Dirichlet problem stated below.

Problem 1 Find η ∈ L ∞ (∆ 1 ) ∩ C 0 (∆ ε 1 ), ∀ε > 0 such that Aη = 0 in ∆ 1 , B + η = 0 in ∆ + 1 , B -η = 0 in ∆ - 1 and η x (±L, y, z) = 0 in (y, z) ∈ (-ȳ1 , ȳ1 ) × (-Y,Y ), η(x, ȳ1 , z) = φ (x, z) in (x, z) ∈ (-L, L) × (-Y,Y ), η(x, -ȳ1 , z) = 0 in (x, z) ∈ (-L, L) × (-Y,Y ).
This is formal. We should consider the case of φ smooth first and precise the functional space, then proceed with the regularization.

As in the 1d-case, this problem is a nonlocal problem but the boundary condition are in two dimensions. Thus we need to solve partial differential equations for η on the boundary at z = Y , and z = -Y respectively. Here we do not have semi-explicit solution, indeed η(x, y,Y ) solves

B + η = 0 on (-L, L) × (0, ȳ1 ) with η x (±L, y,Y ) = 0, η(x, ȳ1 ,Y ) = φ (x, z) (2..2)
with η(x, 0,Y ) = η Y (x), and η(x, y, -Y ) solves

B -η = 0 on (-L, L) × (-ȳ1 , 0) with η x (±L, y, -Y ) = 0, η(x, -ȳ1 , -Y ) = 0 (2..3) with η(x, 0, -Y ) = η -Y (x) where η Y (x) and η Y (x) are unknown function with η ±Y L ∞ φ L ∞ . Next,
we give a convenient formulation of the boundary condition (2..2)-(2..3).

2.2..1 Boundary conditions

In order to reformulate Problem 1, we consider first the equation (2..2) on the boundary ∆ + 1 . Define β + (x, y) the solution of the mixed Dirichlet-Neuman problem

               B + β + = 0, in (-L, L) × (0, ȳ1 ), β + x (±L, y) = 0, in (0, ȳ1 ), β + (x, ȳ1 ) = φ (x,Y ), in (-L, L), β + (x, 0) = 0, in (-L, L). (2..4) PROPOSITION 2..3 If φ (x,Y ) ∈ H 1 (-L, L)
then there exists a unique solution to the equation (2..4)

β + ∈ H 1 ((-L, L) × (0, ȳ1 )) satisfying β + L ∞ φ L ∞ . Proof. Define D + Y := (-L, L) × (0, ȳ1 ) and consider on H 1 (D + Y ) the bilinear form b Y (ξ , χ) = 1 2 D + Y ξ x χ x + ξ y χ y dxdy + D + Y αxξ x + (c 0 y + kY + β x)ξ y χdxdy. For λ sufficiently large b Y (ξ , χ) + λ (ξ , χ) is coercive. Now, define the convex set K Y = {ξ ∈ H 1 (D + Y ), ξ (x, ȳ1 ) = φ (x,Y ) and ξ (x, 0) = 0} which is not empty since φ (x,Y ) ∈ H 1 2 (-L, L). Take z ∈ K Y with z L ∞ φ L ∞ , we define ξ λ to be the unique solution of b Y (ξ λ , χ -ξ λ ) + λ (ξ λ , χ -ξ λ ) λ (z, χ -ξ λ ), ξ λ ∈ K Y , ∀χ ∈ K Y (2..5)
We have defined a map

T λ (z) = ξ λ from K Y → K Y . Let us check that ξ λ L ∞ φ L ∞ = C. (2..6) Indeed, in (2..5) we take χ = ξ λ -(ξ λ -C) + ∈ K Y . Hence -b Y (ξ λ , (ξ λ -C) + ) -λ (ξ λ , (ξ λ -C) + ) λ (z, (ξ λ -C) + ) and b Y ((ξ λ -C) + , (ξ λ -C) + ) + λ |(ξ λ -C) + | L 2 -λ (z + C, (ξ λ -C) + ).
Since z +C 0 it follows that (ξ λ -C) + = 0, hence ξ λ C. Similarly, we check that (-ξ λ -C) + = 0, hence we have (2..6). Consider then the sequence ξ n λ defined by

b Y (ξ n+1 λ , χ -ξ n+1 λ ) + λ (ξ n+1 λ , χ -ξ n+1 λ ) λ (ξ n λ , χ -ξ n+1 λ ) (2..7) with ξ 0 λ ∈ K Y , ξ 0 λ L ∞ φ L ∞ .
We can take ξ 0

λ (x, y) = y ȳ1 φ (x,Y ). From (2..6), we have ξ n λ L ∞ (D + Y )
C and from (2..7), we have

ξ n λ H 1 (D + Y )
C ′ . Then, we can consider a subsequence, also denoted by ξ n λ such that

ξ n λ → ξ in H 1 (D + Y ) weakly and in L ∞ (D + Y ) weakly ⋆ also, ξ n λ → ξ in L 2 (D + Y ) strongly. From (2..7) we obtain b Y (ξ , χ -ξ ) 0, ξ ∈ K Y , ∀χ ∈ K Y .
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We conclude easily that ξ is a solution of (2..4) also ξ L ∞ φ L ∞ . Now, in order to prove uniqueness, we must prove that a solution ξ ∈ H 1 (D + Y ) satisfying

B + ξ = 0 in (-L, L) × (0, ȳ1 ) ξ x (-L, y) = ξ x (L, y) = 0 ξ (x, ȳ1 ) = ξ (x, 0) = 0 (2..8)
is identically zero. Consider χ := ξ x then we have

B + χ + α χ + β ξ y = 0 in D + Y , χ(-L, y) = χ(L, y) = 0, χ(x, ȳ1 ) = χ(x, 0) = 0, hence χ ∈ H 1 0 (D + Y ). This implies ξ xx ∈ L 2 (D + Y ), ξ yx ∈ L 2 (D + Y ). From equation (2..8) we deduce ξ yy ∈ L 2 (D + Y ). Hence ξ ∈ H 2 (D + Y ).
In particular, ξ is continuous on D+ Y . We have ξ L ∞ = 0, so ξ = 0. Now, consider the following convex sets,

K Y,M := {χ + ∈ H 1 ((-L, L) × (0, ȳ1 )) satisfying (2..10); χ + (x, ȳ1 ) = 0; χ + L ∞ M} (2..9)
where

L -L ȳ1 0 { 1 2 (χ + x ψ x + χ + y ψ y ) + (αxχ + x + (β x + c 0 y + kY )χ + y )ψ}dxdy = 0, ∀ψ ∈ H 1 ((-L, L) × (0, ȳ1 )) with ψ(x, 0) = ψ(x, ȳ1 ) = 0. (2..10)
and

K -Y,M := {χ -∈ H 1 ((-L, L) × (-ȳ1 , 0)) satisfying (2..12); χ -(x, -ȳ1 ) = 0; χ - L ∞ M} (2..11)
where

L -L 0 -ȳ1 { 1 2 (χ - x ψ x + χ - y ψ y ) + (αxχ - x + (β x + c 0 y -kY )χ - y )ψ}dxdy = 0, ∀ψ ∈ H 1 ((-L, L) × (-ȳ1 , 0)) with ψ(x, 0) = ψ(x, -ȳ1 ) = 0.
(2..12)

These sets are not empty since they contain 0.

REMARK 2..1 • ∀π(y) function of y such that π(0) = 0 , {χπ; χ ∈ K Y,M } and {χπ; χ ∈ K -Y,M } are H 1 -bounded. • If χ ∈ K Y, φ L ∞ , denoting ω := β + + χ, we have B + ω = 0 and max(|ω(x, 0)|, |ω(x, ȳ1 )|) φ L ∞ , so a maximum principle implies ω L ∞ φ L ∞ .
Using the sets K Y, φ and K -Y, φ , the following result gives a convenient formulation of the boundary conditions in Problem 1. PROPOSITION 2.. [START_REF] Feau | Les méthodes probabilistes en mécanique sismique. Applications aux calculs de tuyauteries fissurées[END_REF] The Problem 1 can be reformulated in the following way:

find η ∈ L ∞ (∆ 1 ) ∩ C 0 (∆ ε 1 ), ∀ε > 0 such that Aη = 0 in ∆ 1 , η(x, y,Y ) -β + (x, y) ∈ K Y, φ , η(x, y, -Y ) ∈ K -Y, φ and η x (±L, y, z) = 0, in (y, z) ∈ (-ȳ1 , ȳ1 ) × (-Y,Y ), η(x, ȳ1 , z) = φ (x, z), in (x, z) ∈ (-L, L) × (-Y,Y ), η(x, -ȳ1 , z) = 0, in (x, z) ∈ (-L, L) × (-Y,Y ).
Proof. First, we can obtain the generic solution of (2..2) by considering any function χ + which satisfies

χ + ∈ H 1 ((-L, L) × (0, ȳ1 ))
and

B + χ + = 0, χ + x (±L, y) = 0, χ + (x, ȳ1 ) = 0.
(2..13) Note that we have not defined the value of χ + for y = 0, hence χ + is certainly not unique. We add the condition that χ + is bounded by φ L ∞ . We define in a similar way the function χ -such that

χ -∈ H 1 ((-L, L) × (-ȳ1 , 0)) and B -χ -= 0, χ - x (±L, y) = 0, χ -(x, -ȳ1 ) = 0. (2..14)
Then, interpreting (2..13) as (2..10) and (2..14) as (2..12) repectively, we obtain χ + ∈ K Y, φ and χ -∈ K -Y, φ . Hence, the set of solutions of (2..2) and (2..3) can be written as follows

η(x, y,Y ) -β + (x, y) ∈ K Y, φ , y > 0; η(x, y, -Y ) ∈ K -Y, φ , y < 0.

2.2..2 Approximation (part 1)

We study Problem 1 by a regularization method in the next proposition. Define

A ε := A + ε 2 ∂ 2 ∂ z 2 .
PROPOSITION 2.. [START_REF] Feau | Probabilistic response of an elastic perfectly plastic oscillator under Gaussian white noise[END_REF] The following problem:

find η ε ∈ L ∞ (∆ 1 ) ∩ H 1 (∆ 1 ) such that η ε L ∞ φ L ∞ , A ε η ε = 0 in ∆ 1 , η ε (x, y,Y ) -β + (x, y) ∈ K Y, φ , η ε (x, y, -Y ) ∈ K -Y, φ (2. 
.15)

and η ε x (±L, y, z) = 0, in (y, z) ∈ (-ȳ1 , ȳ1 ) × (-Y,Y ), η ε z (x, y, ±Y ) = 0, in (x, ∓y) ∈ (-L, L) × (0, ȳ1 ), η ε (x, ȳ1 , z) = φ (x, z), in (x, z) ∈ (-L, L) × (-Y,Y ), η ε (x, -ȳ1 , z) = 0, in (x, z) ∈ (-L, L) × (-Y,Y ),
has a unique solution.
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As in the 1d case, we formulate a variational inequality to prove existence of solutions. In the present context, we consider a convex subset of H 1 (∆ 1 ) which is adapted to the two dimensional boundary condition by

K =            ψ ∈ H 1 (∆ 1 ), ψ ∞ φ ∞ , ψ(x, ȳ1 , z) = φ (x, z), for (x, z) ∈ (-L, L) × (-Y,Y ), ψ(x, -ȳ1 , z) = 0, for (x, z) ∈ (-L, L) × (-Y,Y ), ψ(., .,Y ) -β + (x, y) ∈ K Y, φ L ∞ , ψ(., ., -Y ) ∈ K -Y, φ L ∞ . PROPOSITION 2..6 The set K is a closed non-empty subset of H 1 (∆ 1 ).
Proof. The fact that K is closed follows from the continuity of the trace operator. Now, pick the function, L,L), then the function ψ defined by (2..14) belongs to K. REMARK 2..2 If u ∈ K and w ∈ H 1 (∆ 1 ) with w(x, ± ȳ1 , z) = 0 and w(x, y, ±Y ) = 0, for 0 < ±y < ȳ1 then u + w ∈ K.

ψ(x, y, z) = y ȳ1 φ (x, z) - z 2Y φ (x,Y ) - 1 2 φ (x,Y ) 1 {y 0} + ( z 2Y + 1 2 )β + (x, y)1 {y 0} . (2..16) We have ψ(x, ȳ1 , z) = φ (x, z), ψ(x, -ȳ1 , z) = 0, ψ(x, y,Y ) = β + (x, y), y > 0, ψ(x, y, -Y ) = 0, y < 0. So, if φ (x, z) ∈ H 1 (∂ ∆ 1 ), φ (x,Y ) ∈ H 1 (-
Consider the bilinear form

a(u, v) = 1 2 ∆ 1 {εu z v z + u y v y + u x v x }dxdydz + ∆ 1 (β x + c 0 y + kz)u y vdxdydz - ∆ 1 yu z vdxdydz + ∆ 1 αxu x vdxdydz.
Equation (2..15) is formulated as follows a(u, vu) 0, ∀v ∈ K, u ∈ K. Proof of Proposition 2..5. First, existence is proved by variational argument. For λ sufficiently large a(u, v) + λ (u, v) is coercive on H 1 (∆ 1 ) and for f ∈ L 2 (∆ 1 ) we can solve the variational inequality

a(u, v -u) + λ (u, v -u) ( f , v -u), ∀v ∈ K, u ∈ K.
We define the map u = T λ w where u is the unique solution of

a(u, v -u) + λ (u, v -u) λ (w, v -u), ∀v ∈ K, u ∈ K.
The following lemma shows that T λ is a contracting map. (see proof in Appendix)

LEMMA 2..1 If w L ∞ φ L ∞ then u L ∞ φ L ∞ . Moreover, taking v = u 0 ∈ K we deduce a(u, u) + λ |u| 2 L 2 a(u, u 0 ) + λ (u, u 0 ) + λ γ|u 0 -u| L 1 . That implies u H 1 (∆ 1 ) M,
for a constant M which depends only of λ , ε, H 1 norm of u 0 and γ. Now, we define

K = {w ∈ K : w L ∞ φ L ∞ , w H 1 M}.
We have

T λ : L 2 (∆ 1 ) → L 2 (∆ 1
) is continuous, maps K into itself and K is a compact subset of L 2 . Then Schauder's theorem implies T λ has a fixed point u ∈ K which satisfies

a(u, v -u) 0, ∀v ∈ K.
Let us check that u is solution of (2..15). As u ∈ K, we have

B + u = 0 in ∆ + B -u = 0 in ∆ - u(x, ȳ1 , z) = φ (x, z) in (-L, L) × (-Y,Y ) u(x, -ȳ1 , z) = 0 in (-L, L) × (-Y,Y ) Moreover, ∀v ∈ H := v ∈ H 1 (∆ 1 ) such that v(x, ± ȳ1 , z) = 0 v(x, y, ±Y ) = 0, 0 < ±y < ȳ1 ,
we have u + v ∈ K and a(u, v) 0. Then,

A ε u = 0 in the sense H ′
and integration by parts gives

ε 2 L -L 0 -ȳ1 u z (x, y,Y )v(x, y,Y )dxdy - ε 2 L -L ȳ1 0 u z (x, y, -Y )v(x, y, -Y )dxdy + ȳ1 -ȳ1 Y -Y u x (L, y, z)v(L, y, z)dydz - ȳ1 -ȳ1 Y -Y u x (-L, y, z)v(-L, y, z)dydz = 0.
Uniqueness of the solution to problem (2..15

) comes from u L ∞ φ L ∞ . 2.2..3 Approximation (part 2)
When φ is smooth, we can exhibit a solution to the problem (2..17) by extracting a converging subsequence of η ε . Let θ a smooth fonction such that θ (± ȳ1 ) = 0. Denote π(y) := y p θ (y) q for some p, q.
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Aη = 0 in ∆ 1 , η(x, y,Y ) -β + (x, y) ∈ K Y, φ , η(x, y, -Y ) ∈ K -Y, φ (2. 
.17) and

η x (±L, y, z) = 0 in (y, z) ∈ (-ȳ1 , ȳ1 ) × (-Y,Y ), η(x, ȳ1 , z) = φ (x, z) in (x, z) ∈ (-L, L) × (-Y,Y ), η(x, -ȳ1 , z) = 0 in (x, z) ∈ (-L, L) × (-Y,Y ),
has a unique solution.

As in the 1d case, the key ingredient of the proof is to bound uniformly the norm of first derivative w.r.t. z using the auxiliary function π. Proof. From the previous section, we have η ε ∞ φ ∞ , hence η ε → η in L ∞ ⋆. We also have a(η ε , u 0 -η ε ) 0, for some u 0 ∈ K. So, we deduce estimates in the following lemma:

(see proof in Appendix) LEMMA 2..2 We have ε ∆ 1 (η ε z ) 2 dxdydz C; ∆ 1 (η ε x ) 2 dxdydz C; ∆ 1 (η ε y ) 2 dxdydz C.
It is licit to test (2..15) with η ε z y 2p-1 θ 2q . We have

∆ 1 ε 2 η ε zz + 1 2 η ε yy + 1 2 η ε xx + yη ε z -αxη ε x -(β x + c 0 y + kz)η ε y η ε z y 2p-1 θ 2q = 0.
So, we obtain

∆ 1 (η ε z π) 2 1 4 L 0 ȳ1 0 {(η ε y (x, y,Y )) 2 + (η ε x (x, y,Y )) 2 }y 2p-1 θ 2q dxdy + 1 4 L 0 0 -ȳ1 {(η ε y (x, y, -Y )) 2 + (η ε x (x, y, -Y )) 2 }|y| 2p-1 θ 2q dxdy + 1 2 ∆ 1 η ε y η ε z ((2p -1)y 2p-2 θ 2q + y 2p-1 2qθ ′ θ 2q-1 ) + 2(β x + c 0 y + kz)y 2p-1 θ 2q dxdydz + ∆ 1 η ε x η ε z (αxy 2p-1 θ 2q )dxdydz.
(2..18) Moreover, Remark 2..1 allows to bound the two integrals on the boundary that yields the following estimate:

η ε z π L 2 C π . Denoting v ε := η ε π, we have v ε H 1 (∆ 1 )
Cπ so we can extract a weakly converging subsequence

v ε → v in H 1 (∆ 1 ) and v = ηπ ∈ H 1 (∆ 1 )
. We can check that η satisfies the boundary condition of Problem 1. First, let us check that

π(y)Aη = 0 in H -1 (∆ 1 ), π(y)η x (±L, y, z) = 0 in (H 1 2 ((-L, L) × (-ȳ1 , ȳ1 ))) ′ .
As v ε ∈ H 2 (∆ 1 ) and πA ε η ε = 0, we have

-A ε v ε = f (η, η y ) in strong sense with f (η, η y ) := -1 2 {π ′′ η ε + 2π ′ η ε y } + (c 0 y + kz + αx)π ′ η ε . We obtain that ∀φ ∈ H 1 (∆ 1 ), φ (x, y, ±Y ) = 0 and φ (x, ± ȳ1 , z) = 0, ε 2 ∆ 1 v ε z φ z + 1 2 ∆ 1 v ε y φ y + 1 2 ∆ 1 v ε x φ x + ∆ 1 αxv ε x + (β x + c 0 y + kz)v ε y -yv ε z φ = ∆ 1 f (η ε , η ε y )φ .
Now, when ε goes to 0, we have

1 2 ∆ 1 v y φ y + 1 2 ∆ 1 v x φ x + ∆ 1 αxv x + (β x + c 0 y + kz)v y -yv z φ = ∆ 1 f (η, η y )φ .
We deduce we have in H -1 (∆ 1 ), firstly -Av = f (η, η y ) which is equivalent to πAη = 0 and secondly that choice of test function implies πη x (±L, y, z) = 0 in (H

1 2 ((-L, L) × (-ȳ1 , ȳ1 )) ′ . Then, we check that η(x, y,Y ) -β + (x, y) ∈ K Y, φ ; η(x, y, -Y ) ∈ K -Y, φ .
We know that η ε ∈ H 1 (∆ 1 ), its trace is well defined and satisfies

γ(η ε )(x, y,Y ) = χ +,ε + β + ; χ +,ε ∈ K Y, φ ; y > 0 γ(η ε )(x, y, -Y ) = χ -,ε ; χ -,ε ∈ K -Y, φ ; y < 0 with χ ±,ε L ∞ φ L ∞ . (2..19)
We also have χ -,ε , χ +,ε satisfy respectively (2..20) and (2..21)

L -L ȳ1 0 { 1 2 (χ +,ε x ψ x + χ +,ε y ψ y ) + (αxχ +,ε x + (β x + c 0 y + kY )χ +,ε y )ψ}dxdy = 0, ∀ψ ∈ H 1 ((-L, L) × (0, ȳ1 )) with ψ(x, 0) = ψ(x, ȳ1 ) = 0. (2..20)
and

L -L 0 -ȳ1 { 1 2 (χ -,ε x ψ x + χ -,ε y ψ y ) + (αxχ -,ε x + (β x + c 0 y -kY )χ -,ε y )ψ}dxdy = 0, ∀ψ ∈ H 1 ((-L, L) × (-ȳ1 , 0)) with ψ(x, 0) = ψ(x, -ȳ1 ) = 0. (2..21)
First, we study convergence of the sequence χ ±,ε and we deduce the PDEs satisfied by lim ε→0 χ ±,ε . In particular (2..19) implies

χ +,ε → χ + in L 2 ((-L, L) × (0, ȳ1 )) weakly, χ -,ε → χ -in L 2 ((-L, L) × (-ȳ1 , 0)) weakly.
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χ +,ε π H 1 C and χ +,ε π → χ + π in H 1 weakly, χ -,ε π H 1 C and χ -,ε π → χ -π in H 1 weakly. Denote ξ ±,ε := χ ±,ε y 2 . From (2..20), we obtain B + ξ +,ε = 0 in (-L, L) × (-ȳ1 , ȳ1 ), in H -1 ((-L, L) × (0, ȳ1 )). Since the operator B + is strictly elliptic then ξ +,ε ∈ H 2 ((-L, L) × (0, ȳ1 )). We also have ξ +,ε x (±L, y) = 0 in (H 1 2 (0, ȳ1 )) ′ . As ξ +,ε ∈ H 2 (∆ 1 )
and πB + χ +,ε = 0, we obtain

-B + ξ +,ε = g(χ +,ε , χ +,ε y ) in a strong sense with g(χ +,ε , χ +,ε y ) := -χ +,ε {1 -2y(αx + c 0 y + kY )} -2yχ +,ε y . We obtain that ∀ψ ∈ H 1 ((-L, L) × (0, ȳ1 )), ψ(x, 0) = ψ(x, ȳ1 ) = 0, L -L ȳ1 0 1 2 (ξ +,ε x ψ x + ξ +,ε y ψ y ) + αxξ +,ε x + (β x + c 0 y + kY )ξ +,ε y -yξ +,ε z ψ = L -L ȳ1 0 g(χ ε , χ ε y )ψ.
Now, when ε goes to 0, we have

L -L ȳ1 0 1 2 (ξ + x ψ x + ξ + y ψ y ) + αxξ + x + (β x + c 0 y + kY )ξ + y -yξ + z ψ = L -L ȳ1 0 g(χ, χ y )ψ.
We deduce that in H -1 ((-L, L) × (0, ȳ1 )), we firstly have -B + ξ + = g(χ + , χ + y ), which is equivalent to y 2 B + χ + = 0 and secondly that choice of test functions implies

y 2 χ + x (±L, y) = 0 in (H 1 2 ((0, ȳ1 ))) ′ . To summarize, we have ξ + ∈ H 1 ((-L, L) × (0, ȳ1 )) and          -B + ξ + = g(χ + , χ + y ) in (-L, L) × (0, ȳ1 ), ξ + x (±L, y) = 0 in (0, ȳ1 ), ξ + (x, ȳ1 ) = 0 in (-L, L). Hence π χ + ∈ H 1 ((-L, L) × (0, ȳ1 )), χ + L ∞ φ L ∞ and          πB + χ + = 0 in (-L, L) × (0, ȳ1 ), π χ + x (±L, y) = 0 in (0, ȳ1 ), χ + (x, ȳ1 ) = 0 in (-L, L). (2..22) Similarly, we have π χ -∈ H 1 ((-L, L) × (-ȳ1 , 0)), χ - L ∞ φ L ∞ and          πB + χ -= 0 in (-L, L) × (-ȳ1 , 0), π χ - x (±L, y) = 0 in (-ȳ1 , 0), π χ -(x, -ȳ1 ) = 0 in (-L, L). (2..23) First, γ(πη ε ) → π(χ + + β + ) in H 1 ((-L, L) × (0, ȳ1 )) weakly. Secondly, the weak convergence of πη ε → πη in H 1 (∆ 1 ) implies the weak convergence of γ(πη ε ) → γ(πη) in H 1 2 (∂ ∆ 1 )
. By uniqueness of the limit, we deduce γ(πη) = π(χ + + β + ). Finally, we verify that η(x, ȳ1 , z) = φ (x, z); η(x, ȳ1 , z) = 0.

Using Green formula, we obtain

∀ψ ∈ H 1 (∆ 1 ), ∆ 1 η ε y ψ + ∆ 1 η ε ψ y = ∂ ∆ 1 φ ψ n(y)dσ .
Now, we can let ε tend to 0, we obtain

∀ψ ∈ H 1 (∆ 1 ), ∆ 1 η y ψ + ∆ 1 ηψ y = ∂ ∆ 1 φ ψ n(y)dσ . 2.2..4 Approximation (part 3) Now, φ ∈ L ∞ (∂ ∆ 1 ), we introduce a sequence of function {φ k , k 0} ⊂ H 1 (∂ ∆ 1 ) such that φ k → φ in L 2 (∂ ∆ 1 )
. We denote η k the solution of the Problem 2..17 with φ k as boundary condition. From the previous section we have

η k ∈ L ∞ (∆ 1 ) satisfies π(y)η k ∈ H 1 (∆ 1 ), Aη k = 0 in ∆ 1 , η k (x, y,Y ) -β k,+ (x, y) ∈ K Y, φ , η k (x, y, -Y ) ∈ K -Y, φ and η k x (±L, y, z) = 0 in (y, z) ∈ (-ȳ1 , ȳ1 ) × (-Y,Y ), η k (x, ȳ1 , z) = φ k (x, z) in (x, z) ∈ (-L, L) × (-Y,Y ), η k (x, -ȳ1 , z) = 0 in (x, z) ∈ (-L, L) × (-Y,Y ).
where

β k,+ (x, y) ∈ H 1 ((-L, L) × (0, ȳ1 )) solves the problem (2..4) with φ k (x,Y ) as boundary condition. Moreover η k ∞ φ ∞ and β k ∞ φ ∞ .
Let us check that the sequence β k has a limit. PROPOSITION 2..8 We have

β k,+ (x, y) → β + in L 2 ((-L, L) × (0, ȳ1 )) weakly, πβ k,+ (x, y) → πβ + in H 1 ((-L, L) × (0, ȳ1 ))weakly
and the limit β + solves the problem (2..4) with φ (x,Y ) as boundary condition.

Proof. We have ∀ψ ∈ H 1 ((-L, L) × (0, ȳ1 )) with ψ(x, 0) = ψ(x, ȳ1 ) = 0, 1 2 β k,+ x ψ x + β k,+ y ψ y + αxβ k,+ x + (c 0 y + kY + β x)β k,+ y ψ = 0. (2..24)
In particular, the choice of ψ = π(y)β k,+ with π(0

) = π( ȳ1 ) = 0 gives 1 2 (πβ k,+ x ) 2 +(πβ k,+ y ) 2 + π(y)π ′ (y)β k,+ y β k,+ + αxβ k,+ x +(c 0 y+kY +β x)β k,+ y π 2 β k,+ = 0.
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This implies

(πβ k,+ x ) 2 C π and (πβ k,+ y ) 2 C π .
We deduce that we can extract a subsequence such that we have

β k,+ → β + in L 2 weakly and πβ k,+ → πβ + in H 1 weakly. Now, denote γ k := π(y)β k,+ . We have B + γ k = -β k,+ ( π ′′ 2 -(β x + c 0 y + kY )π ′ ) -β k,+ y π ′ . Also ∀ψ ∈ H 1 ((-L, L) × (0, ȳ1 )) with ψ(x, 0) = ψ(x, ȳ1 ) = 0, 1 2 γ k x ψ x + γ k y ψ y + αxγ k x + (c 0 y + kY + β x)γ k y ψ (2..25) = {-β k,+ ( π ′′ 2 -(β x + c 0 y + kY )π ′ ) -β k,+ y π ′ }ψ.
When k goes to +∞ in (2..25), we obtain

B + β + = 0; β + x (±L, y) = 0. Then, from (2..26), ∀ψ ∈ H 2 ∩ H 1 0 , β k,+ ψ yy = - β k,+ y ψ y + φ k ψ y n(x)dσ , (2. 
.26) we deduce taking limit when k goes to

+∞ ∀ψ ∈ H 2 ∩ H 1 0 , β + ψ yy = - β + y ψ y + φ ψ y n(x)dσ ,
and we obtain the Dirichlet boundary condition

β + (x, ȳ1 ) = φ (x,Y ), β + (x, 0) = 0.
THEOREM 2..9 The Problem 1 has a unique solution.

Proof. Testing Aη k with ηθ 2 , we obtain

1 2 (η k y θ ) 2 + 1 2 (η k x θ ) 2 1 2 (η k ) 2 (θ θ ′ ) ′ + 1 2 (c 0 y + kz + β x)(η k ) 2 (θ 2 ) ′ + 1 2 αθ 2 (η k ) 2 - 1 2 αx(η k θ ) 2 n(x)dσ + 1 2 yθ 2 (η k ) 2 n(z)dσ .
So, we have

(η k x θ ) 2 C; (η k y θ ) 2 C.
Testing (Aη k ) with η k z y 2p-1 θ 2q , we deduce the following lemma LEMMA 2.. [START_REF] Doob | Stochastic Processes[END_REF] We have

∆ 1 (η k z π) 2 1 4 L 0 ȳ1 0 {(η k y (x, y,Y )) 2 + (η k x (x, y,Y )) 2 }y 2p-1 θ 2q dxdy + 1 4 L 0 0 -ȳ1 {(η k y (x, y, -Y )) 2 + (η k x (x, y, -Y )) 2 }|y| 2p-1 θ 2q dxdy + (p -1 2 ) ∆ 1 (η k y θ )(η k z π)y p-2 θ q-1 + q ∆ 1 (η k y θ )(η k z π)y p-1 θ q-2 θ ′ + ∆ 1 (c 0 y + kz + β x)(η k y θ )(η k z π)y p-1 θ q-1 + ∆ 1 αx(η k x θ )(η k z π)y p-1 θ q .
(2..27)

Moreover, η k z π L 2 C π . Denoting v k := η k π, we have v k H 1 (∆ 1 )
Cπ so we can extract a weakly converging subsequence

v k → v in H 1 (∆ 1 ) and v = ηπ ∈ H 1 (∆ 1 )
. Similarly as before, we can check that η satisfies the boundary condition of Problem 1 which is summarized in the following lemma. (see proof in Appendix). LEMMA 2.. [START_REF] Feau | Les méthodes probabilistes en mécanique sismique. Applications aux calculs de tuyauteries fissurées[END_REF] We have π(y

)Aη = 0 in H -1 (∆ 1 ), π(y)η x (±L, y, z) = 0 in (H 1 2 ((-L, L) × (-ȳ1 , ȳ1 ))) ′ , η(x, y,Y ) -β + (x, y) ∈ K Y, φ , η(x, y, -Y ) ∈ K -Y, φ , and η(x, ȳ1 , z) = φ (x, z); η(x, ȳ1 , z) = 0.

2.2..5 Local regularity in the interior Dirichlet problem

In this section, we derive local regularity properties of the function v related to the interior problem. We recall that v := πη ∈ H 1 (∆ 1 ) and we have

- 1 2 v xx - 1 2 v yy + ρ 0 (x, y, z)v y + αxv x -yv z = ηρ 1 (x, y, z) + η y ρ 2 (y) (2..28)
where we denote

ρ 0 (x, y, z) := β x + c 0 y + kz, ρ 1 (x, y, z) := π ′′ 2 -ρ 0 (x, y, z)π ′ , ρ 2 (y) = π ′ (y). Let ȳ < ȳ1 , Notation 2..10 ∆ 1 (δ ) := {(x, y, z) ∈ ∆ 1 , |y -ȳ1 | > δ , |y + ȳ1 | > δ } ∆ 1 (δ , γ) := {(x, y, z) ∈ ∆ 1 (δ ), |z -Y | > γ} H 1 (δ ) := H 1 (-Y,Y ; H 1 (-L, L; H 1 (-ȳ + δ , ȳ -δ ))) Recall that η ∈ H 1 (δ ) means η, η x , η y , η z , η xy , η xz , η zy , η xyz ∈ L 2 (∆ 1 (δ )). PROPOSITION 2..11 We have ∀δ , γ > 0, η ∈ H 1 (δ ); η ∈ C 0 (∆ 1 (δ )); η ∈ H 2 (∆ 1 (δ , γ)), (2..29) and η H 1 (δ ) M 1 ; η H 2 (∆ 1 (δ ,γ)) M 2 .
(2..30)
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Moreover, the trace of η at y = ȳ, denoted by h(x, z) := η(x, ȳ, z) satisfies

h ∈ H 1 ((-L, L) × (-Y,Y )) ∩ C 0 ((-L, L) × (-Y,Y )). (2. 
.31)

Proof.

The proof relies on the following estimates (see proof in Appendix). We have

η xx π 2 ∈ L 2 (∆ 1 ); η xy π 2 ∈ L 2 (∆ 1 ); η yy π 2 ∈ L 2 (∆ 1 ), η xz y 2 π 4 ∈ L 2 (∆ 1 ); η yz y 2 π 3 ∈ L 2 (∆ 1 ).
For p and q large enough, we have η xyz y p π q ∈ L 2 (∆ 1 ); η yyz y p π q ∈ L 2 (∆ 1 ); ρ(z)η xxz y p π q ∈ L 2 (∆ 1 ); ρ(z)η zz y p π q ∈ L 2 (∆ 1 ).

The exterior Dirichlet problem

In this section, we prove existence and uniqueness to the homogeneous exterior Dirichlet problem. Let us recall the exterior Dirichlet problem from [START_REF] Bensoussan | Degenerate Dirichlet Problems Related to the Invariant Measure of Elasto-Plastic Oscillators[END_REF]. Denote τ := inf{t > 0, |y(t)| = ȳ} and consider

h ± ∈ L ∞ (-Y,Y ). It is shown that E (y,z) (h ± (z( τ ))) solves a Dirichlet problem: Find ζ ∈ L ∞ (D) ∩ C 0 (D ε ), ∀ε > 0 such that Aζ = 0 in D, B ± ζ = 0, in D ± (3..1) with ζ (± ȳ, z) = h ± (z), -Y < z < Y.
By solving the ordinary differential equation on the boundary, there is

ζ y (y, ±Y ) = K exp(c 0 y 2 ± 2kY y).
As a bounded solution is sought, K must be 0. Hence, ζ (y, ±Y ) = h ± (±Y ) and then problem 3..1 was recast in (1) by 

Aζ = 0 in D, ζ (y, ±Y ) = h ± (±Y ), in D ± (3..2) with ζ (± ȳ, z) = h ± (z), -Y < z < Y.
∆ d := (-L, L) × (-∞, -ȳ) × (-Y,Y ), ∆ u := (-L, L) × ( ȳ, +∞) × (-Y,Y ) ∆ := ∆ d ∪ ∆ u , ∆ + := (-L, L) × ( ȳ, +∞) × {Y }, ∆ -:= (-L, L) × (-∞, -ȳ) × {-Y} and ∆ ε u := ∆ u ∩ {|y| > ȳ + ε}, ε > 0.
Due to the symmetry in the exterior Dirichlet problem, we can consider positive values of y only. Denote τ := inf{t > 0, y(t) = ȳ} and consider h ∈ L ∞ ((-L, L) × (-Y,Y )), we define E (x,y,z) (h(x( τ), z( τ ))) as the solution of the exterior Dirichlet Problem 2:

Problem 2 Find ζ ∈ L ∞ (∆ u ) ∩ C 0 (∆ ε u ), ∀ε > 0 such that Aζ = 0 in ∆ u , B + ζ = 0 in ∆ + and ζ x (±L, y, z) = 0, in (y, z) ∈ ( ȳ, +∞) × (-Y,Y ), ζ (x, ȳ, z) = h(x, z), in (x, z) ∈ (-L, L) × (-Y,Y ). 3.2..1 Boundary condition Find ζ + ∈ L ∞ (∆ + ) such that B + ζ + = 0 in ∆ + , (3..3) 
and

ζ + x (±L, y, z) = 0 in (y, z) ∈ ( ȳ, +∞) × (-Y,Y ), ζ + (x, ȳ, z) = h(x, z) in (x, z) ∈ (-L, L) × (-Y,Y ). Define H 1 2 (∆ + ) := u : ∆ + → R, ∆ + u 2 + u 2 x + u 2 y 1 + y 2 dxdy < ∞ . PROPOSITION 3..3 Assume that there exists H ∈ H 1 2 (∆ + ) such that H(x, ȳ) = h(x,Y ).
Then there exists one and only one solution to the problem (3..3) with

ζ + ∈ H 1 2 (∆ + ), ζ + L ∞ h(.,Y ) L ∞ .
Proof. First, we prove uniqueness. It is sufficient to prove that if we have

B + ζ = 0, ζ x (±L, y) = 0 and ζ (x, ȳ) = 0 with ζ bounded then we obtain ζ = 0. Set u(x, y) := ζ (x, y) exp(-c 0 2 y 2 ) then 1 2 u xx + 1 2 u yy -αxu x -u y (β x + kY ) + uc 0 (- c 0 2 y 2 -y(β x + kY) + 1 2 ) = 0, (x, y) ∈ ∆ + , u x (±L, y) = 0, y > ȳ, u(x, ȳ) = 0, x ∈ (-L, L).
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We can assume that -c 0 2 y 2y(β x + kY ) + 1 2 < 0, y ȳ ( ȳ sufficiently large). Let us prove that u = 0. Indeed if u has a positive maximum if cannot be at y = ∞. But then this contradicts maximum principle from (3..3). Similarily, we cannot have a negative minimum. Now, we adress existence. Let

W 1 2 (∆ + ) :=    u ∈ H 1 2 (∆ + ), u W 1 2 (∆ + ) := u L ∞ + ∆ + u 2 x + u 2 y (1 + y 2 ) 2 dxdy 1 2 < ∞    .
We define a bilinear form on

H 1 2 (∆ + ) × W 1 2 (∆ + ) by a(u, v) := 1 2 ∆ + u x v x (1 + y 2 ) 2 dxdy + 1 2 ∆ + u y v y (1 + y 2 ) 2 dxdy -2 ∆ + u y vy (1 + y 2 ) 3 dxdy +α ∆ + xu x v (1 + y 2 ) 2 dxdy + ∆ + (β x + c 0 y + kY )u y v (1 + y 2 ) 2 dxdy.
We next define

a γ (u, v) := a(u, v) + γ ∆ + uv (1 + y 2 ) 2 dxdy.
We finally define a bilinear form on

H 1 2 (∆ + ) × H 1 2 (∆ + ) by a γ,δ (u, v) := 1 2 ∆ + u x v x (1 + y 2 ) 2 dxdy + 1 2 ∆ + u y v y (1 + y 2 ) 2 dxdy -2 ∆ + u y vy (1 + y 2 ) 3 dxdy +α ∆ + xu x v (1 + y 2 ) 2 dxdy + ∆ + (β x + c 0 y - ȳ 1 + δ y + c 0 ȳ + kY ) u y v (1 + y 2 ) 2 dxdy +γ ∆ + uv (1 + y 2 ) 2 dxdy. If v ∈ W 1 2 (∆ + ), a γ,δ (u, v) = a γ (u, v) - ∆ + c 0 (y -ȳ)δ y 1 + δ y u y v (1 + y 2 ) 2 dxdy. If u ∈ W 1 2 (∆ + ), we can compute a γ,δ (u, u) = 1 2 ∆ + u 2 x (1 + y 2 ) 2 dxdy + 1 2 ∆ + u 2 y (1 + y 2 ) 2 dxdy -2 ∆ + u y uy (1 + y 2 ) 3 dxdy +α ∆ + xu x u (1 + y 2 ) 2 dxdy + ∆ + (β x + c 0 ȳ + kY ) (1 + y 2 ) 2 u y udxdy - c 0 2 ∆ + u 2 (1 + y 2 ) 2 1 1 + δ y - δ (y -ȳ) (1 + δ y) 2 - 4(y -ȳ)y (1 + δ y)(1 + y 2 ) dxdy +γ ∆ + u 2 (1 + y 2 ) 2 dxdy.
And see that

a γ,δ (u, u) 1 2 ∆ + u 2 x (1 + y 2 ) 2 dxdy + 1 2 ∆ + u 2 y (1 + y 2 ) 2 dxdy -2 ∆ + u y uy (1 + y 2 ) 3 dxdy +α ∆ + xu x u (1 + y 2 ) 2 dxdy + ∆ + (β x + c 0 ȳ + kY ) (1 + y 2 ) 2 u y udxdy +(γ - c 0 2 ) ∆ + u 2 (1 + y 2 ) 2 dxdy
and the right hand does not depend on δ . Moreover, we can define a constant γ depending only on the constants α, β , c 0 , ȳ, k,Y but not on δ such that

a γ,δ (v, v) a 0 v 2 H 1 2 (∆ + ) , a 0 > 0. (3..4)
The constant a 0 depends only on α, β , c 0 , ȳ, k,Y . If f (x, y) is bounded, we consider the problem

a γ,δ (u, v -u) γ ∆ + f (v -u) (1 + y 2 ) 2 dxdy, ∀v ∈ K, u ∈ K (3..5)
where

K := {v ∈ H 1 2 (∆ + ), v(x, ȳ) = h(x,Y
)} which is not empty from the assumption. Then from the coercivity (3..4) and results of the theory of Variational Inequalities (3..5) has one and only one solution u γδ ( f ) (writing u for u γδ ( f ) to simplify notation). If w ∈ H 1 2 (∆ + ) satisfies w(x, ȳ) = 0 then u + w ∈ K, hence

a γ,δ (u, w) = γ ∆ + f w (1 + y 2 ) 2 dxdy
and thus also

- 1 2 u xx - 1 2 u yy + αxu x + (β x + c 0 y - ȳ 1 + δ y + c 0 ȳ + kY )u y + γu = γ f , (x, y) ∈ ∆ + , u x (±L, y) = 0, y ∈ ( ȳ, +∞), u(x, ȳ) = h(x,Y ), x ∈ (-L, +L). Also if M f := max{ h(.,Y ) ∞ , f L ∞ } then u γδ ( f ) L ∞ M f .
Moreover,

a γδ (u, H -u) γ ∆ + f (H -u) (1 + y 2 ) 2 dxdy hence a γδ (u, u) a γδ (u, H) -γ ∆ + f (H -u) (1 + y 2 ) 2 dxdy
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a γδ (u, H) = a γ (u, H) - ∆ + c 0 (y -ȳ)δ y (1 + δ y) u y H (1 + y 2 ) 2 dxdy C u H 1 2 (∆ + ) H W 1 2 (∆ + ) + γCM f h(.,Y ) ∞
where C depends only on constants α, β , c 0 ȳ, k,Y . From (3..4), we deduce easily that

u γδ ( f ) H 1 2 (∆ + ) C γ ( f ). (3..6)
Letting δ → 0, we obtain

u γδ → u γ ( f ) in H 1 2 (∆ + ) weakly and in L ∞ (∆ + ) weakly-⋆, u γ ( f ) ∈ K
We deduce easily from (3..5) that u γ ( f ) satisfies

a γ (u, v -u) γ ∆ + f (v -u) (1 + y 2 ) 2 dxdy (3..7) ∀v ∈ W 1 2 (∆ + ), v ∈ K, u ∈ K, u ∞ M f , u H 1 2 (∆ + ) C γ ( f )
where again we write u for u γ ( f ). The solution of (3..7) is unique. Indeed, we first claim that

a(u, w) = γ ∆ + f w (1 + y 2 ) 2 dxdy, ∀w ∈ W 1 2 (∆ + ), w(x, ȳ) = 0.
But then if u 1 , u 2 are two solutions

a γ (u 1 , u 1 -u 2 ) = γ ∆ + f u 1 -u 2 (1 + y 2 ) 2 dxdy, a γ (u 2 , u 1 -u 2 ) = γ ∆ + f u 1 -u 2 (1 + y 2 ) 2 dxdy,
hence a γ (u 1u 2 , u 1u 2 ) = 0. However, from (3..4) we also have

a γ (v, v) a 0 v 2 H 1 2 (∆ + ) , ∀v ∈ H 1 2 (∆ + )
Therefore u 1u 2 = 0. We next consider a sequence ζ n with ζ 0 = h(.,Y ) L ∞ given by the solution of

a γ (ζ n+1 , v -ζ n+1 ) γ ∆ + ζ n (v -ζ n+1 ) (1 + y 2 ) 2 dxdy, (3..8) where ζ n+1 ∈ K, ∀v ∈ W 1 2 (∆ + ), v ∈ K, ζ n+1 L ∞ max ( h(.,Y ) L ∞ , ζ n L ∞ ) . Considering ζ 1 , we have a γ (ζ 1 , v -ζ 1 ) γ ∆ + ζ 0 (v -ζ 1 ) (1 + y 2 ) 2 dxdy. Take v = ζ 1 -(ζ 1 -ζ 0 ) + , which is admissible, then a γ (ζ 1 , (ζ 1 -ζ 0 ) + ) γ ∆ + ζ 0 (ζ 1 -ζ 0 ) + (1 + y 2 ) 2 dxdy and a γ (ζ 1 -ζ 0 , (ζ 1 -ζ 0 ) + ) = a γ (ζ 1 , (ζ 1 -ζ 0 ) + ) -γ ∆ + ζ 0 (ζ 1 -H) +
(1 + y 2 ) 2 dxdy 0 from the assumptions. Therefore (ζ 1 -ζ 0 ) + = 0 which implies ζ 1 ζ 0 and also

ζ 1 L ∞ h(.,Y ) L ∞ . Then by induction if ζ n ζ n-1 , ζ n L ∞ h(.,Y ) L ∞ . We obtain ζ n+1 ζ n , ζ n+1 L ∞ h(.,Y ) L ∞ . Also a γ (ζ n+1 , ζ 1 -ζ n+1 ) γ ∆ + ζ n (ζ 1 -ζ n+1 ) (1 + y 2 ) 2 dxdy a γ (ζ n+1 , ζ n+1 ) a γ (ζ n+1 , ζ 1 ) -γ ∆ + ζ n (ζ 1 -ζ n+1 ) (1 + y 2 ) 2 dxdy a(ζ n+1 , ζ 1 ) + γ ∆ + ζ 1 ζ n+1 (1 + y 2 ) 2 dxdy -γ ∆ + ζ n (ζ 1 -ζ n+1 ) (1 + y 2 ) 2 dxdy Hence ζ n+1 H 1 2 (∆ + ) C γ ζ 1 H 1 2 (∆ + ) + h(.,Y ) ∞ . The sequence ζ n → ζ is monotone decreasing and ζ n → ζ in H 1 2 (∆ + ) weakly, ζ ∈ K, ζ L ∞ h(.,Y ) L ∞ .
Hence in the limit,

a(ζ , v -ζ ) 0, ∀v ∈ W 1 2 (∆ + ), v ∈ K, ζ ∈ K, ζ L ∞ h(.,Y ) L ∞ (3..9)
and ζ is solution of equation (3..3).

3.2..2 The Cauchy problem

The exterior Dirichlet Problem 2 is equivalent to

Aζ = 0, (x, y, z) ∈ (-L, L) × ( ȳ, ∞) × (-Y,Y ), ζ (x, ȳ, z) = h(x, z), (x, z) ∈ (-L, L) × (-Y,Y ), ζ (x, y,Y ) = ζ + (x, y), (x, y) ∈ (-L, L) × ( ȳ, ∞), ζ x (±L, y, z) = 0, (y, z) ∈ ( ȳ, ∞) × (-Y,Y ) (3..10) with B + ζ + = 0, (x, y) ∈ (-L, L) × ( ȳ, ∞), ζ + (x, ȳ) = h(x,Y ), x ∈ (-L, L), ζ + x (±L, y) = 0, y ∈ ( ȳ, ∞) and ζ + L ∞ h(.,Y ) L ∞ .
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ζ z + 1 y 1 2 ζ yy + 1 2 ζ xx -αxζ x -(β x + c 0 y + kz)ζ y = 0 (3..11)
and using the notation

A (z)u(x, y) := - 1 y 1 2 u yy + 1 2 u xx -αxu x -(β x + c 0 y + kz)u y we obtain -∂ ζ ∂ z + A (z)ζ = 0, (x, y) ∈ ∆ + , z < Y, ζ (x, y,Y ) = ζ + (x, y), (x, y) ∈ (-L, L) × ( ȳ, ∞), ζ x (±L, y, z) = 0, (y, z) ∈ ( ȳ, ∞) × (-Y,Y ), ζ (x, ȳ, z) = h(x, z), (x, z) ∈ (-L, L) × (-Y,Y ). (3..12)
So it is a Cauchy problem with mixed Dirichlet-Neuman boundary conditions. We consider the space H 1 2 (∆ + ), with a new norm

u 2 ⋆ = ∆ + 1 y u 2 x + u 2 y (1 + y 2 ) 2 dxdy + ∆ + u 2 (1 + y 2 ) 2 dxdy
which is not equivalent to

u 2 = ∆ + u 2 x + u 2 y (1 + y 2 ) 2 dxdy + ∆ + u 2 (1 + y 2 ) 2 dxdy.
The norm in L 2 2 (∆ + ) is defined by

|u| 2 ⋆ := ∆ + u 2 (1 + y 2 ) 2 dxdy u 2 ⋆ .
We define on H 1 2 (∆ + ) the bilinear continuous form

A (z)(u, v) := 1 2 ∆ + u x v x + u y v y y(1 + y 2 ) 2 dxdy - 1 2 ∆ + u y v(1 + 3y 2 ) y 2 (1 + y 2 ) 3 dxdy + ∆ + (αxu x + (β x + c 0 y + kz)u y ) v y(1 + y 2 ) 2 dxdy.
Moreover,

A (z)(u, u) = 1 2 ∆ + u 2 x + u 2 y y(1 + y 2 ) 2 dxdy - 1 2 ∆ + u y u(1 + 3y 2 ) y 2 (1 + y 2 ) 3 dxdy + ∆ + (αxu x + (β x + c 0 ȳ + kz)u y ) u y(1 + y 2 ) 2 dxdy - 1 2 ∆ + u 2 c 0 d dy ( y - ȳ y(1 + y 2 ) 2 )dxdy and for |z| < Y , a 0 ∆ + u 2 x + u 2 y y(1 + y 2 ) 2 dxdy -b 0 ∆ + u 2 (1 + y 2 ) 2 dxdy
where the constants a 0 , b 0 depend only on α, β , c 0 , k, ȳ,Y . Therefore also,

< A (z)u, u > a 0 u 2 H 1 2 (∆ + ) -b ∆ + u 2 (1 + y 2 ) 2 dxdy.
The problem (3..12) is equivalent to

-( ∂ ζ ∂ z , w) + A (z)(ζ , w) = 0, ∀w ∈ H 1 2 (∆ + ), w(x, ȳ) = 0 (3..13) and ζ (x, y,Y ) = ζ + (x, y) , ζ (x, ȳ, z) = h(x, z).
We assume that there exists

H(z) ∈ H 1 (-Y,Y ; H 1 2 (∆ + )) with H(z)(x, ȳ) = h(x, z), ∀x, z. (3..14) Writing ζ (x, y, z) = ζ (x, y, z) -H(z)(x, y), we deduce -( ∂ ζ ∂ z , w) + A (z)( ζ , w) = ( ∂ H ∂ z (z)(x, y), w) -A (z)(H(z), w), ∀w ∈ H 1 2 (∆ + ), w(x, ȳ) = 0. ζ (x, y,Y ) = ζ + (x, y) -H(Y )(x, y) ζ (x, ȳ, z) = 0
Under this form, we obtain one and only one solution

ζ (x, y, z) ∈ L 2 -Y,Y ; H 1 2,0 (∆ + ) , ∂ ζ ∂ z (x, y, z) ∈ L 2 -Y,Y ; H 1 2,0 (∆ + ) ′
where H 1 2,0 (∆ + ) denotes the subspace of H 1 2 (∆ + ) of function which vanish at ȳ. We now prove that

ζ L ∞ h(.,Y ) L ∞ (3..15)
We will consider ∆ + R := {-L < x < L, ȳ < y < R} for R large. We begin with an approximation of the boundary condition ζ + with ζ + R solution of (we delete +)

1 2 ζ R,xx + 1 2 ζ R,yy -αxζ R,x -(β x + c 0 y + kY )ζ R,y = 0, (x, y) ∈ (-L, L) × ( ȳ,Y ), ζ R,x (±L, y) = 0, y ∈ ( ȳ, ∞), ζ R (x, ȳ) = h(x,Y ), x ∈ (-L, L), ζ R (x, R) = 0,
x ∈ (-L, L).

(3..16)

We can assume h 0, otherwise we decompose

h = h + -h -. We extend ζ R (x, y) by 0 for y > R. The sequence of functions ζ R (x, y) is increasing and ζ R L ∞ h(.,Y ) L ∞ . Let θ (y) = 1 if 0 < y < 1 2 and
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vθ ( y R )-ζ R ( 1+y 
2 ) 2 which vanishes at y = ȳ and y = R. Setting θ R (y) = θ ( y R ), we obtain,

1 2 ∆ + R ζ R,x (v x θ R -ζ R,x ) (1 + y 2 ) 2 dxdy + 1 2 ∆ + R ζ R,y (v y θ R -ζ R,y )
(1 + y 2 ) 2 dxdy (3..17)

+ 1 2R ∆ + R ζ R,y vθ ′ R (1 + y 2 ) 2 dxdy - ∆ + R 2ζ R,y (vθ R -ζ R )y (1 + y 2 ) 3 y dxdy + ∆ + R αxζ R (vθ R -ζ R ) (1 + y 2 ) 2 dxdy + ∆ + R (β x + c 0 y + kY ) (1 + y 2 ) 2 ζ R,y (vθ R -ζ R )dxdy = 0.
and thus also a

(ζ R , vθ R -ζ R ) = 0. Recalling that a(u, u) + γ ∆ + u 2 (1 + y 2 ) 2 dxdy a 0 u 2 H 1 2 (∆ + ) , we get a 0 ζ R 2 H 1 2 (∆ + ) a(ζ R , vθ R ) + C h(.,Y ) 2 L ∞ , from which we deduce easily, ζ R H 1 2 (∆ + )
C.

We then consider the limit

ζ R → ζ monotone increasing , ζ R → ζ in H 1 2 (∆ + ) weakly Hence, a(ζ , v) a(ζ , ζ )
which implies that ζ is the solution ζ + of (3..3). We next consider the approximation of (3..10) for ȳ < y < R. We write

Aζ R = 0, (x, y) ∈ ∆ R × (-Y,Y ), ζ R (x, y,Y ) = ζ + R (x, y), (x, y) ∈ ∆ R , ζ R (x, ȳ, z) = h(x, z), (x, z) ∈ (-L, L) × (-Y,Y ), ζ R (x, R, z) = 0, (x, z) ∈ (-L, L) × (-Y,Y ), ζ R,x (±L, y, z) = 0, (y, z) ∈ ( ȳ, R) × (-Y,Y ). (3..18)
We write (3..18) as a Cauchy problem

∂ ζ R ∂ z + A (z)ζ R = 0, in ∆ R , ζ R (x, y, R) = ζ + R (x, y), (x, y) ∈ ∆ + R , ζ R,x (±L, y, z) = 0, (y, z) ∈ ( ȳ, R) × (-Y,Y ), ζ R (x, ȳ, z) = h(x, z), (x, z) ∈ (-L, L) × (-Y,Y ), ζ R (x, R, z) = 0, (x, z) ∈ (-L, L) × (-Y,Y ) (3..19)
and extend ζ R by 0 for y > R. If w ∈ H 1 2 (∆ + ), w(x, ȳ) = 0, we can write

-( ∂ ζ R ∂ z , wθ R ) + A (z)(ζ R , θ R w) = 0, ζ R (x, y,Y ) = ζ + R (x, y), (x, y) ∈ ∆ + R , ζ R (x, ȳ, z) = h(x, z), (x, z) ∈ (-L, L) × (-Y,Y ).
(3..20)

However, from (3..19), we deduce ζ R L ∞ h(.,Y ) L ∞ . (3..21)
We can pass to the limit in (3..21) and check that ζ R → ζ solution of (3..13). This proves (3..15).

Local regularity in the exterior Dirichlet problem

In this section, we derive local regularity properties of the solution ζ to the exterior Dirichlet problem. Recall that ȳ < ȳ1 ,

Notation 3..4 ∆ d (δ ) := {(x, y, z) ∈ ∆ d , y < -ȳ -δ }, ∆ u (δ ) := {(x, y, z) ∈ ∆ u , y > ȳ + δ }, ∆ -(δ ) := ∆ d (δ ) ∩ ∆ -, ∆ + (δ ) := ∆ u (δ ) ∩ ∆ + , ∆ d (δ , γ) := {(x, y, z) ∈ ∆ d (δ ), -Y + γ < z}, ∆ u (δ , γ) := {(x, y, z) ∈ ∆ u (δ ), z < Y -γ}, H d (δ ) := H 1 (-Y,Y ; H 1 (-L, L; H 1 (-ȳ1 -δ , -ȳ1 + δ ))), H u (δ ) := H 1 (-Y,Y ; H 1 (-L, L; H 1 ( ȳ1 -δ , ȳ1 + δ )))
and

∆ (δ ) := ∆ d (δ ) ∪ ∆ u (δ ), ∆ (δ , γ) := ∆ d (δ , γ) ∪ ∆ u (δ , γ), H(δ ) := H d (δ ) ∩ H u (δ ).
Again, thanks to the symmetry in the exterior Dirichlet problem, we consider only positive values of y. 

PROPOSITION 3..5 [Local regularity of the exterior Dirichlet problem] We have

∀δ , γ > 0, ζ ∈ H u (δ ); ζ ∈ C 0 (∆ u (δ )); ζ ∈ H 2 (∆ u (δ , γ)), (3..22) and ζ H u (δ ) M 1, φ ; ζ H 2 (∆ u (δ ,γ)) M 2, φ . (3..23) Moreover, the trace of ζ at y = ȳ1 , denoted g(x, z) := ζ (x, ȳ, z) satisfies g ∈ H 1 ((-L, L) × (-Y,Y )) ∩ C 0 ((-L, L) × (-Y,Y )).
Γ ± 1 := (-L, L) × {± ȳ1 } × (-Y,Y ); Γ ± := (-L, L) × {± ȳ} × (-Y,Y ) and Γ1 := Γ - 1 ∪ Γ + 1 ; Γ := Γ -∪ Γ + 4.1. Construction of the operator P Consider φ := (φ -, φ + ) ∈ L ∞ ( Γ1 ).
Following the same procedure of the 1d case, we first solve the interior Dirichlet problem for η with the boundary condition

   η = φ + in Γ + 1 , η = φ -in Γ - 1 . Then η L ∞ max( φ + , φ -).
Then, we solve the exterior Dirichlet problem for ζ with the boundary condition

   ζ = η in Γ + , ζ = η in Γ -. Then ζ L ∞ η L ∞ φ L ∞ .
For p1 ∈ Γ1 , let us define Pφ ( p1 ) := ζ ( p1 ).

Probabilistic interpretation of the operator P

Let us recall from Khasminskii [START_REF] Khasminkii | Stochastic Stability of Differential Equations[END_REF] the probabilistic interpretation of the operator P. For p ∈ Γ and for p1 ∈ Γ1 , we denote by γ1 ( p; .) the distribution of z( τ1 ) starting from p and by γ( p1 ; .) the distribution of z( τ) starting from p1 . We showed

η( p) = Γ1 φ (u) γ1 ( p; du) and ζ ( p1 ) = Γ η(v) γ( p1 ; dv).
Also, using Fubini theorem we can write

Pφ ( p1 ) = Γ1 φ (u) γ γ1 ( p1 , du),
where γ γ1 ( p1 , du) := Γ γ( p1 ; dv) γ1 (v; du).

The nonhomogeneous interior Dirichlet problem

Consider f a bounded function on ∆ 1 , we want to define E (x,y,z) τ1 0 f (x(s), y(s), z(s))ds as the solution of the non-homogeneous interior Dirichlet Problem 3:

Problem 3 Find χ ∈ L ∞ (∆ 1 ) ∩ C 0 (∆ ε 1 ), ∀ε > 0 such that Aχ + f = 0 in ∆ 1 , B ± χ + f = 0 in ∆ ± 1 , χ(x, ± ȳ1 , z) = 0 in (-L, L) × (-Y,Y ), χ x (±L, y, z) = 0 in (-ȳ1 , ȳ1 ) × (-Y,Y ). Consider Φ(x, y, z) := exp λ (c 0 kz 2 + c 0 y 2 ); λ 1. THEOREM 5..1
The Problem 3 has a unique solution. Moreover, we have

χ L ∞ expλ (c 0 kY 2 + c 0 ȳ2 1 ),
where λ depends on f .

Proof. The uniqueness of a solution of Problem 3 is argued as the uniqueness for the homogeneous Dirichlet interior problem. The existence can be proven by the regularization technique used previously. Now, we give a L ∞ bound for χ. We have

φ x = 0; φ xx = 0 φ y = 2yc 0 λ φ ; φ yy = 2c 0 λ φ + (2c 0 λ y) 2 φ φ z = 2zc 0 kλ φ and yφ z -αxφ x -φ y (β x + c 0 y + kz) + 1 2 φ yy + 1 2 φ xx = -2β c 0 λ xyφ -2c 2 0 λ y 2 φ + c 0 λ φ + 2(c 0 λ y) 2 = c 0 λ φ -c 0 λ 2β xyφ + 2(c 0 y) 2 λ (λ -1)φ c 0 λ (1 -2β L ȳ1 )φ + 2(c 0 y) 2 λ (λ -1)φ f
where ȳ1 can be chosen as 2 ȳ1 < 1 2β L , and λ max(1,

f c 0 (1-2β L ȳ1 ) ).
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Using that φ (x, y, ±Y ) = exp λ (c 0 kY 2 ) exp λ (c 2 0 y 2 ) we obtain for z = Y, 0 < y < ȳ1 .

-αxφ x -φ y (β x + c 0 y + kY ) +

1 2 φ yy + 1 2 φ xx = -φ y (x, y,Y )(c 0 y + kY + β x) + 1 2 φ yy (x, y,Y ) = λ c 0 φ (x, y,Y ) 1 -2(kY + β x)y + 2c 0 (λ -1)y 2 λ c 0 φ (x, y,Y ) 1 -2(kY + β L)y + 2c 0 (λ -1)y 2 λ c 0 1 - (kY + β L) 2 2c 0 (λ -1) f , if λ max(2 f c 0 , 1 + (kY +β L) 2 c 0
). Similar estimates hold for z = -Y, -ȳ1 < y < 0. Consider u := φχ, then u satisfies the following inequalities

Au 0 in ∆ 1 ; B ± u 0 in ∆ ± 1 (5..1)
and the following boundary conditions

u(x, ± ȳ1 , z) = exp(λ c 0 kz 2 + c 0 ȳ2 1 ) in (-L, L) × (-Y,Y ), u x (±L, y, z) = 0 in (-ȳ1 , ȳ1 ) × (-Y,Y ). (5..2) 
The maximum of u cannot be attained in ∆ 1 or on the boundaries z = ±Y, x = ±L. It can only be attained for y = ȳ1 or y = ȳ1 . Hence, u(x, y, z) exp(λ

(c 0 kY 2 + c 0 ȳ2 1 )) which implies χ(x, y, z) -exp(λ (c 0 kY 2 + c 0 ȳ2 1 )). Now, consider v = -(φ + χ), then v satisfies inequalities (5..3) Av 0 in ∆ 1 ; B ± v 0 in ∆ ± 1 (5..3)
and the boundary condition (5..4)

v(x, ± ȳ1 , z) = -exp(λ c 0 kz 2 + c 0 ȳ2 1 ) in (-L, L) × (-Y,Y ), v x (±L, y, z) = 0 in (-ȳ1 , ȳ1 ) × (-Y,Y ). (5..4)
Again, the minimum of v cannot be attained in ∆ 1 or on the boundaries z = ±Y, x = ±L. Hence

v(x, y, z) -exp(λ (c 0 kY 2 + c 0 ȳ2 1 )) which implies χ(x, y, z) exp(λ (c 0 kY 2 + c 0 ȳ2 1 )).
Now, let us derive some estimates on derivatives. Let M := exp(λ (c 0 kY 2 + c 0 ȳ1 2 )). Using the test function m 0 (x, y, z) = exp(-c 0 (y 2 + kz 2 )) exp(-αx 2 ) we obtain now a priori estimates on the partial derivatives of χ. We test [START_REF] Doob | Stochastic Processes[END_REF] 

with m 0 χ ∆ 1 χ 2 y m 0 + ∆ 1 χ 2 x m 0 = ∂ ∆ 1 ,z=Y yχ 2 m 0 - ∂ ∆ 1 ,z=-Y yχ 2 m 0 + 2 ∆ 1 f χm 0 - ∆ 1 c 0 β xχ 2 m 0 ∂ ∆ 1 ,z=Y,y>0 yχ 2 m 0 - ∂ ∆ 1 ,z=-Y,y<0 yχ 2 m 0 + 2 ∆ 1 f χ C(M).
Hence,

∆ 1 χ 2 y m 0 C(M) ; ∆ 1 χ 2 x m 0 C(M).
We have then,

∆ 1 (y 2 χ z ) 2 m 0 C(M) and ∆ 1 (y 2 χ yy ) 2 m 0 C(M).
The function χ is smooth outside a neighborhood of y = 0.

The nonhomogeneous exterior Dirichlet problem

Consider the function Ψ (y) := log(y) + K, K such that log( ȳ1 ) + K > 0 and the space of functions X ∞ Ψ := {uψ, u ∈ L ∞ (∆ u )}. We want to define E (x,y,z) τ 0 f (x(s), y(s), z(s))ds as the solution of the nonhomogeneous exterior Dirichlet Problem 4:

Problem 4 Find ξ ∈ X ∞ Ψ ∩ C 0 (∆ ε u ), ∀ε > 0 such as Aξ + f = 0 in ∆ u , B + ξ + f = 0 in ∆ + , ξ (x, ȳ, z) = 0 in (-L, L) × (-Y,Y ), ξ x (±L, y, z) = 0 in ( ȳ, +∞) × (-Y,Y ).
THEOREM 6.. [START_REF] Bensoussan | Degenerate Dirichlet Problems Related to the Invariant Measure of Elasto-Plastic Oscillators[END_REF] The Problem 4 has a unique solution. Moreover, we have -ψ(y) ξ (x, y, z) ψ(y).

Proof. We justify uniqueness of the solution taking f = 0 and setting ξ ξ = wψ α , α > 1.

We show w = 0. In particular, w satisfies ξ = wψ α ξ x = w x ψ α ; ξ y = w y ψ α + wαψ y ψ α-1 ; ξ z = w z ψ α ξ xx = w xx ψ α ; ξ yy = w yy ψ α + 2w y αψ y ψ α-1 + wα ψ yy ψ α-1 + (ψ y ) 2 ψ α-2 (α -1)
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w xx ψ α + 1 2 {w yy ψ α + 2w y αψ y ψ α-1 wα ψ yy ψ α-1 + (ψ y ) 2 ψ α-2 (α -1)} -(c 0 y + kz + β x){w y ψ α + wαψ y ψ α-1 } -αxw x ψ α + yw z ψ α = 0.
Collecting terms related to ψ α , we obtain

1 2 w xx + 1 2 {w yy + 2w y α ψ y ψ + wα ψ yy ψ + (ψ y ) 2 ψ 2 (α -1)} +(-c 0 y -kz -β x){w y + wα ψ y ψ } -αxw x + yw z = 0,
which implies for z ∈ (-Y,Y ) and y > ȳ,

1 2 w xx + 1 2 w yy + w y {α ψ y ψ -c 0 -kz -β x} + wα ψ { 1 2 ψ yy + (α -1) 2 
(ψ y ) 2 ψ -(c 0 y + kz + β x)αψ y } -αxw x + yw z = 0 and for z = Y ; y > ȳ, 1 2 w xx + 1 2 w yy + w y {α ψ y ψ -c 0 -kY -β x} + wα ψ { 1 2 ψ yy + (α -1) 2 
(ψ y ) 2 ψ -(c 0 y + kY + β x)αψ y } -αxw x + yw z = 0 and w(x, ȳ, z) = 0.
We can find α > 1 with α -1 small so that

1 2 ψ yy -(c 0 y + kz + β x) + (α -1) (ψ y ) 2 ψ -γ c 0 2 + (α -1)γ y 2 (log(y) + K) < 0.
Since w → 0 as y → ∞, a positive maximum can be attained only for a finite y ⋆ . But this is impossible from the equation. So w is negative,w 0. But, w is also positive, w 0. Hence ξ = 0 and uniqueness follows. Now, existence is demonstrated by the following approximation

Aξ R + f = 0, in ∆ R , B + ξ R + f = 0, in ∆ + R , ξ (x, ȳ, z) = 0, ξ (x, R, z) = 0, ξ x (±L, y, z) = 0. Using u R = ξ R -ψ, we obtain Au R 0, in ∆ R , B + u R 0, in ∆ + R , u R (x, ȳ, z) = -ψ( ȳ), u R
x (±L, y, z) = 0.

Necessarily, u R 0. The sequence ξ R is monotone increasing and converges towards a solution. Let us show estimates on u. Suppose f 0, we will show that 0 ξ ψ. Then,

ψ y (-c 0 y -kz -β x) + 1 2 ψ yy = γ[ 1 y (-c 0 y -kz -β x) - 1 2y 2 ] γ[ 1 y (-c 0 y -kz) - 1 2y 2 ] γ[ 1 y (-c 0 y -kz) - 1 2y 2 ] -γ c 0 2 , if ȳ > 2kY c 0 .
Define γ such that γc 0 2 f . We then have, setting u = ξψ, Au 0, in ∆

B + u 0, in ∆ + u(x, ȳ, z) = -ψ( ȳ) u x (±L, y, z) = 0
It follows that u 0. We can show similarly that ξ + φ 0. Hence, we have -ψ ξ ψ. This defines a linear operator from L ∞ Γ1 in L ∞ ( Γ1 ).

Probabilistic interpretation of the operator T

For any A a Borel subset of O, consider the two following measures of occupation of A by the process (x(t), y(t), z(t)) starting at p ∈ O, namely ν χ (p; A) := E p τ1 0 1 A (x(s), y(s), z(s))ds ν ξ (p; A) := E p τ 0 1 A (x(s), y(s), z(s))ds .
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We have shown

χ(p) = O f (q)dν χ (p; dq) and ξ ( p) = O f ( q)dν ξ ( p; d q).
For any p1 ∈ Γ1 , we have

T( f )( p1 ) := E p1 τ1 0 f (x(s), y(s), z(s))ds + Γ E q τ 0
f (x(s), y(s), z(s))ds dγ( p1 ; dq) T( f ) integrates f over a time cycle of the Markov chain stopped on Γ1 , that is (x( τ1,k ), y( τ1,k ), z( τ1,k )).

Construction of the invariant measure ν

Now, define

ν( f ) := L -L Y -Y T f (r, ȳ1 , s)γ + ⋆ (dr, ds) + L -L Y -Y T f (r, -ȳ1 , s)γ - ⋆ (dr, ds) L -L Y -Y T 1(r, ȳ1 , s)γ + ⋆ (dr, ds) + L -L Y -Y T 1(r, -ȳ1 , s)γ - ⋆ (dr, ds)
.

The denominator is well defined and is stricly positive. Now, we want to solve the complete problem.

Problem 5 Find u such that uψ -1 is bounded for |y| > | ȳ| and

Au + f = 0, in O B + u + f = 0, in O + B -u + f = 0, in O - u x (±L, y, z) = 0, in {x = ±L} ∩ O
Considering Problems 1, 2, 3 and 4, in the following result we use a functional analysis method to prove that ν is the unique invariant distribution associated to the solution (x(t), y(t), z(t)) of the stochastic variational inequality (1..2).

THEOREM 7..1 The Problem 5 has a unique solution if and only if ν( f ) = 0.

Proof. Similar arguments as the 1d case are considered. Uniqueness is guaranteed by the ergodic property of the operator P. Suppose ν( f ) = 0. We define χ the solution of the Interior non-homogeneous Dirichlet Problem 3 and ξ the solution of the Exterior non-homogeneous Dirichlet Problem 4. We set χ 0 := χ and ξ 0 := ξ , and for k 0, we define χ k+1 by

Aχ k+1 = 0, in ∆ 1 , B + χ k+1 = 0, in ∆ + 1 , B -χ k+1 = 0, in ∆ - 1 , χ k+1 x (±L, y, z) = 0, in (-ȳ1 , ȳ1 ) × (-Y,Y ) with χ k+1 (x, ȳ1 , z) = ξ k (x, ȳ1 , z); χ k+1 (x, -ȳ1 , z) = ξ k (x, -ȳ1 , z).
Afterwards, we define ξ k+1 by

Aξ k+1 = 0, in ∆ u , B + ξ k+1 = 0, in ∆ + u , ξ k+1 x (±L, y, z) = 0, in ( ȳ, +∞) × (-Y,Y ) with ξ k+1 (x, ȳ, z) = χ k+1 (x, ȳ, z).
Similarly, we define ξ k+1 by

Aξ k+1 = 0, in ∆ d , B -ξ k+1 = 0, in ∆ - d , ξ k+1 x (±L, y, z) = 0, in (-∞, -ȳ) × (-Y,Y ) with ξ k+1 (x, -ȳ, z) = χ k+1 (x, -ȳ, z).
That means

ξ 0 | Γ1 = T f ; ξ k+1 | Γ1 = P(ξ k | Γ1 ).
Next, we set ξ k = ξ 0 + ξ 1 + ... + ξ k ; χk = χ 0 + χ 1 + ... + χ k then ξ k | Γ1 = T f + P(T f ) + ... + P k (T f ).

Now, let us remark that χk satisfies the following equation:

A χk + f = 0, in ∆ 1 , B + χk + f = 0, in ∆ + 1 , B - χk + f = 0, in ∆ - 1 , χk x (±L, y, z) = 0, in (-∞, -ȳ) × (-Y,Y ) (7..1) with χk (x, ȳ1 , z) = ξ k-1 (x, ȳ1 , z); χk (x, -ȳ1 , z) = ξ k-1 (x, -ȳ1 , z)
ξ k satisfies the following equations:

A ξ k + f = 0, in ∆ u , B + ξ k + f = 0, in ∆ + u , ξ k x (±L, y, z) = 0, in ( ȳ, +∞) × (-Y,Y ) (7..2) ξ k (x, ȳ, z) = χk (x, ȳ, z)
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A ξ k + f = 0, in ∆ d , B + ξ k + f = 0, in ∆ - d , ξ k x (±L, y, z) = 0, in (-∞, -ȳ) × (-Y,Y ) (7..3) ξ k (x, -ȳ, z) = χk (x, -ȳ, z). The condition ν( f ) = 0 means Γ1 T f (x)dπ(x) = Γ1 T f (r, -ȳ1 , s)dπ 1 (r, s) + Γ1 T f (r, ȳ1 , s)dπ 2 (r, s) = 0.
From the estimate (4..3), we obtained ξ k converges in L ∞ ( Γ1 ). Now, we notice that χk -χ is a solution of the interior homogeneous Dirichlet problem with ( χk - χ)| Γ1 = ξ k-1 | Γ1 and ξ k -ξ is a solution of the Exterior homogeneous Dirichlet problem with

( ξ k - ξ )| Γ = ( χk -χ)| Γ . Then, we obtain ξ k -ξ L ∞ χk -χ L ∞ ξ k-1 L ∞ C.
We can extract a subsequence such that ξ k → ξ ; χk → χ.

Moreover, χ satisfies equation:

A χ + f = 0, in ∆ 1 , B + χ + f = 0, in ∆ + 1 , B -χ + f = 0, in ∆ - 1 , χx (±L, y, z) = 0, in (-ȳ1 , ȳ1 ) × (-Y,Y ) (7..4) χ(x, ȳ1 , z) = ξ (x, ȳ1 , z); χ(x, -ȳ1 , z) = ξ (x, -ȳ1 , z)
and ξ satisfies equations:

A ξ + f = 0, in ∆ u , B + ξ + f = 0, in ∆ + u , ξx (±L, y, z) + f = 0, in ( ȳ, +∞) × (-Y,Y ) (7..5) ξ (x, ȳ, z) = χ(x, ȳ, z) A ξ + f = 0, in ∆ d , B -ξ + f = 0, in ∆ - d , ξx (±L, y, z) = 0, in (-∞, -ȳ) × (-Y,Y ) (7..6) ξ (x, -ȳ, z) = χ(x, -ȳ, z).
Then, we must have χ = ξ in ȳ < ±y < ȳ1

Thus, the function 

u = χ in ∆ 1 , ξ in ∆ c
(u -ξ k )| Γ = (u -χk )| Γ . Hence, u -ξ k L ∞ ( Γ1 ) u -χk L ∞ ( Γ1 ) u -ξ k-1 L ∞ ( Γ1 ) u L ∞ ( Γ1 ) and so, ξ k L ∞ ( Γ1 ) C.
We have

ξ k = (k + 1) Γ1 T f (x)dπ(x) + k ∑ j=0 P j (T( f -ν( f )))
and since the sum is bounded, we obtain

(k + 1) Γ1 T f (x)dπ(x) is bounded. That leads to Γ1 T f (x)dπ(x) = 0 That implies ν( f ) = 0. Consider now ϕ a smooth function in [-L, L] × R × [-Y,Y] with compact support. If we take f = -Aϕ, f (x, y,Y ) = -B + ϕ, f (x, y, -Y ) = -B -ϕ,
then ϕ is solution of (5) for this f . From Theorem 7..1, we have

L -L ∞ -∞ Y -Y 1 2 ϕ yy + 1 2 ϕ xx -αxϕ x -(β x + c 0 y + kz)ϕ y + yϕ z dν(x, y, z) + L -L ∞ 0 1 2 ϕ yy + 1 2 ϕ xx -αxϕ x -(β x + c 0 y + kY )ϕ y dν(x, y,Y ) + L -L 0 -∞ 1 2 ϕ yy + 1 2 ϕ xx -αxϕ x -(β x + c 0 y -kY )ϕ y dν(x, y, -Y ) = 0.
If ν has a density m, then we deduce that

α ∂ ∂ x [xm] + ∂ ∂ y [(β x + c 0 y + kz)m] -y ∂ m ∂ z + 1 2 ∂ 2 m ∂ x 2 + 1 2 ∂ 2 m ∂ y 2 = 0 in (0, L) × R × (-Y,Y ) (7..7)
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- L -L +∞ -∞ ym(x, y,Y )ϕ(x, y,Y )dxdy + L 0 +∞ -∞ ym(x, y, -Y )ϕ(x, y, -Y )dxdy + L -L ∞ -∞ Y -Y m(x, y, z) 1 2 ϕ yy + 1 2 ϕ xx -αxϕ x -(β x + c 0 y + kz)ϕ y + yϕ z dxdydz = 0
and comparing with (7..7)

- L -L 0 -∞ ym(x, y,Y )ϕ(x, y,Y )dxdy + L 0 +∞ 0 ym(x, y, -Y )ϕ(x, y, -Y )dxdy - L -L ∞ 0 m(x, y,Y ) 1 2 ϕ yy + 1 2 ϕ xx -αxϕ x -(β x + c 0 y + kY )ϕ y + yϕ dxdy - L -L 0 -∞ m(x, y, -Y ) 1 2 ϕ yy + 1 2 ϕ xx -αxϕ x -(β x + c 0 y -kY )ϕ y -yϕ dxdy = 0 we finally deduce ym + ∂ ∂ x [xm] + ∂ ∂ y [(β x + c 0 y + kY )m] + 1 2 ∂ 2 m ∂ x 2 + 1 2 ∂ 2 m ∂ y 2 = 0, on O + -ym + ∂ ∂ x [xm] + ∂ ∂ y [(β x + c 0 y -kY )m] + 1 2 ∂ 2 m ∂ x 2 + 1 2 ∂ 2 m ∂ y 2 = 0, on O - m = 0, on (-L, L) × (-∞, 0) × {Y} ∪ (-L, L) × (0, ∞) × {-Y}
The proof of the main result is complete. 

Appendix

(u -γ) + (x, ± ȳ1 , z) = 0 if x ∈ (-L, L), z ∈ (-Y,Y ) (u -γ) + (x, y, ±Y ) = 0 if x ∈ (-L, L), 0 < ±y < ȳ1 and (u + γ) -(x, ± ȳ1 , z) = 0 if x ∈ (-L, L), z ∈ (-Y,Y ) (u + γ) -(x, y, ±Y ) = 0 if x ∈ (-L, L), 0 < ±y < ȳ1 . Choose v = u -(u -γ) + ∈ K and we obtain -a(u, (u -γ) + ) -λ (u, (u -γ) + ) -λ (w, (u -γ) + ) a(u, (u -γ) + ) + λ (u, (u -γ) + ) λ (w, (u -γ) + ).
Switching the first argument by (u -γ) in the previous inequality, we obtain

a((u -γ) + , (u -γ) + ) + λ |(u -γ) + | 2 L 2 λ (w -γ, (u -γ) + )
and w γ implies (u -γ) + = 0. Taking v = u + (u + γ) -similar arguments yields (u + γ) -= 0. Proof of Lemma 2..2. We have the following expressions,

a(η ε , η ε ) = ∆ 1 ε 2 (η ε z ) 2 + 1 2 (η ε y ) 2 + 1 2 (η ε x ) 2 + (β x + kz + c 0 y)η ε η ε y -yη ε η ε z + αxη ε η ε x and a(η ε , u 0 ) = ∆ 1 ε 2 η ε z u 0z + 1 2 η ε y u 0y + 1 2 η ε x u 0x + (β x + kz + c 0 y)u 0 η ε y -yu 0 η ε z + αxu 0 η ε x . Inequality a(η ε , η ε ) a(η ε , u 0 ) means ε 2 ∆ 1 (η ε z ) 2 + 1 2 ∆ 1 (η ε x ) 2 + 1 2 ∆ 1 (η ε y ) 2 ε 2 ∆ 1 η ε z u 0z + 1 2 ∆ 1 η ε y u 0y - ∆ 1 (β x + c 0 y + kz)η ε η ε y + 1 2 ∆ 1 (β x + c 0 y + kz)u 0 η ε y + 1 2 ∆ 1 η ε x u 0x + ∆ 1 αxη ε η ε x - ∆ 1 αxu 0 η ε x + ∆ 1 yη ε η ε z - ∆ 1 yu 0 η ε z
We apply Cauchy-Schwartz inequality to the first two terms, then we apply Green formula to the last one and we get

ε 2 ∆ 1 (η ε z ) 2 + 1 2 ∆ 1 (η ε x ) 2 + 1 2 ∆ 1 (η ε y ) 2 ε ∆ 1 (η ε z ) 2 1 2 ( ∆ 1 (u ε 0z ) 2 ) 1 2 + ∆ 1 (η ε y ) 2 { 1 2 ( ∆ 1 (u ε 0y ) 2 ) 1 2 + φ ( ∆ 1 (β x + c 0 y + kz) 2 ) 1 2 } + ∆ 1 (η ε x ) 2 { 1 2 ( ∆ 1 (u ε 0x ) 2 ) 1 2 + α φ ( ∆ 1 x 2 ) 1 2 + α( ∆ 1 x 2 u 0 ) 1 2 } + φ 2 L -L ȳ1 -ȳ1 |y|dxdy + φ ( ∆ 1 |yu 0z |) + L -L ȳ1 -ȳ1 |y||u 0 (x, y,Y )| + L -L ȳ1 -ȳ1 |y||u 0 (x, y, -Y )|
with c 1 ,c 2 ,c 3 and c 4 are positive constant, we get

√ εη ε z 2 L 2 + η ε y 2 L 2 + η ε x 2 L 2 √ εc 1 √ εη ε z L 2 + c 2 η ε y L 2 + c 3 η ε x L 2 + c 4 .
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Proof of Lemma 2..3. We have -(2p -1) Testing (Aη k ) with η k z y 2p-1 θ 2q , we deduce 

∆ 1 (η k y θ )(η k z π)y p-2 θ q-1 -2q ∆ 1 (η k y θ )(η k z π)y p-1 θ q-2 θ ′ , ∆ 1 η k xx η k z y 2p-1 θ 2q = - 1 2 ∆ 1 ((η k x ) 2 ) z y 2p-1 θ 2q = - 1 
+(p - 1 2 ) ∆ 1 (η k y θ )(η k z π)y p-2 θ q-1 + q ∆ 1 (η k y θ )(η k z π)y p-1 θ q-2 θ ′ + ∆ 1 (c 0 y + kz + β x)(η k y θ )(η k z π)y p-1 θ q-1 + ∆ 1 αx(η k x θ )(η k z π)y p-1 θ q .
Proof of Lemma 2..4.

1.

With

f (η k , η k y ) := -η k ( π ′′ 2 -(c 0 y + kz + αx)π ′ ) -η k y π ′ ,
we have ∀ψ ∈ H 1 (∆ 1 ), ψ(x, y, ±Y ) = 0 and ψ(x, ± ȳ1 , z) = 0,

1 2 ∆ 1 v k y ψ y + 1 2 ∆ 1 v k x ψ x + ∆ 1 αxv k x + (β x + c 0 y + kz)v k y -yv k z ψ = ∆ 1 f (η k , η k y )ψ.
Now, when k goes to +∞, we get

1 2 ∆ 1 v y ψ y + 1 2 ∆ 1 v x ψ x + ∆ 1 αxv x + (β x + c 0 y + kz)v y -yv z ψ = ∆ 1 f (η, η y )ψ.
We deduce that in H -1 (∆ 1 ) we firstly have -Av = f (η, η y ) which is equivalent to πAη = 0 and secondly that choice of test function implies πη x (±L, y, z) = 0 in (H First, we study convergence of the sequence χ ±,k and we deduce PDEs satisfied by lim k→0 χ ±,k . In particular (8..1) implies χ +,k → χ + in L 2 ((-L, L) × (0, ȳ1 )) weakly, χ -,k → χ -in L 2 ((-L, L) × (-ȳ1 , 0)) weakly.

and equalities (8..2), (8..3) imply χ +,k π H 1 C and χ +,k π → χ + π in H 1 ((-L, L) × (0, ȳ1 )) weakly, χ -,k π H 1 C and χ -,k π → χ -π in H 1 ((-L, L) × (-ȳ1 , 0)) weakly.

Denote ξ ±,k := χ ±,k y 2 and g(χ +,k , χ +,k y ) := -χ +,k {1 -2y(αx + c 0 y + kY )} -2yχ +,k y . From (8..2), we have B Y ξ +,k = g(χ +,k , χ +,k y ) in (-L, L) × (-ȳ1 , ȳ1 ), in H -1 ((-L, L) × (0, ȳ1 )).

Degenerate Dirichlet problems Related to the Ergodic property of the elasto-plastic oscillator excited by a filtered white noise43 of 46

The operator B + is strictly elliptic then ξ +,k ∈ H 2 ((-L, L)×(0, ȳ1 )). We have ξ +,k x (±L, y) = 0 in (H 1 2 (0, ȳ1 )) ′ . As ξ +,k ∈ H 2 (∆ 1 ) and πB + χ +,k = 0, we have -B + ξ +,k = g(χ +,k , χ +,k y ) in a strong sense

We obtain that ∀ψ ∈ H 1 ((-L, L) × (0, ȳ1 )), ψ(x, 0) = ψ(x, ȳ1 ) = 0, We deduce that in H -1 ((-L, L) × (0, ȳ1 )) we have -B + ξ + = g(χ + , χ + y ) which is equivalent to y 2 B + χ + = 0 and that choice of test function implies y 2 χ +

x (±L, y) = 0 in (H 1 2 ((0, ȳ1 ))) ′ . (b) Firstly, γ(πη k ) → π(χ + + β + ) in H 1 ((-L, L) × (0, ȳ1 )) weakly. Secondly, weak convergence of πη k → πη in H 1 (∆ 1 ) implies weak convergence of γ(πη k ) → γ(πη) in H 1 2 (∂ ∆ 1 ). By uniqueness of the limit, we have γ(πη) = π(χ + + β + ). 

Using

  -αxu x -(β x + c 0 y + kz)u y + yu z , -αxu x -(β x + c 0 y + kY )u y , B -u := 1 2 u yy + 1 2 u xx -αxu x -(β x + c 0 y -kY )u y .

Notation 1.. 2 O

 2 := (-L, L) × R × (-Y,Y ); O + := (-L, L) × (0, +∞) × {Y}; O -:= (-L, L) × (-∞, 0) × {-Y}.As the main result of the paper we prove the following: THEOREM 1..3 There exists one and only one probability measure ν on O ∪ O -∪ O + satisfying O Aφ dν + O - Bφ dν + O + B + φ dν = 0, ∀φ smooth. Degenerate Dirichlet problems Related to the Ergodic property of the elasto-plastic oscillator excited by a filtered white noise3 of 46 Moreover, ν has a probability density function m such that O m(x, y, z)dxdydz + O + m(x, y,Y )dxdy + O - m(x, y, -Y )dxdy = 1, where

  Since η( ȳ1 ,Y ) = φ (Y ) and η(-ȳ1 , -Y ) = 0, there are semi-explicit solutions by solving ordinary differential equations for η on the boundary at z = Y , and z = -Y respectively, η(y,Y ) = η Y I(y, ȳ1 ) + φ (Y )I(0, y), 0 < y ȳ1 ; η(y, -Y ) = η -Y I(-ȳ1 , y), -ȳ1 y < 0,

3. 1 .

 1 Some background on the exterior Dirichlet problem in the 1d case Notation 3..1 D d := (-∞,ȳ) × (-Y,Y ), D u := ( ȳ, +∞) × (-Y,Y ), D := D d ∪ D u , D + := ( ȳ, +∞) × {Y }, D -:= (-∞,ȳ) × {-Y } and D ε := D ∩ {|y| > ȳ + ε}, ε > 0.

3. 2 .

 2 The exterior Dirichlet problem in the 2d case Notation 3..2

PROPOSITION 3 .. 6 [ 4 .

 364 Local regularity of the exterior Dirichlet problem on the boundary z= Y ] We have ∀δ > 0, ζ ∈ H 2 (∆ + (δ )); ζ H 2 (∆ + (δ )) M 3, φ . (3..24) Similar results hold for negative values of y. Proofs of Proposition 3..5 and Proposition 3..6 rely on similar estimates related to the local regularity of the interior Dirichlet problem. Degenerate Dirichlet problems Related to the Ergodic property of the elasto-plastic oscillator excited by a filtered white noise27 of 46 The ergodic operator P Notation 4..1

7. The operator T and the invariant measure ν 7 . 1 .

 71 Construction of the operator TConsider f ∈ L ∞ (O), following the same procedure of the 1d case, we first solve the interior nonhomogeneous Dirichlet problem for χ with f at the right hand side, then we solve the exterior nonhomogeneous Dirichlet problem for ξ with f at the right hand side and χ as a boundary condition. Also, for any p1 ∈ Γ1 , we define the operator T f ( p1 ) := ξ ( p1 ).

1 is the solution of Problem 5 .

 15 Now, suppose that Problem 5 has a unique solution u. Considering the same sequences χk and ξ k , we have that uχk is a solution of the interior homogeneous Dirichlet problem with (uχk )| Γ1 = (uξ k-1 )| Γ1 and u -ξ k is a solution of the exterior homogeneous Dirichlet problem

) 2 )) 2 ) 2

 222 z y 2p-1 θ 2q -(2p -1) (x, y,Y )y 2p-1 θ 2q + (x, y, -Y )y 2p-1 θ 2q

) 2 ) 2 1 ( 1 ( 1 ∆ 1 αxη k x η k z y 2p-1 θ 2q = ∆ 1 αx

 2211111 (x, y,Y )y 2p-1 θ 2q + (x, y, -Y )y 2p-1 θ 2q and ∆ c 0 y + kz + β x)η k y η k z y 2p-1 θ 2q = ∆ c 0 y + kz + β x)(η k y θ )(η k z π)y p-1 θ q-(η k x θ )(η k z π)y p-1 θ q .

  y ) 2 (x, y,Y )y 2p-1 θ 2q - y ) 2 (x, y, -Y )y 2p-1 θ 2q x ) 2 (x, y,Y )y 2p-1 θ 2q - x ) 2 (x, y, -Y )y 2p-1 θ 2q

1 2 (-

 2 (-L, L) × (-ȳ1 , ȳ1 )) ′ .2. (a)We know that πη k ∈ H 1 (∆ 1 ), its trace is well defined and satisfies,γ(πη k )(x, y,Y ) = π(χ +,k + β k,+ ); y > 0 γ(πη k )(x, y, -Y ) = π χ -,k ; y < 0 with χ ±,k L ∞ φ L ∞ (8..1)and χ -,k , χ +,k satisfy respectively (8..2) and (8..3) x ψ x + χ +,k y ψ y ) + (αxχ +,k x + (β x + c 0 y + kY )χ +,k y )ψ}dxdy = 0, ∀ψ ∈ H 1 ((-L, L) × (0, ȳ1 )) with ψ(x, 0) = ψ(x, ȳ1 ) ȳ1 { 1 2 (χ -,k x ψ x + χ -,k y ψ y ) + (αxχ -,k x + (β x + c 0 y -kY )χ -,k y )ψ}dxdy = 0,∀ψ ∈ H 1 ((-L, L) × (-ȳ1 , 0)) with ψ(x, 0) = ψ(x, -ȳ1 ) = 0. (8..3)

  x ψ x + ξ +,k y ψ y ) + αxξ +,k x + (β x + c 0 y + kY )ξ +,k yyξ +,k k , χ k y )ψ.Now, when k goes to 0, we haveL x ψ x + ξ + y ψ y ) + αxξ + x + (β x + c 0 y + kY )ξ + yyξ + z ψ = , χ y )ψ.

  αx(t)dt + dw(t) + 1 {x(t)=-L} dξ 1 t -1 {x(t)=L} dξ 2 t , dy(t) = -(β x(t) + c 0 y(t) + kz(t))dt + d w(t),

	(dz(t) -y(t)dt)(ζ -z(t)) 0,	(1..2)
	|ζ | Y,	
	|z(t)| Y.	
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	Notation 2..2

: Proofs of lemmas 2..1,2..2,2..3,2..4 Proof

  

of Lemma 2..1. Denote γ = φ L ∞ . Notice we have

  Green formula ∀ψ ∈ H 1 0 (∆ 1 ) ∩ H 2 (∆ 1 ), LEMMA 8..1 We have η xx π 2 ∈ L 2 (∆ 1 ); η xy π 2 ∈ L 2 (∆ 1 ); η yy π 2 ∈ L 2 (∆ 1 )Proof. Denote w := v x . Deriving equation (2..28) with respect to x, we obtain equality (8..4), Λ (x, y, z)w y + αxw xyw z = -β v y -αv x + ρ 1 η x + (ρ 1 ) x η + ρ 2 (y)η xy (8..4)

						∆ 1	η k ψ yy +	∆ 1	η k y ψ y =
						∆ 1	ηψ yy +	∆ 1	η y ψ y =
	-w yy + Testing equality (8..4) with π 2 , we obtain 1 2 w xx -1 2					
	1 2 ∆ 1	(w x π) 2 +	1 2 ∆ 1	(w y π) 2 = -	∆ 1	w y ππ ′ w -	∆ 1	Λ (x, y, z)w y wπ 2 -	∆ 1	αxw x wπ 2
				+	∆ 1	yw z wπ 2 -β	∆ 1	v y wπ 2 -α	∆ 1	v x wπ 2 +	∆ 1	ρ 1 η x wπ 2
				+	∆ 1	(ρ 1 ) x ηwπ 2 +	∆ 1	η xy ρ 2 (y)wπ 2

∂ ∆ 1 φ k ψ y dσ . Now, when k goes to ∞, we obtain ∀ψ ∈ H 1 0 (∆ 1 ) ∩ H 2 (∆ 1 ), ∂ ∆ 1 φ ψ y dσ .

* This research was partially supported by a grant from CEA, Commissariat à l'énergie atomique and by the National Science Foundation under grant [DMS-0705247] † This research in the paper was supported by WCU (World Class University) program through the National Research Foundation of Korea funded by the Ministry of Education, Science and Technology [R31 -20007]. c Institute of Mathematics and its Applications 2011; all rights reserved.

By construction, the operator P is the transition probability associated to the Markov chain {(x( τ1,k ), y( τ1,k ), z( τ1,k ))} k 0 where τ1,0 = 0 and τk+1 := inf{t > τ1,k , |y(t)| = ȳ}; τ1,k+1 := inf{t > τk+1 , |y(t)| = ȳ1 }.

Note that τk+1 = τ • θ τ1,k and τ1,k+1 = τ1 • θ τk+1 where θ t is the shift operator. Proof. A Borel subset of Γ1 can be written as B := B -× {y 1 } ∪ B + × {-y 1 } with B + , B -are Borel subsets of (-L, L) × (-Y,Y ). We have

Consider φ + = 1 B + and φ -= 1 B -in the interior Dirichlet problem, then

We will prove the ergodic property of the operator P in the four following steps.

Doob's criterion from (3).

The operateur P is ergodic if we prove the following Doob's criterion sup λ p, p(B) < 1, ∀p, p ∈ Γ1 and ∀B. 

Denote η k and ζ k the solution of the interior and exterior Dirichlet problems with φ + = 1 B +k and φ -= 1 B -k , where B +k and B -k are deduced from B k as previously. We have

Now, extracting a subsequence of p k and pk , we deduce p k → p ⋆ and pk → p⋆ in Γ1 .
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From (3..22), we know that

and

Proof. We must have lim

Contradiction.

Suppose p ⋆ = (x ⋆ , ȳ1 , z ⋆ ) and set

Maximum principle for parabolic operator applied to ζ * implies p ⋆ ∈ Ξ 1 ∪ Ξ 2 . Then p ⋆ cannot be in Ξ 1 because of the Neuman condition and p ⋆ cannot be in Ξ 2 because of the boundary condition z = Y . A similar argument yields a contradiction with p ⋆ = (x ⋆ , -ȳ1 , z ⋆ ).

Conclusion.

From ergodic theory, there exists a unique probability mesure γ ⋆ = (γ - ⋆ , γ + ⋆ ) on Γ1 and K, ρ > 0 such that ∀n 0, P n φ -

It is easy to verify that v xx π, v xy π ∈ L 2 (∆ 1 ).

Denote w := v y . Deriving equation (2..28), with respect to x, we obtain equality (8..5),

Then, we test equality (8..5) with π 2 w, we obtain

Again, it is easy to verify that v yx π, v yy π ∈ L 2 (∆ 1 ).

LEMMA 8..2 We have

Proof.
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We test equality (8..4) with y 2p-1 π 2q w z , we obtain

∆ 1

(w y π)(w z y p π q )(y p-2 π q-1 ) + q ∆ 1 (w y π)(w z y p π q )(y p-1 π q-1 π ′ ).

We have ∆ 1

(y p π q w z ) 2 1 4 {w 2 x (x, y,Y ) + w 2 y (x, y,Y )}y 2p-1 π 2q dxdy

∆ 1

(w y π)(w z y p π q )(y p-2 π q-1 ) + q ∆ 1 (w y π)(w z y p π q )(y p-1 π q-2 π ′ )

For p 2 and q 3, some calculations give v xz y 2 π 3 ∈ L 2 (∆ 1 ).

∆ 1

( wy π)( wz y p π q )(y p-2 π q-1 ) + q ∆ 1 ( wy π)( wz y p π q )(y p-1 π q-2 π ′ ) + ∆ 1 c 0 w(y p π q wz )y p-1 π q + ∆ 1 Λ (x, y, z)( wy π)( wz y p π q )y p-1 π q-1 + ∆ 1 αx( wx π)( wz y p π q )y p-1 π q-1 -∆ 1 v z (y p π q wz )y p-1 π q - ∆ 1 ρ 1 (v y -ηπ ′ )(y p π q wz )y p-1 π q-1 -∆ 1

(ρ 1 ) y η(y p π q wz )y p-1 π q -∆ 1

(ρ 1 ) x η(y p π q wz )y p-1 π q .

-∆ 1 ρ 2 (y)η yy π 2 (y p π q wz )y p-1 π q-2 For p 2 and q 2, some calculations gives v yz y 2 π 2 ∈ L 2 (∆ 1 ).

LEMMA 8..3 For p and q large enough, we have η xyz y p π q ∈ L 2 (∆ 1 ); η yyz y p π q ∈ L 2 (∆ 1 ); ρ(z)η xxz y p π q ∈ L 2 (∆ 1 ); ρ(z)η zz y p π q ∈ L 2 (∆ 1 ).