
HAL Id: hal-00653105
https://hal.science/hal-00653105v1

Submitted on 17 Dec 2011

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A multi-Gaussian quadrature method of moments for
simulating high Stokes number turbulent two-phase

flows
Aymeric Vié, Christophe Chalons, Rodney Fox, Frédérique Laurent, Marc

Massot

To cite this version:
Aymeric Vié, Christophe Chalons, Rodney Fox, Frédérique Laurent, Marc Massot. A multi-Gaussian
quadrature method of moments for simulating high Stokes number turbulent two-phase flows. Annual
Research Brief of the Center for Turbulence Research - Stanford University, Center for Turbulence
Research - Stanford University, pp.309-320, 2012. �hal-00653105�

https://hal.science/hal-00653105v1
https://hal.archives-ouvertes.fr


Center for Turbulence Research
Annual Research Briefs 2011

309

A multi-Gaussian quadrature method of moments
for simulating high Stokes number turbulent

two-phase flows

By A. Vié, C. Chalons, R. O. Fox, F. Laurent AND M. Massot

1. Motivation and objectives

With the great increase in computational resources, Large Eddy Simulation (LES) of
industrial configurations is now an efficient and tractable tool. Numerous applications
involve a liquid or solid disperse phase carried by a gaseous flow field (e.g., fuel injection
in automotive or aeronautical engines, fluidized beds, and alumina particles in rocket
boosters). To simulate this kind of flow, one may resort to a Number Density Func-
tion (NDF), which satisfies a kinetic equation. Solving for this NDF can make use of
Lagrangian Monte-Carlo methods, but such approaches are expensive as the amount of
numerical particles needed may be large. Moreover, such methods are not well adapted to
high-performance computing because of the intrinsic inhomogeneity of the NDF in most
of the applications of interest. To overcome these drawbacks, one can use Eulerian meth-
ods, which solve for the moments of the NDF using an Eulerian system of conservation
laws.

In the context of Direct Numerical Simulation (DNS), Février et al. (2005) proposed
the Mesoscopic Eulerian Formalism (MEF), which is a modeling framework to account
for the effect of turbulence on a disperse phase. Basically, they introduced the statisti-
cal decomposition of the motion of particles into correlated and uncorrelated parts, the
former of which is common between all particles at a specific location, the latter being
induced by the history of each particle which crosses different vortices before reaching
this specific location. Such a description is obtained by a statistical average over an en-
semble of realization of the disperse phase conditioned by a realization of the gas phase.
They also propose to model the effect of such a decomposition by solving for the Random
Uncorrelated Energy (RUE), which is the energy of this uncorrelated motion. Closures
for the stresses induced by the uncorrelated motion on the moments were initially pro-
posed by Kaufmann et al. (2008), and recently Masi et al. (2011) have introduced new
closures that rely on a priori study of the structure of these stresses. This model is able
to simulate configurations up to large Stokes numbers related to the small eddies of tur-
bulence (Kaufmann et al. 2008; Masi et al. 2011; Dombard 2011) but at moderate Stokes
number based on the large coherent vortices of the flow. However, at high Stokes number,
the statistical description of the trajectory crossings that enables the MEF will not be
adapted, as the correlated part of the motion will also encounter deterministic trajectory
crossings which may not change from one realization of the disperse phase to another.

To account for such Particle Trajectory Crossings (PTC) in the correlated motion of
the spray, quadrature approaches can be used (Desjardin et al. 2008; Kah et al. 2010;
Yuan & Fox 2011; Chalons et al. 2011). In such an approach, the velocity distribution
is assumed to be a sum of Dirac δ-functions in velocity phase space. This way, we can
have locally more than one velocity, which allows PTC. This type of method has proven
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capable of describing trajectory crossings, for example in the academic case of Taylor-
Green vortices (Kah et al. 2010; Yuan & Fox 2011). A drawback to this type of method
is that it uses several moments. In 3D, 32 moments are needed, whereas 5 moments are
used for the MEF only. But in fact quadrature approaches directly solve for the stresses
that are modeled in the MEF. Choosing between MEF and quadrature approaches is
then determined by the problem needed to be solved. For moderate Stokes flows, the
MEF will be sufficient, but for high Stokes flows, quadrature approaches will be required
in order to properly account for spray segregation and dynamics.

In the context of LES, the disperse phase will be influenced by the subgrid scales of
the gas flow, leading to an additional velocity dispersion around the mean velocity of the
particles. The LES extension of the MEF was already proposed in Moreau et al. (2010),
and has even been applied in complex configurations (Riber et al. 2009; Martinez et al.
2009). For quadrature approaches, the first step of such an extension was proposed in
Chalons et al. 2010, by means of a multi-Gaussian quadrature (MG). This method can
account for PTC because of its multiple quadrature points in velocity phase space, and
for subgrid scale effects by means of a Gaussian distribution around each quadrature
point. Furthermore, the authors remark that such a system exhibits hyperbolic behavior
in Riemann problems, i.e., there is no formation of δ-shocks due to PTC between more
than two trajectories, which is not the case for Dirac δ-functions quadratures. Note
that such a model can degenerate to a mono-Gaussian distribution for one quadrature
point, and thus is expected to solve for a description of the disperse phase which may
be equivalent to the MEF. Besides, it can also naturally degenerate to Dirac δ-functions
quadratures in regions of very low subgrid scale agitation, a very nice property of this
method.

Hence, this work aims to apply this method to a fully 2-D case, to demonstrate its
efficiency in avoiding δ-shocks in a fully 2-D context, and to capture additional dynamics
as compared to standard quadrature approaches. We begin by introducing the kinetic
equation and its related moments problem. Then we will describe the 2-D multi-Gaussian
quadrature which is used to close the moments problem, and the related algorithm used
for moments evolution. Finally, the full method will be applied on 2-D Taylor-Green
Vortices, and will be compared to CQMOM and Lagrangian results.

2. The moments problem

In this work, we aim at solving the NDF f(t, x, v) for x = (x, y)t and v = (u, v)t using
the following 2-D kinetic equation:

∂tf + v · (∇xf) + ∇v · Ff = 0, t > 0, x ∈ R
2, v ∈ R

2, (2.1)

where ∇x = (∂/∂x, ∂/∂y)t, ∇v = (∂/∂u, ∂/∂v)t, F = (Fu, Fv)
t is the acceleration due to

drag force. The exact solution to this problem is given by f(t, x, v) = f(0, x − vt, v) =
f0(x − vt, v). As we consider Stokes drag, the acceleration due to drag force is then

Fu =
ug − u

τp
, Fv =

vg − v

τp
(2.2)

where vg = (ug, vg)
t is the gas velocity. We thus define the bivariate moments

Mi,j(t, x) =

∫

v

uivjf(t, x, v)dv, i, j = 0, . . . , N, N ∈ N.
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The associated governing equations are easily obtained from (2.1):

∂tMi,j + ∂xMi+1,j + ∂yMi,j+1 =
iMi−1,jug + jMi,j−1vg − (i + j)Mi,j

τp
, i, j ≥ 0. (2.3)

The main problem is that for a given set of moments, there are always some fluxes that
are not defined, so that we need a closure for these fluxes. To solve this equation, we
propose to use kinetic methods in order to ensure the realizability of the moment set.
The main building block of this type of method is reconstruction of the NDF at the
kinetic level starting from a finite moment set. The number of moments that we need is
then imposed by the proposed reconstruction. Relying on this reconstruction in order to
compute unknown fluxes, we thus define a kinetic finite volume scheme for convection. For
the drag force source terms, all moments are already known in the simplified framework of
the present study. Nevertheless, for the sake of generality in treating arbitrary drag force
laws, we use a complementary quadrature dedicated to multi-Gaussian distributions.

3. 2-D kinetic model, multi-Gaussian quadrature

Here we propose to use a multi-Gaussian quadrature for reconstruction of the NDF.
This choice stems from the need to be able to account for PTC, which is done by using
multiple quadrature points, and from the fact that we aim at LES, so we account for
a velocity dispersion around each quadrature point. Furthermore, we expect that the
resulting system will be hyperbolic, unlike the Dirac δ-functions quadrature which is
only weakly hyperbolic, and can generate δ-shock where PTC occur between more than
two trajectories (Chalons et al. 2011). The simplest 2-D multi-Gaussian distribution
function is defined by

fG(v) =
4

∑

α=1

ρα
√

2π|Σ|
exp

(

−
1

2
(v − vα)tΣ−1(v − vα)

)

, Σ =

[

σ11 σ12

σ12 σ22

]

, (3.1)

where Σ is the covariance matrix. The same covariance matrix is used for all quadrature
points†. In (3.1) there are 15 parameters: (ρα, uα, vα, α = 1, . . . , 4) and (σ11, σ12, σ22). So
we need to solve for 15 moments which are chosen to be the 15 lowest order bi-variate
moments:













M0,0 M0,1 M0,2 M0,3 M0,4

M1,0 M1,1 M1,2 M1,3

M2,0 M2,1 M2,2

M3,0 M3,1

M4,0













. (3.2)

These parameters must be found by solving a highly nonlinear system. To reduce the
complexity of such a problem, we propose to use the main idea of the Conditional Quadra-
ture Method of Moments (CQMOM) of Yuan & Fox (2011). In this approach, the authors
aim at defining a quadrature approximation of the moment problem by means of a sum
of Dirac δ-functions:

fcqmom =
2

∑

k=1

2
∑

l=1

ρkρk,lδ(u − uk)δ(v − vk,l). (3.3)

† This choice allows a simple and fully analytical inversion algorithm. Furthermore, this ve-
locity dispersion is due to local subgrid mixing, which tends to homogeneity, so that equal Σ
for each Gaussian can be an accurate approximation.
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Using such a reconstruction is useful, because pure x moments depend only on ρk and
uk. Four parameters of the reconstruction are defined using a 1-D quadrature algorithm
on pure x moments. Furthermore, using ρk and uk, the authors demonstrate that it is
possible to construct conditional moments for each uk for which the 1-D quadrature
algorithm can be applied to define ρk,l and vk,l independently for each k. Using a condi-
tional approach allows the full non-linear problem of dimension 12 to be reduced to three
simpler problems of dimension 4, for which several studies propose accurate and efficient
algorithms (Yuan & Fox 2011, Chalons et al. 2011). One problem in such a method is that
we cannot control all the moment set, as we have only 10 parameters and 12 moments
to control. The controlled moments are determined by the conditioning direction, and
this choice depends on the physics we want to solve for. For convection, the conditioning
direction is the transport direction. For other processes, the evolution of moments must
be calculated for every permutation of conditioning direction; the total evolution is thus
the mean of the evolution of each permutation, resulting in an algorithm which does not
have a preferential direction.

Using this idea for the 2-D multi-Gaussian quadrature, the proposed reconstruction is
then

fG(v) =

2
∑

α=1

2
∑

β=1

ραρα,β
√

2π|Σ|
exp

(

−
1

2
(v − vα,β)tΣ−1(v − vα,β)

)

, (3.4)

where vα,β = (uα, vα,β)t. The full algorithm is then decomposed into two parts. In
the following, we detail the 1-D algorithm for the first quadrature in the conditioning
direction. Then we will give the structure of the iterative algorithm for the quadrature
in the other direction.

Considering the five pure x moments (M0,0, M1,0, M2,0, M3,0, M4,0)
t, the 1-D algorithm

proposed in Chalons et al. (2010) is used. For the NDF defined in Eq. 3.4, these moments
are























MG
0,0 = ρ1 + ρ2,

MG
1,0 = ρ1u1 + ρ2u2,

MG
2,0 = ρ1(σ

2
11 + u2

1) + ρ2(σ
2
11 + u2

2),
MG

3,0 = ρ1u1(3σ2
11 + u2

1) + ρ2u2(3σ2
11 + u2

2),
MG

4,0 = ρ1u
2
1(6σ2

11 + u2
1) + ρ2u

2
2(6σ2

11 + u2
2) + 3σ4

11(ρ1 + ρ2),

where the five unknowns ρ1, ρ2, u1, u2 and σ2
11 are found by solving the nonlinear system

Mi,0 = MG
i,0, i = 0, . . . , 4. It is clearly equivalent to solving the system























M0,0 = ρ1 + ρ2,
M1,0 = ρ1u1 + ρ2u2,
M2,0 − σ2

11M0 = ρ1u
2
1 + ρ2u

2
2,

M3,0 − 3σ2
11M1 = ρ1u

3
1 + ρ2u

3
2,

M4,0 − 6σ2
11M2 + 3σ4

11M0 = ρ1u
4
1 + ρ2u

4
2.

(3.5)

For M = (M0,0, M1,0, M2,0, M3,0, M4,0)
t such that M0,0 > 0, let us define

ex =
M0,0M2,0 − M2

1,0

M2
0,0

, qx =
(M3,0M

2
0,0 − M3

1,0) − 3M1,0(M0,0M2,0 − M2
1,0)

M3
0,0

,

and

ηx =
−3M4

1,0 + M4,0M
3
0,0 − 4M2

0,0M1,0M3,0 + 6M0,0M
2
1,0M2,0

M4
0,0

.
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System (3.5) is well-defined on the phase space Ω given by Chalons et al. 2010:

Ω = { M = (M0,0, M1,0, M2,0, M3,0, M4,0)
t,

M0,0 > 0, ex > 0, ηx > e2
x +

q2
x

ex
, and ηx ≤ 3e2

x if qx = 0}.

Moreover, σ2 is given by the unique real root of the third-order polynomial

{

P(σ0) = 2σ3
0 + (ηx − 3e2

x)σ0 + q2
x,

σ0 = σ2
11 − ex.

The three roots of P(σ0) can be found analytically (one is real, and two are complex
conjugates). In the numerical algorithm for moment inversion, the three roots are found
from the analytical expressions and the real root is determined by checking the magnitude
of the imaginary parts. This method was found to be rapid and robust for all realizable
values of e and q. When M0 > 0, the 1-D moment-inversion algorithm then consists of
the following three steps:

(a) Given moments M in Ω, compute ex, qx and ηx.
(b) Find real root of P(σ0), and σ2

11 = ex + σ0.
(c) Solve (3.5) according to Desjardin et al. (2008) to find ρ1, ρ2, u1, u2. In the case

where σ2
11 = ex, we set ρ2 = u2 = 0 and ρ1 = M0,0, u1 = M1,0/M0,0.When M0,0 = 0,

we set ρ1 = ρ2 = 0, and without loss of generality, σ11 = 0 and u1 = u2 = 0. In the
case u1 = u2, we set ρ1 = ρ2.

Now we need to determine the eight remaining parameters ρk,l, vk,l, σ22 and σ12. But
contrary to the CQMOM, for now we are not able to use a simple method that will use
the 1-D algorithm. So here we use a bounded secant iterative method:

(a) Given moments (M0,0, M0,1, M0,2, M0,3, M0,4)
t, compute ev and qv.

(b) Find real root of P(σ0), and initial guess σ2
22 = ev + σ0.

(c) Using M2,2, σ11, and σ22, compute σ12.
(d) Using CQMOM, construct a 2-D quadrature conditioned on u.
(e) Check whether M0,4 = MG

0,4. If not, update guess for σ22 and return to step (c)
until convergence is achieved.

So far, such an algorithm has been shown to be reliable in most cases, but evaluation of
σ12 has proved to be difficult in some cases. For the rest of the paper, we have chosen to
set σ12 = 0, that is to include the whole of the covariance matrix (x, y) correlation into the
choice of the abscissas, in order to avoid any difficulty in cases where several values can
be obtained for σ12, and we are not able to choose them based on a rigorous/physical
argument. The results will prove to be accurate with this choice and we are in the
process of developing a new approach for the quadrature which should improve this
point dramatically (Chalons et al. 2012).

4. Moments evolution

In the following, we will describe how we are using the multi-Gaussian quadrature
detailed in the previous section to build realizable and efficient numerical methods in
order to account for drag force and convection. As we are using an operator splitting
drag force and convection in each direction are treated separately.
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4.1. Drag force

For pure drag, we want to solve the following equation:

∂tMi,j =
iMi−1,jug + jMi,j−1vg − (i + j)Mi,j

τp
, i, j ≥ 0. (4.1)

In this equation, all moments are known initially. An analytical derivation of the solution
of Eq. (4.1) is possible in the case of Stokes drag, and assuming a constant gas velocity
during the timestep. But to account for more complex physics (arbitrary drag laws,
two-way coupling...), a supplementary quadrature step, dedicated for the multi-Gaussian
distribution, is envisaged. Here, a 16-node quadrature is used†:

f(t, x, v) =
4

∑

α=1

4
∑

β=1

ρ∗αβ(t, x)δ (u − u∗

α(t, x)) δ
(

v − v∗αβ(t, x)
)

, (4.2)

defined using 48 moments found from the multi-Gaussian function in (3.1) [see Yuan &
Fox (2011) for details]. This projection evolves with respect to 2×16 decoupled ordinary
differential equations:

du∗

α

dt
= −

u∗

α − ug

τp
,

dv∗αβ

dt
= −

v∗αβ − vg

τp
, (4.3)

where (ug, vg) is the gas velocity vector and τp the relaxation time scale that can account
for Reynolds number effects. In the case of Stokes drag, this system is also analytically
solved, considering that τp and ug depend neither on velocity nor time‡:

u∗

α(t + ∆t, x) = u∗

α(t, x) exp

(

−
∆t

τp

)

+ ug(t, x)

(

1 − exp

(

−
∆t

τp

))

, (4.4)

v∗αβ(t + ∆t, x) = v∗αβ(t, x) exp

(

−
∆t

τp

)

+ vg(t, x)

(

1 − exp

(

−
∆t

τp

))

. (4.5)

Finally, the updated quadrature is used to reconstruct the updated moments:

Mi,j(t + ∆t, x) =

4
∑

α=1

4
∑

β=1

ρ∗αβ(t, x)(u∗

αβ(t + ∆t, x))i(v∗αβ(t + ∆t, x))j . (4.6)

4.2. Kinetic-based Flux-Splitting Scheme

Here we propose a numerical scheme that makes use of the proposed reconstruction and
an upwind resolution of the fluxes. As we use a dimensional splitting for convection, we
derive the transport scheme for x direction only. The moment equations that we aim at
solving are then























∂tM0,0 + ∂xM1,0 = 0,
∂tM1,0 + ∂xM2,0 = 0,
∂tM0,1 + ∂xM1,1 = 0,
∂tM2,0 + ∂xM3,0 = 0,
∂tM1,1 + ∂xM2,1 = 0.

∂tM0,2 + ∂xM1,2 = 0,
∂tM3,0 + ∂xM4,0 = 0,
∂tM2,1 + ∂xM3,1 = 0,
∂tM1,2 + ∂xM2,2 = 0,
∂tM0,3 + ∂xM1,3 = 0,

∂tM4,0 + ∂xM5,0 = 0,
∂tM3,1 + ∂xM4,1 = 0,
∂tM2,2 + ∂xM3,2 = 0,

∂tM1,3 + ∂xM2,3 = 0,
∂tM0,4 + ∂xM1,4 = 0,

(4.7)

† As we expect that for one 2-D Gaussian distribution, 4 Dirac δ-functions are sufficient to
capture the velocity dispersion, 16 nodes are used for 4 Gaussian distributions.

‡ Practically, it is possible to account for coupled drag force and evaporation by solving for an
additional ODE for the droplet size, with the coupled system also having an analytical solution.
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Overlined moments are those we need to reconstruct using the MG quadrature. To de-
scribe the complexity of the convective fluxes, a kinetic scheme is proposed. First we
consider a finite-volume formulation (where c is the cell index):

M
n+1
c = M

n
c −

∆t

∆x

(

Fc+1/2 − Fc−1/2

)

. (4.8)

The fluxes are decomposed into positive and negative parts:

Fc+1/2 = F
+

c+1/2
+ F

−

c+1/2
. (4.9)

Positive and negative components are obtained by integrating the Gaussian quadrature
on R

+ or R
−:

(Fij)
+

c+1/2
=

∫

v

∫

∞

0

f(t, xc, v)ui+1vjdudv (4.10)

(Fij)
−

c+1/2
=

∫

v

∫ 0

−∞

f(t, xc+1, v)ui+1vjdudv. (4.11)

This scheme is first order. In order to better resolve the fluxes in the framework of really
multi-Gaussian distributions, a solution is proposed in Chalons et al. (2010). The idea
is to apply an additional 16-node CQMOM quadrature on the moments set as done for
drag force, by reconstructing 48 moments using the MG quadrature and the resulting set
of high-order moments; from there, we can define a kinetic flux splitting finite volume
scheme. Besides, the flux evaluation can be extended to quasi-second order by using
the scheme developed in Vikas et al. (2011). The development of fully second order is
an ongoing work of Kah et al. (2011), and will be of primary importance because the
spatial segregation of particles is directly linked to the accuracy of the numerical scheme
(Dombard 2011;Vié et al. 2011). As this work is devoted to a first qualitative analysis of
the proposed strategy, we will use a first-order scheme.

5. Application to Taylor-Green vortices

Taylor-Green vortices consist of four counter-rotating vortices as in Figure 1:

Ug = sin(2πx) cos(2πy), Vg = − cos(2πx) sin(2πy). (5.1)

This test case is expected to mimic the effect of turbulent structures on a disperse liquid
phase. As in a turbulent flow, droplets are expected to accumulate in low vorticity zones,
depending on their Stokes number. A critical Stokes number Stc = 1/8π is defined
(de Chaisemartin 2009), and corresponds to the limit from which droplets can be ejected
from their initial vortex. At time t = 0, droplets are distributed uniformly in the domain
with zero velocity. The computational domain is composed of 2002 cells.

In Figure 2, the MG quadrature and CQMOM are compared to the reference La-
grangian solution for St = 0.5Stc. Because the Stokes number is under its critical value,
droplets are ejected from the centers of the vortices, but accumulate at the borders as
they cannot cross the zero vorticity lines. This feature is captured by both Eulerian
approaches, with some differences in the number density distribution along the center
lines. In Figure 3, the number density is plotted against x (i.e. y) on the line y = 0.5
(i.e. x = 0.5). The CQMOM closure underestimates the droplet number density, whereas
the MG closure reproduces more accurately the Lagrangian results. Furthermore, at the
saddle points at each corner, a δ-shock is generated by the weakly hyperbolic system
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Figure 1. Taylor-Green vortices: gas velocity.

of the CQMOM closure, whereas the MG closure, which solves for a hyperbolic system,
shows limited accumulations in relatively good agreement with the Lagrangian results.

In Figure 4, the results for St = 5Stc are shown. Considering that the critical Stokes
number is surpassed, trajectory crossing is observed. With the CQMOM and MG closures,
we obtain qualitatively equivalent results, capturing the same structures, even if MG
exhibits higher number density in the crossing zones. However, the two methods cannot
capture the accumulation in the low vorticity zones. To further investigate the main
difference between CQMOM and MG, the number density along lines x = 1.0 and y = 1.0
are plotted in Figure 5. First, as stated previously, the two methods do not reproduce
the Lagrangian reference solution. But CQMOM also generates δ-shocks, unlike MG.

Finally, Figure 6 shows the results for St = 20Stc. Here the two Eulerian approaches
cannot reproduce all of the fine structure in the Lagrangian solution. Furthermore, MG
and CQMOM show different repartitions. To determine which is the more accurate, we
investigate second-order moments M1,1, M2,0 and M0,2 in Figures 7-9. First it is im-
portant to highlight that those moments are solved either by CQMOM or by MG. In
approaches such as the MEF of Février et al. (2005), these moments are modeled using
close-to-equilibrium assumptions. As the velocity distribution is really far from equilib-
rium in this configuration, such methods cannot capture the spatial dynamics. Here the
moments results show that MG captures the structure of the velocity distribution more
precisely than CQMOM. For example, the direction of the structures of moment M11

are oriented in the same direction as the Lagrangian results, which is not the case with
CQMOM. Those difference lie in the ability of MG to account for multiple trajectory
crossing by a pressure-like effect. This effect has the same limitation as the velocity dis-
persion in the MEF, i.e., it enables global effects of more than two trajectories crossings
to be reproduced, but is not sufficient to reproduce exactly the full dynamics that we
can see on the Lagrangian solution.
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Figure 2. Taylor-Green vortices at St = 0.5Stc: droplet number density at time t = 4 for
Lagrangian (left), CQMOM (center) and multi-Gaussian (right) simulations.
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Figure 3. Taylor-Green vortices at St = 0.5Stc: droplet number density at time t = 4 on line
y = 0.5 (left) and x = 0.5 (right) for Lagrangian (blue/dot-dashed), CQMOM (green/dashed)
and multi-Gaussian (red/solid) simulations (scaled figures to focus on the central zone).

Figure 4. Taylor-Green vortices at St = 5Stc: droplet number density at time t = 4 for
Lagrangian (left), CQMOM (center) and multi-Gaussian (right) simulations.
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Figure 5. Taylor-Green vortices at St = 5Stc: droplet number density at time t = 4 on lines
y = 1 (left) and x = 1 (right) for the Lagrangian (blue/dot-dashed), CQMOM (green/dashed)
and multi-Gaussian (red/solid) simulations.
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Figure 6. Taylor-Green vortices at St = 20Stc: droplet number density at time t = 4 for the
Lagrangian (left), CQMOM (center) and multi-Gaussian (right) simulations.

Figure 7. Taylor-Green vortices at St = 20Stc: M1,1 at time t = 4 for the Lagrangian (left),
CQMOM (center) and multi-Gaussian (right) simulations.

Figure 8. Taylor-Green vortices at St = 20Stc: M2,0 at time t = 4 for the Lagrangian (left),
CQMOM (center) and multi-Gaussian (right) simulations.

Figure 9. Taylor-Green vortices at St = 20Stc: M0,2 at time t = 4 for the Lagrangian (left),
CQMOM (center) and multi-Gaussian (right) simulations.
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6. Conclusions and perspectives

This work has demonstrated the potential of the multi-Gaussian Quadrature Method of
Moments. In the case of low or intermediate Stokes-number flows, the CQMOM and MG
closures show similar results, but CQMOM exhibits δ-shocks when multiple trajectory
crossings occur, whereas the potentially hyperbolic system of MG does not. For high
Stokes flows, CQMOM cannot capture the dynamics while MG reproduces the global
structure of the flow without generating any δ-shocks. The MG demonstrates its ability
to solve and describe accurately the second-order moments (which are modeled in MEF
approaches) and the importance of accounting for an additional velocity dispersion by
mean of a Gaussian distribution to account for trajectory crossings between more than
two trajectories, even in the case of DNS for which there is no subgrid scale for the gas
phase that can generate a velocity dispersion.

For future perspectives, the 2-D MG inversion algorithm will be enhanced to avoid
the iterative solution procedure in the secant method. A firmer mathematical study will
also make use of the wave structure of the resulting system of PDEs (Chalons et al.
2012). A comprehensive comparison between MEF, CQMOM and MG approaches will
be performed in order to characterize the main differences and similarities in terms of
assumptions, modeling, and predictivity in DNS computations. Then, this formalism will
be used in a LES context, by accounting for the effect of subgrid scales of the gas phase
on the kinetic equation (Zaichik et al. 2009).
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