
HAL Id: hal-00653085
https://hal.science/hal-00653085v1

Submitted on 17 Dec 2011 (v1), last revised 27 Jan 2012 (v2)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Bounded Phase Analysis of Message-Passing Programs
Ahmed Bouajjani, Michael Emmi

To cite this version:
Ahmed Bouajjani, Michael Emmi. Bounded Phase Analysis of Message-Passing Programs. 2011.
�hal-00653085v1�

https://hal.science/hal-00653085v1
https://hal.archives-ouvertes.fr

Bounded Phase Analysis
of Message-Passing Programs∗

Ahmed Bouajjani and Michael Emmi†

LIAFA, Université Paris Diderot, France
{abou,mje}@liafa.jussieu.fr

Abstract. We describe a novel technique for bounded analysis of asyn-
chronous message-passing programs with ordered message queues. Our
bounding parameter does not limit the number of pending messages, nor
the number of “contexts-switches” between processes. Instead, we limit
the number of process communication cycles, in which an unbounded
number of messages are sent to an unbounded number of processes across
an unbounded number of contexts. We show that remarkably, despite
the potential for such vast exploration, our bounding scheme gives rise
to a simple and efficient program analysis by reduction to sequential
programs. As our reduction avoids explicitly representing message queues,
our analysis scales irrespectively of queue content and variation.

1 Introduction

Software is becoming increasingly concurrent: reactivity (e.g., in user interfaces,
web servers), parallelization (e.g., in scientific computations), and decentralization
(e.g., in web applications) necessitate asynchronous computation. Although shared-
memory implementations are often possible, the burden of preventing unwanted
thread interleavings without crippling performance is onerous. Many have instead
adopted asynchronous programming models in which one or more processes
execute tasks sequences which communicate by posting messages (alternatively,
tasks) to message/task queues—Miller et al. [17] discuss why such models provide
good programming abstractions. Single-process systems such as the JavaScript
page-loading engine of modern web browsers [1], and the highly-scalable Node.js
asynchronous web server [9], execute a series of short-lived tasks one-by-one, each
task potentially queueing additional tasks to be executed later. This programming
style ensures that the overall system responds quickly to incoming events (e.g., user
input, connection requests). In the multi-process setting, languages such as Erlang
and Scala have adopted message-passing as a fundamental construct with which
highly-scalable and highly-reliable distributed systems are built.

Despite the increasing popularity of such programming models, little is known
about precise algorithmic reasoning of such programs. This is perhaps not without

∗Partially supported by the project ANR-09-SEGI-016 Veridyc.
†Supported by a Fondation Sciences Mathématiques de Paris post-doctoral fellowship.

good reason: decision problems such as state-reachability for programs commu-
nicating with unbounded reliable queues are undecidable [8], even when there
is only a single finite-state process (posting messages to itself). Furthermore,
the known decidable under-approximations (e.g., bounding the size of queues)
represent queues explicitly, are thus doomed to combinatorial explosion as the
size and variability of queue content increases.

Some have proposed analyses which abstract message arrival order [20, 12, 11],
or assume messages can be arbitrarily lost [2, 3]. Such analyses do not suffice when
correctness arguments rely on reliable messaging—several systems specifically
do ensure the ordered delivery of messages, including Erlang, Scala, and recent
web-browser specifications [1]. Others have proposed analyses which compute
finite symbolic representations of queue contents [5, 6]. Known bounded analyses
which model queues precisely either bound the maximum capacity of message-
queues, ignoring executions which exceed the bound, or bound the total number of
process “contexts” [14], where each context involves a single process sending and
receiving messages. For each of these bounding schemes there are trivial systems
which cannot be adequately explored, e.g., by sending more messages than the
allowed queue-capacity, having more processes than contexts, or by alternating
message-sends to two processes—we discuss such examples in Section 3. All of
the above techniques represent queues explicitly, though perhaps symbolically,
and face combinatorial explosion as queue content and variation increase.

In this work we propose a novel technique for bounded analysis of asynchronous
message-passing programs with reliable, ordered message queues. Our bounding
parameter, introduced in Section 3, is not sensitive to the capacity nor content
of message queues, nor the number of process contexts. Instead, we bound
the number of process communication cycles by labeling each message with a
monotonically-increasing phase number. Each time a message chain visits the
same process, the phase number must increase. For a given parameter k, we only
explore behaviors of up to k phases—though k phases can go a long way. In the
leader election distributed protocol [21] for example, each election round occurs
in 2 phases: in the first phase each process sends capture messages to the others;
in the second phase some processes receive accept messages, and those that find
themselves majority-winners broadcast elected messages. In these two phases an
unbounded number of messages are sent to an unbounded number of processes
across an unbounded number of process contexts!

We demonstrate the true strength of phase-bounding by showing in Sections 4
and 5 that the bounded phase executions of a message-passing program can be
concisely encoded as a non-deterministic sequential program, in which message-
queues are not explicitly represented. Our so-called “sequentialization” sheds
hope for scalable analyses of message-passing programs. In a small set of simple
experiments (Section 4), we demonstrate that our phase-bounded encoding scales
far beyond known explicit-queue encodings as queue-content increases, and even
remains competitive as queue-content is fixed while the number of phases grows.
By reducing to sequential programs, we leverage highly-developed sequential
program analysis tools for message-passing programs.

2

2 Asynchronous Message-Passing Programs

We consider a simple multi-processor programming model in which each processor
is equipped with a procedure stack and a queue of pending tasks. Initially all
processors are idle. When an idle processor’s queue is non-empty, the oldest task
in its queue is removed and executed to completion. Each task executes essentially
a recursive sequential program, which besides accessing its own processor’s global
storage, can post tasks to the queues of any processor, including its own. When
a task does complete, its processor again becomes idle, chooses the next pending
task to execute to completion, and so on. Though the distinction between queues
containing messages and queues containing tasks is mostly aesthetic, our task-
based treatment implies that queues are only read by idle processors; reading
additional messages during a task’s execution is prohibited. Though in principle
many message-passing systems, e.g., in Erlang and Scala, allow reading additional
messages at any program point, we have observed that common practice is to
read messages only upon completing a task [22].

Though similar to Sen and Viswanathan [20]’s model of asynchronous pro-
grams, the model we consider has two important distinctions. First, tasks execute
across potentially several processors, rather than only one, each processor having
its own global state and pending tasks. Second, the tasks of each processor are
executed in exactly the order they are posted. For the case of single-processor
programs, Sen and Viswanathan [20]’s model can be seen as an abstraction of the
model we consider, since there the task chosen to execute next when a processor
is idle is chosen non-deterministically among all pending tasks.

2.1 Program Syntax

Let Procs be a set of procedure names, Vals a set of values, Exprs a set of
expressions, Pids a set of processor identifiers, and let T be a type. Figure 1 gives
the grammar of asynchronous message-passing programs. We intentionally leave
the syntax of expressions e unspecified, though we do insist Vals contains true

and false, and Exprs contains Vals and the (nullary) choice operator ?.
Each program P declares a single global variable g and a procedure sequence,

each p ∈ Procs having a single parameter l and top-level statement denoted sp;
as statements are built inductively by composition with control-flow statements,
sp describes the entire body of p. The set of program statements s is denoted
Stmts. Intuitively, a post ρ p e statement is an asynchronous call to a procedure
p with argument e to be executed on the processor identified by ρ; a self-post
to one’s own processor is made by setting ρ to . A program in which all post
statements are self-posts is called a single-processor program, and a program
without post statements is called a sequential program.

The programming language we consider is simple, yet very expressive, since
the syntax of types and expressions is left free, and we lose no generality by
considering only single global and local variables. Appendix A lists several
syntactic extensions which we use in the source-to-source translations of the
subsequent sections, and which easily reduce to the syntax of our grammar.

3

P ::= var g:T (proc p (var l:T) s)∗

s ::= s; s | skip | x := e
| assume e
| if e then s else s
| while e do s
| call x := p e
| return e
| post ρ p e

x ::= g | l

Fig. 1. The grammar of asynchronous
message-passing programs P . Here T is an
unspecified type, and e, p, and ρ range,
resp., over expressions, procedure names, and
processor identifiers.

Dispatch

〈g, ε, f · q〉 S−→ 〈g, f, q〉

Complete
f = 〈`, return e; s〉

〈g, f, q〉 S−→ 〈g, ε, q〉

Self-Post
s1 = post p e; s2

`2 ∈ e(g, `1) f = 〈`2, sp〉

〈g, 〈`1, s1〉w, q〉
S−→ 〈g, 〈`1, s2〉w, q · f〉

Fig. 2. The single-processor transition
rules →S; see Appendix B for the stan-
dard sequential statements.

2.2 Single-Processor Semantics

A (procedure) frame f = 〈`, s〉 is a current valuation ` ∈ Vals to the procedure-
local variable l, along with a statement s ∈ Stmts to be executed. (Here s
describes the entire body of a procedure p that remains to be executed, and is
initially set to p’s top-level statement sp; we refer to initial procedure frames
t = 〈`, sp〉 as tasks, to distinguish the frames that populate processor queues.)
The set of all frames is denoted Frames.

A processor configuration κ = 〈g, w, q〉 is a current valuation g ∈ Vals to the
processor-global variable g, along with a procedure-frame stack w ∈ Frames∗ and
a pending-tasks queue q ∈ Frames∗. A processor is idle when w = ε. The set of
all processor configurations is denoted Pconfigs. A processor configuration map
ξ : Pids → Pconfigs maps each processor ρ ∈ Pids to a processor configuration
ξ(ρ). We write ξ (ρ 7→ κ) to denote the configuration ξ updated with the mapping
(ρ 7→ κ), i.e., the configuration ξ′ such that ξ′(ρ) = κ, and ξ′(ρ′) = ξ(ρ′) for all
ρ′ ∈ Pids \ {ρ}.

For expressions without program variables, we assume the existence of an
evaluation function J·Ke : Exprs→ ℘(Vals) such that J?Ke = Vals. For convenience
we define e(g, `)

def
= Je[g/g, `/l]Ke to evaluate the expression e in a global valuation

g by substituting the current values for variables g and l. As these are the only
program variables, the substituted expression e[g/g, . . .] has no free variables.

Figure 2 defines the transition relation →S for the asynchronous behavior of
each processor; the standard transitions for the sequential statements are listed
in Appendix B. The Self-Post rule creates a new frame to execute the given
procedure, and places the new frame in the current processor’s pending-tasks
queue. The Complete rule returns from the final frame of a task, rendering the
processor idle, and the Dispatch rule schedules the least-recently posted task
on a idle processor.

4

2.3 Multi-Processor Semantics

In reality the processors of multi-processor systems execute independently in
parallel. However, as long as they either do not share memory, or access a
sequentially consistent shared memory, it is equivalent, w.r.t. the observations
of any single processor, to consider an interleaving semantics: at any moment
only one processor executes. In order to later restrict processor interleaving, we
make explicit the scheduler which arbitrates the possible interleavings. Formally,
a scheduler M = 〈D, empty, enabled, step〉 consists of a data type D of scheduler
objects m ∈ D, a scheduler constructor empty ∈ D, a scheduler decision function
enabled : (D × (Pids → Pconfigs)) → ℘(Pids), and a scheduler update function
step : (D×(Pids→ Pconfigs)×(Pids→ Pconfigs))→ D. The arguments to enabled
and step allow a scheduler to decide which processors are enabled depending on
the execution history. A scheduler is deterministic when |enabled(m, ξ)| ≤ 1 for
all m ∈ D and ξ : Pids→ Pconfigs, and is non-blocking when for all m and ξ, if
there is some ρ ∈ Pids such that ξ(ρ) is either non-idle or has pending tasks, then
there exists ρ′ ∈ Pids such that ρ′ ∈ enabled(m, ξ) and ξ(ρ′) is either non-idle or
has pending tasks. A configuration c = 〈ρ, ξ,m〉 is a currently executing processor
ρ ∈ Pids, along with a processor configuration map ξ, and a scheduler object m.

Figure 3 defines the multi-processor transition relation →M , parameterized
by a scheduler M . The Switch rule non-deterministically schedules any enabled
processor, while the Step rule executes one single-processor program step on
the currently scheduled processor, and updates the scheduler object. Finally, the
Post rule creates a new frame to execute the given procedure, and places the
the new frame on the target processor’s pending-tasks queue.

Until further notice, we assume M is a completely non-deterministic scheduler;
i.e., all processors are always enabled. In Section 5 we discuss alternatives.

An M-execution of a program P (from c0 to cj) is a configuration se-
quence c0c1 . . . cj such that ci →M ci+1 for 0 ≤ i < j. An initial condition
ι = 〈ρ0, g0, `0, p0〉 is a processor identifier ρ0, along with a global-variable valua-
tion g0 ∈ Vals, a local-variable valuation `0 ∈ Vals, and a procedure p0 ∈ Procs.
A configuration c = 〈ρ0, ξ, empty〉 of a program P is 〈ρ0, g0, `0, p0〉-initial when
ξ(ρ0) = 〈g0, ε, 〈`0, sp0〉〉 and ξ(ρ) = 〈g0, ε, ε〉 for all ρ 6= ρ0. A configuration
〈ρ, ξ,m〉 is gf -final when ξ(ρ′) = 〈gf , w, q〉 for some ρ′ ∈ Pids, and w, q ∈ Frames∗.
We say a global valuation g is M-reachable in P from ι when there exists an
M -execution of P from some c0 to some c such that c0 is ι-initial and c is g-final1.

Definition 1. The state-reachability problem is to determine for an initial
condition ι, valuation g, and program P , whether g is reachable in P from ι.

3 Phase-Bounded Execution

Because processors execute tasks precisely in the order which they are posted
to their unbounded task-queues, our state-reachability problem is undecidable,

1In the presence of the assume statement, only values of completed executions are
guaranteed to be valid.

5

Switch
ρ2 ∈ enabled(m, ξ)

〈ρ1, ξ,m〉 −→
M
〈ρ2, ξ,m〉

Step

ξ1(ρ)
S−→ κ ξ2 = ξ1 (ρ 7→ κ)

ρ ∈ enabled(m1, ξ1) m2 = step(m1, ξ1, ξ2)

〈ρ, ξ1,m1〉 −→
M
〈ρ, ξ2,m2〉

Post
ξ1(ρ1) = 〈g1, 〈`1,post ρ2 p e; s〉w1, q1〉

ξ1(ρ2) = 〈g2, w2, q2〉
ρ1 6= ρ2 `2 ∈ e(g1, `1) f = 〈`2, sp〉

ρ1 ∈ enabled(m1, ξ1) m2 = step(m1, ξ1, ξ3)
ξ2 = ξ1 (ρ1 7→ 〈g1, 〈`1, s〉w1, q1〉)
ξ3 = ξ2 (ρ2 7→ 〈g2, w2, q2 · f〉)
〈ρ1, ξ1,m1〉 −→

M
〈ρ1, ξ3,m2〉

Fig. 3. The multi-processor transitions rela-
tion →M parameterized by a scheduler M =
〈D, empty, enabled, step〉.

// translation of var g: T
var G[k]: T

// translation of proc p (var l: T
) s

proc p (var l: T, phase: k) s

// translation of g
G[phase]

// translation of call x := p e
call x := p (e,phase)

// translation of post _ p e
if phase+1 < k then

call p (e,phase+1)

Fig. 4. The k-phase sequential
translation ((P))k of a single-
processor asynchronous message-
passing program P .

even with only a single processor accessing finite-state data [8]. Since it is not
algorithmically possible to consider every execution precisely, in what follows we
present an incremental under-approximation. For a given bounding parameter
k, we consider a subset of execution (prefixes) precisely; as k increases, the set
of considered executions increases, and in the limit as k approaches infinity,
every execution of any program is considered—though for many programs, every
execution is considered with a finite value of k.

In a given execution, a task-chain t1t2 . . . ti from t1 to ti is a sequence of
tasks2 such that the execution of each tj posts tj+1, for 0 < j < i, and we say
that t1 is an ancestor of ti. We characterize execution prefixes by labeling each
task t posted in an execution with a phase number ϕ(t) ∈ N:

ϕ(t) =

0 if t is initially pending.

ϕ(t′)
if t is posted to processor ρ by t′,
and t has no phase-ϕ(t′) ancestor on processor ρ.

ϕ(t′) + 1 if t is posted by t′, otherwise.

For instance, considering Figure 5a, supposing all on a single processor, an
initial task A1 posts A2, A3, and A4, then A2 posts A5 and A6, and then A3

posts A7, which in turn posts A8 and A9. Task A1 has phase 0. Since each post
is made to the same processor, the phase number is incremented for each posted

2We assume each task in a given execution has implicitly a unique task-identifier.

6

A1

A3A2 A4

A6A5 A7

A8 A9

Wednesday, October 12, 11

(a)

A1

C1B1 B2

D2D1 D2n-1

C2 Bn Cn

D2nD4D3

Sunday, October 9, 11

(b)

A1 B1

A2 B2

An Bn

Wednesday, October 12, 11

(c)

Fig. 5. Phase-bounded executions with processors A, B, C, and D; each task’s label
(e.g., Ai) indicates the processor it executes on (e.g., A). Arrows indicate the posting
relation, indices indicate execution order on a given processor, and dotted lines indicate
phase boundaries.

task. Thus the phase 1 tasks are {A2, A3, A4}, the phase 2 tasks are {A5, A6, A7},
and the phase 3 tasks are {A8, A9}. Notice that tasks of a given phase only
execute after all tasks of the previous phase have completed, i.e., execution order
is in phase order; only executing tasks up to a given phase does correspond to a
valid execution prefix.

Definition 2. An execution is k-phase when ϕ(t) < k for each executed task t.

The execution in Figure 5a is a 4-phase execution, since all tasks have phase
less than 4. Despite there being an arbitrary number 3n + 1 of posted tasks,
the execution in Figure 5b is 1-phase, since there are no task-chains between
same-processor tasks. Contrarily, the execution in Figure 5c requires n phases
to execute all 2n tasks, since every other occurrence of an Ai task creates a
task-chain between A-tasks.

Note that bounding the number of execution phases does not necessarily
bound the total number of tasks executed, nor the maximum size of task queues,
nor the amount of switching between processors. Instead, a bound k restricts
the maximum length of task chains to k · |Pids|. In fact, phase-bounding is
incomparable to bounding the maximum size of task queues. On the one hand,
every execution of a program in which one root task posts an arbitrary, unbounded
number of tasks to other processors (e.g., in Figure 5b) are explored with 1 phase,
though no bound on the size of queues will capture all executions. On the other
hand, all executions with a single arbitrarily-long chain of tasks (e.g., in Figure 5c)
are explored with size 1 task queues, though no limited number of phases captures
all executions. In the limit as the bounding parameter increases, both schemes
do capture all executions.

Theorem 1 (Completeness). For every execution h of a program P , there
exists k ∈ N such that h is a k-phase execution.

7

4 Phase-Bounding for Single-Processor Programs

Characterizing executions by their phase-bound reveals a simple and efficient
technique for bounded exploration. This seems remarkable, given that phase-
bounding explores executions in which arbitrarily many tasks execute, making
the task queue arbitrarily large. The first key ingredient is that once the number
of phases is bounded, each phase can be executed in isolation. For instance,
consider again the execution of Figure 5a. In phase 1, the tasks A2, A3, and A4

pick up execution from the global valuation g1 which A1 left off at, and leave
behind a global valuation g2 for the phase 2 tasks. In fact, given the sequence of
tasks in each phase, the only other “communication” between phases is a single
passed global valuation; executing that sequence of tasks on that global valuation
is a faithful simulation of that phase.

The second key ingredient is that the ordered sequence of tasks executed in a
given phase is exactly the ordered sequence of tasks posted in the previous phase.
This is obvious, since tasks are executed in the order they are posted. However,
combined with the first ingredient we have quite a powerful recipe. Supposing
the global state gi at the beginning of each phase i is known initially, we can
simulate a k-phase execution by executing each task posted to phase i as soon as
it is posted, with an independent virtual copy of the global state, initially set to
gi. That is, our simulation will store a vector of k global valuations, one for each
phase. Initially, the ith global valuation is set to the state gi in which phase i
is known to begin; tasks of phase i then reads from and writes to the ith global
valuation. It then only remains to ensure that the global valuations gi used at
the beginning of each phase 0 < i < k match the valuations reached at the end
of phase i− 1.

This simulation is easily encoded into a non-deterministic sequential program
with k copies of global storage. The program begins by non-deterministically
setting each copy to an arbitrary value. Each task maintains their current phase
number i, and accesses the ith copy of global storage. Each posted task is simply
called instead of posted, its phase number set to one greater than its parent—
posts to tasks with phase number k are ignored. At the end of execution, the
program ensures that the ith global valuation matches the initially-used valuation
for phase i+ 1, for 0 ≤ i < k− 1. When this condition holds, any global valuation
observed along the execution is reachable within k phases in the original program.
Figure 4 lists a code-to-code translation which implements this simulation.

Theorem 2. A global-valuation g is reachable in a k-phase execution of a single-
processor program P if and only if g is reachable in ((P))k—the k-phase sequential
translation of P .

When the underlying sequential program model has a decidable state-reachability
problem, Theorem 2 gives a decision procedure for the phase-bounded state-
reachability problem, by applying the decision procedure for the underlying model
to the translated program. This allows us for instance to derive a decidability
result for programs with finite data domains.

8

Corollary 1. The k-phase state-reachability problem is decidable for single-
processor programs with finite data domains.

More generally, given any underlying sequential program model, our trans-
lation makes applicable any analysis tool for said model to message-passing
programs, since the values of the additional variables are either from the finite
domain {0, . . . , k − 1}, or in the domain of the original program variables.

Note that our simulation of a k-phase execution does not explicitly store the
unbounded task queue. Instead of storing a multitude of possible unbounded task
sequences, our simulation stores exactly k global state valuations. Accordingly,
our simulation is not doomed to the unavoidable combinatorial explosion encoun-
tered by storing (even bounded-size) task queues explicitly. To demonstrate the
capability of our advantage, we measure the time to verify two fabricated yet
illustrative examples (listed in full in Appendix C, comparing our bounded-phase
encoding with a bounded task-queue encoding. In the bounded task-queue encod-
ing, we represent the task-queue explicitly by an array of integers, which stores
the identifiers of posted procedures3. When control of the initial task completes,
the program enters a loop which takes a procedure identifier from the head of
the queue, and calls the associated procedure. When the queue reaches a given
bound, any further posted tasks are ignored.

The first program P1(i), parameterized by i ∈ N, has a single Boolean global
variable b, i procedures named p1, . . . , pi, which assert b to be false and set b
to true, and i procedures named q1, . . . , qi which set b to false. Initially, P1(i)
sets b to false, and enters a loop in which each iteration posts some pj followed
by some qj . Since a qj task must be executed between each pj task, each of
the assertions are guaranteed to hold. Figure 6a compares the time required to
verify P1(i) (using the Boogie verification engine [4]) for various values of i, and
various bounds n on loop unrolling. Note that although every execution of P1(i)
has only 2 phases, to explore all n loop iterations in any given execution, the
size of queues must be at least 2n, since two tasks are posted per iteration. Even
for this very simple program, representing (even bounded) task-queues explicitly
does not scale, as the number of possible task-queues grows astronomically as
the size of task-queues grow. This ultimately prohibits the bounded tasks-queue
encodings from exploring executions in which more than a mere few simple tasks
execute. On the contrary, our bounded-phase simulation easily explores every
execution up to the loop-unrolling bound in a few seconds.

To be fair, our second program P2 is biased to support the bounded task-queue
encoding. Following the example of Figure 5c, P2 again has a single Boolean
global variable b, and two procedures: p1 asserts b to be false, sets b to true,
and posts p2, while p2 sets b to false and posts p1. Initially, the program P2 sets
b to false and posts a single p1 task. Again here, since a p2 task must execute
between each p1 task, each of the assertions are guaranteed to hold. Figure 6b
compares the time required to verify P2 for various bounds n on the number

3For simplicity our examples do not pass arguments to tasks; in general, one should also
store in the task-queue array the values of arguments passed to each posted procedure.

9

 0
 10
 20
 30
 40
 50
 60
 70
 80
 90

 100

 0 5 10 15 20 25 30 35 40 45 50

Ti
m

e
(s

)

loop iterations (n)

2n-queue, i=1
2n-queue, i=2
2n-queue, i=4
2n-queue, i=8

1-phase, i=8
2-phase, i=8
3-phase, i=8
4-phase, i=8

(a)

 0
 2
 4
 6
 8

 10
 12
 14
 16
 18
 20
 22

 0 5 10 15 20 25 30 35 40 45 50

Ti
m

e
(s

)

tasks explored (n)

1-size queue
2-size queue
3-size queue
4-size queue

n-phase

(b)

Fig. 6. Time required to verify (a) the program P1(i), and (b) the program P2 with the
Boogie verification engine using various encodings (bounded queues, bounded phase),
and various loop unrolling bounds. Time-out is set to 100s.

of tasks explored4. Note that although every execution of P2 uses only size 1
task-queues, to explore all n tasks in any given execution, the number of phases
must be at least n, since each task must execute in its own phase. Although
verification time for the bounded-phase encoding does increase with n faster
than the bounded task-queue encoding—as expected—due to additional copies of
the global valuation, and more deeply in-lined procedures, the verification time
remains manageable. In particular, the time does not explode uncontrollably:
even 50 tasks are explored in under 20s.

5 Phase-Bounding for Multi-Processor Programs

Though state-reachability under a phase bound is immediately and succinctly
reducible to sequential program analysis for single-processor programs, the multi-
processor case is more complicated. The added complexity arises due to the many
orders in which tasks on separate processors can contribute to others’ task-queues.
As a simple example, consider the possible bounded-phase executions of Figure 5b
with four processors, A, B, C, and D. Though B’s tasks B1, . . . , Bn must be
executed in order, and C’s tasks C1, . . . , Cn must also be executed in order,
the order of D’s tasks are not pre-determined: the arrival order of D’s tasks
depends on how B’s and C’s tasks interleave. Suppose for instance B1 executes
to completion before C1, which executes to completion before B2, and so on. In
this case D’s tasks arrive to D’s queue, and ultimately execute, in the index
order D1, D2, . . . as depicted. However, there exist executions for every possible
order of D’s tasks respecting D1 < D3 < . . . and D2 < D4 < . . . (where <
denotes an ordering constraint)—many possible orders indeed! In fact, due to the

4The number n of explored tasks is controlled by limiting the number of loop unrollings
in the bounded task-queue encoding, and limiting the recursion depth, and phase-bound,
in the bounded-phase encoding.

10

capability of such unbounded interleaving, the problem of state-reachability under
a phase-bound is undecidable for multi-processor programs, even for programs
with finite data domains.

Theorem 3. The k-phase bounded state-reachability problem is undecidable for
multi-processor programs with finite data domains.

Note that Theorem 3 holds independently of whether memory is shared
between processors: the fact that a task-queue can store any possible (unbounded)
shuffling of tasks posted by two processors lends the power to simulate Post’s
correspondence problem [18].

Theorem 3 insists that phase-bounding alone will not lead to the elegant
encoding to sequential programs which was possible for single-processor programs.
If that were possible, then the translation from a finite-data program would lead
to a finite-data sequential program, and thus a decidable state-reachability
problem. Since a precise algorithmic solution to bounded-phase state-reachability
is impossible for multi-processor programs, we resort to a further incremental
yet orthogonal under-approximation, which limits the number of considered
processor interleavings. The following development is based on delay-bounded
scheduling [10].

We define a delaying scheduler M = 〈D, empty, enabled, step, delay〉, as a
scheduler 〈D, empty, enabled, step〉, along with a function delay : (D × Pids ×
(Pids → Pconfigs)) → D. Furthermore, we extend the transition relation of
Figure 3 with a postponing rule of Figure 7 which we henceforth refer to as a delay
(operation), saying that processor ρ is delayed. Note that a delay operation may or
may not change the set of enabled processors in any given step, depending on the
scheduler. A delaying scheduler is delay-accessible when for every configuration c1
and non-idle or task-pending processor ρ, there exists a sequence c1 →M . . .→M

cj of Delay-steps such that ρ is enabled in cj . Given executions h1 and h2 of
(delaying) schedulers M1 and M2 resp., we write h1 ∼ h2 when h1 and h2 are
identical after projecting away delay operations.

Definition 3. An execution with at most k delay operators is called k-delay.

Consider again the possible executions of Figure 5b, but suppose we fix a
deterministic scheduler M which without delaying would execute D’s tasks in
index order: D1, D2, . . .; furthermore suppose that delaying a processor ρ in phase
i causes M to execute the remaining phase i tasks of ρ in phase i + 1, while
keeping the tasks of other processors in their current phase. Without using any
delays, the execution of Figure 5b is unique, since M is deterministic. However,
as Figure 8 illustrates, using a single delay, it is possible to also derive the order
D1, D3, . . . , D2n−1, D2, D4, . . . , D2n (among others): simply delay processor C
once before C1 posts D2. Since this forces the D2i tasks posted by each Ci to
occur in the second phase, it follows they must all happen after the D2i−1 tasks
posted by each Bi.

Theorem 4 (Completeness). Let M be any delay-accessible scheduler. For
every execution h of a program P , there exists an M-execution h′ and k ∈ N
such that h′ is a k-delay execution and h′ ∼ h.

11

Delay
m2 = delay(m1, ρ, ξ)

〈ρ, ξ,m1〉 −→
M
〈ρ, ξ,m2〉

Fig. 7. The delay operation.

A1

C1

B1 B2

D2

D1 D2n-1

C2

Bn

Cn

D2nD4

D3

C1

delay

Wednesday, October 12, 11 Fig. 8. A 2-phase delaying ex-
ecution varying the 1-phase ex-
ecution of Figure 5b.

// translation of var g: T
var G[k+d]: T
var shift[Pids][k], delay: d
var ancestors[Pids][k+d]: B

// translation of proc p (var l: T) s
proc p (var l: T, pid: Pids, phase: k)

// translation of g
G[phase + shift[pid][phase]]

// code to be sprinkled throughout
while ? and delay < d do

shift[pid][phase]++; delay++

// translation of call x := p e
call x := p (e,pid,phase)

// translation of post ρ p e
let p = phase + shift[pid][phase] in
let p’ = p + (if ancestors[ρ][p] then 1 else 0) in
if p’ < k then

ancestors[ρ][p’ + shift[ρ][p’]] := true;
call p (e, ρ, p’)
ancestors[ρ][p’ + shift[ρ][p’]] := false

Fig. 9. The k-phase d-delay sequential translation
((P))bfsk,d of a multi-processor message-passing asyn-
chronous program P .

Note that Theorem 4 holds for any delay-accessible scheduler M—even
deterministic schedulers. As it turns out there is one particular scheduler Mbfs for
which we know a convenient sequential encoding, and this scheduler is described
in Appendix D. For the moment, the important points to note are that Mbfs

is deterministic, non-blocking, and delay-accessible. Essentially, determinism
allows us to encode the scheduler succinctly in a sequential program; the non-
blocking property ensures this scheduler does explore some execution, rather
than needlessly ceasing to continue; delay-accessibility combined with Theorem 4
ensure the scheduler is complete in the limit. Figure 9 lists a code-to-code
translation which encodes bounded-phase and bounded-delay exploration of a
given program according to the Mbfs scheduler as a sequential program.

Our translation closely follows the single-processor translation of Section 4,
the key differences being:

– the phase of a posted task is not necessarily incremented, since posted tasks
may not have same-processor ancestors in the current phase, and

– at any point, the currently executing task may increment a delay counter,
causing all following tasks on the same processor to shift forward one addi-
tional phase.

As the global values reached by each processor at the end of each phase i−1 must
be ensured to match the initial values of phase i, for 0 < i < k + d, so must the
values for the shift counter: an execution is only valid when for each processor

12

ρ ∈ Pids and each phase 0 < i < k, shift[ρ][i− 1] matches the initial value of
shift[ρ][i].

Theorem 5. A global valuation g is reachable in a k-phase d-delay Mbfs-execution
of a multi-processor program P if and only if g is reachable in ((P))

bfs
k,d.

As is the case for our single-processor translation, our simulation does not
explicitly store the unbounded tasks queue, and is not doomed to combinatorial
explosion faced by storing tasks-queues explicitly.

6 Related Work

Our work follows the line of research on compositional reductions from concurrent
to sequential programs. The initial so-called “sequentialization” [19] explored
multi-threaded programs up to one context-switch between threads, and was
later expanded to handle a parameterized amount of context-switches between a
statically-determined set of threads executing in round-robin order [16]. La Torre
et al. [15] later extended the approach to handle programs parameterized by an
unbounded number of statically-determined threads, and shortly after, Emmi
et al. [10] further extended these results to handle an unbounded amount of
dynamically-created tasks, which besides applying to multi-threaded programs,
naturally handles asynchronous event-driven programs [20]. Bouajjani et al. [7]
pushed these results even further to a sequentialization which attempts to explore
as many behaviors as possible within a given analysis budget. Each of these
sequentializations necessarily do provide a bounding parameter which limits the
amount of interleaving between threads or tasks, but none are capable of precisely
exploring tasks in creation order, which is implicitly abstracted away from the
asynchronous program model [20]. Though Kidd et al. [13]’s sequentialization is
sensitive to task priorities, their reduction assumes a finite number of statically-
determined tasks.

In a closely-related work, La Torre et al. [14] propose a “context-bounded”
analysis of shared-memory multi-pushdown systems communicating with message-
queues. According to this approach, one “context” involves a single process reading
from its queue, and posting to the queues of other processes, and the number of
contexts per execution is bounded. Our work can be seen as an extension in a few
ways. First, and most trivially, in their setting a process cannot post to its own
message queue; this implies that at least 2k contexts must be used to simulate
k phases of a single-processor program. Second, there are families of 1-phase
executions which require an unbounded number of task-contexts to capture; the
execution order D1D2D3 . . . D2n of Figure 5b is such an example. We conjecture
that bounded phase and delay captures context-bounding—i.e., there exists a
polynomial function f : N → N such that every k-context bounded execution
of any program P is also a f(k)-phase and delay bounded execution. Finally,
though phase-bounding leads to a convenient sequential encoding, we are unaware
whether a similar encoding is possible for context-bounding.

13

Boigelot and Godefroid [5] and Bouajjani et al. [6] have proposed analyses of
message-passing programs by computing explicit finite symbolic representations
of message-queues. As our sequentialization does not represent queues explicitly,
we do not restrict the content of queues to conveniently-representable descriptions.
Furthermore, reduction to sequential program analyses is easily implementable,
and allows us to leverage highly-developed and optimized program analysis tools.

7 Conclusion

By introducing a novel phase-based characterization of message-passing program
executions, we enable bounded program exploration which is not limited by
message-queue capacity nor the number of processors. We show that the resulting
phase-bounded analysis problems can be solved by concise reduction to sequen-
tial program analysis. Preliminary evidence suggests our approach is at worst
competitive with known task-order respecting bounded analysis techniques, and
can easily scale where those techniques quickly explode.

Acknowledgments

We thank Constantin Enea, Cezara Dragoi, Pierre Ganty, and the anonymous
reviewers for helpful feedback.

References

[1] HTML5: A vocabulary and associated APIs for HTML and XHTML. http:
//dev.w3.org/html5/spec/Overview.html.

[2] P. A. Abdulla and B. Jonsson. Verifying programs with unreliable channels.
In LICS ’93: Proc. 8th Annual IEEE Symposium on Logic in Computer
Science, pages 160–170. IEEE Computer Society, 1993.

[3] P. A. Abdulla, A. Bouajjani, and B. Jonsson. On-the-fly analysis of systems
with unbounded, lossy fifo channels. In CAV ’98: Proc. 10th International
Conference on Computer Aided Verification, volume 1427 of LNCS, pages
305–318. Springer, 1998.

[4] M. Barnett, K. R. M. Leino, M. Moskal, and W. Schulte. Boogie: An inter-
mediate verification language. http://research.microsoft.com/en-us/

projects/boogie/.
[5] B. Boigelot and P. Godefroid. Symbolic verification of communication

protocols with infinite state spaces using QDDs. Formal Methods in System
Design, 14(3):237–255, 1999.

[6] A. Bouajjani, P. Habermehl, and T. Vojnar. Verification of parametric
concurrent systems with prioritised FIFO resource management. Formal
Methods in System Design, 32(2):129–172, 2008.

[7] A. Bouajjani, M. Emmi, and G. Parlato. On sequentializing concurrent
programs. In SAS ’11: Proc. 18th International Symposium on Static
Analysis, volume 6887 of LNCS, pages 129–145. Springer, 2011.

14

http://dev.w3.org/html5/spec/Overview.html
http://dev.w3.org/html5/spec/Overview.html
http://research.microsoft.com/en-us/projects/boogie/
http://research.microsoft.com/en-us/projects/boogie/

[8] D. Brand and P. Zafiropulo. On communicating finite-state machines. J.
ACM, 30(2):323–342, 1983.

[9] R. Dahl. Node.js: Evented I/O for V8 JavaScript. http://nodejs.org/.

[10] M. Emmi, S. Qadeer, and Z. Rakamarić. Delay-bounded scheduling. In
POPL ’11: Proc. 38th ACM SIGPLAN-SIGACT Symposium on Principles
of Programming Languages, pages 411–422. ACM, 2011.

[11] P. Ganty and R. Majumdar. Algorithmic verification of asynchronous pro-
grams. CoRR, abs/1011.0551, 2010. http://arxiv.org/abs/1011.0551.

[12] R. Jhala and R. Majumdar. Interprocedural analysis of asynchronous
programs. In POPL ’07: Proc. 34th ACM SIGPLAN-SIGACT Symposium
on Principles of Programming Languages, pages 339–350. ACM, 2007.

[13] N. Kidd, S. Jagannathan, and J. Vitek. One stack to run them all: Reducing
concurrent analysis to sequential analysis under priority scheduling. In SPIN
’10: Proc. 17th International Workshop on Model Checking Software, volume
6349 of LNCS, pages 245–261. Springer, 2010.

[14] S. La Torre, P. Madhusudan, and G. Parlato. Context-bounded analysis
of concurrent queue systems. In TACAS ’08: Proc. 14th International
Conference on Tools and Algorithms for the Construction and Analysis of
Systems, volume 4963 of LNCS, pages 299–314. Springer, 2008.

[15] S. La Torre, P. Madhusudan, and G. Parlato. Model-checking parameter-
ized concurrent programs using linear interfaces. In CAV ’10: Proc. 22nd
International Conference on Computer Aided Verification, volume 6174 of
LNCS, pages 629–644. Springer, 2010.

[16] A. Lal and T. W. Reps. Reducing concurrent analysis under a context bound
to sequential analysis. Formal Methods in System Design, 35(1):73–97, 2009.

[17] M. S. Miller, E. D. Tribble, and J. S. Shapiro. Concurrency among strangers.
In TGC ’05: Proc. International Symposium on Trustworthy Global Com-
puting, volume 3705 of LNCS, pages 195–229. Springer, 2005.

[18] E. L. Post. A variant of a recursively unsolvable problem. Bull. Amer. Math.
Soc, 52(4):264–268, 1946.

[19] S. Qadeer and D. Wu. KISS: Keep it simple and sequential. In PLDI ’04:
Proc. ACM SIGPLAN Conference on Programming Language Design and
Implementation, pages 14–24. ACM, 2004.

[20] K. Sen and M. Viswanathan. Model checking multithreaded programs
with asynchronous atomic methods. In CAV ’06: Proc. 18th International
Conference on Computer Aided Verification, volume 4144 of LNCS, pages
300–314. Springer, 2006.

[21] H. Svensson and T. Arts. A new leader election implementation. In Erlang
’05: Proc. 2005 ACM SIGPLAN Workshop on Erlang, pages 35–39. ACM,
2005.

[22] F. Trottier-Hebert. Learn you some Erlang for great good! http:

//learnyousomeerlang.com/.

15

http://nodejs.org/
http://arxiv.org/abs/1011.0551
http://learnyousomeerlang.com/
http://learnyousomeerlang.com/

A Syntactic Extensions Used in Our Code Translations

The following syntactic extensions are reducible to the original program syntax of
Section 2.1. Here we freely assume the existence of various type- and expression-
constructors. This does not present a problem since our program semantics does
not restrict the language of types nor expressions.

Multiple types. Multiple type labels T1, . . . , Tj can be encoded by systematically

replacing each Ti with the sum-type T =
∑j
i=1 Ti. This allows local and global

variables with distinct types.

Multiple variables. Additional variables x1: T1, ..., xj: Tj can be encoded
with a single record-typed variable x: T , where T is the record type

{ f1: T1, ..., fj: Tj }

and all occurrences of xi are replaced by x.fi. When combined with the extension
allowing multiple types, this allows each procedure to declare any number and
type of local variable parameters, distinct from the number and type of global
variables.

Local variable declarations. Additional (non-parameter) local variable declarations
var l’: T to a procedure p can be encoded by adding l’ to the list of parameters,
and systematically adding an initialization expression (e.g., the choice expression
? , or false) to the corresponding position in the list of arguments at each

call site of p to ensure that l’ begins correctly (un)initialized.

Unused values. Call assignments call x := p e, where x is not subsequently
used, can be written as call _ := p e, where _: T is an additional unread local
variable, or simpler yet as call p e.

Unused branches. if e then s else skip is abbreviated by if e then s.

Increment. Increment operations x++ are encoded as x := x + 1.

Let bindings. Let bindings of the form let x: T = e in can be encoded by
declaring x as a local variable var x: T immediately followed by an assign-
ment x := e. This construct is used to explicate that the value of x remains
constant once initialized. The binding let x: T in is encoded by the binding
let x: T = ? in where ? is the choice expression.

Arrays. Finite arrays with j elements of type T can be encoded as records of
type { f1: T, ..., fj: T }, where f1 . . . fj are fresh names. Occurrences of
terms a[i] are replaced by a.fi, and array-expressions [e1, ..., ej] are
replaced by record-expressions { f1 = e1, ..., fj = ej }.

16

B Sequential Program Semantics

For expressions without program variables, we assume the existence of an evalua-
tion function J·Ke : Exprs→ ℘(Vals) such that J?Ke = Vals. For convenience, given
a processor configuration κ = 〈g, w, q〉 and w = 〈`, s〉w′, we define

e(κ)
def
= e(g, `)

def
= Je[g/g, `/l]Ke

to evaluate the expression e in a processor configuration κ (alternatively, in
a global valuation g and local valuation `) by substituting the current values
for variables g and l. As these are the only program variables, the substituted
expression e[g/g, `/l] has no free variables. Additionally we define

κ(g← g′)
def
= 〈g′, w, q〉 global assignment,

κ(l← `′)
def
= 〈g, 〈`′, s〉w′, q〉 local assignment,

κ · f def
= 〈g, f · w, q〉 append stack frame.

To further reduce clutter in the operational program semantics, we introduce
a notion of context. A statement context S is a term derived from the grammar
S ::= � | S; s, where s ∈ Stmts. We write S[s] for the statement obtained
by substituting a statement s for the unique occurrence of � in S. Intuitively,
a context filled with s, e.g., S[s], indicates that s is the next statement to
execute in the statement sequence S[s]. Similarly, a processor configuration
context C = 〈g, 〈`, S〉w, q〉 is a processor configuration whose top-most frame’s
statement is replaced with a statement context, and we write C[s] to denote the
processor configuration 〈g, 〈`, S[s]〉w, q〉. When e is an expression, we abbreviate
e(C[skip]) by e(C).

Figure 10 defines the transition relation →S for the standard sequential
program statements. The Skip rule simply steps past the skip statement. The
Assume rule proceeds only when the given expression e evaluates to true. The
Assign statement stores the value of a given expression in either the local variable
l or the global variable g. The If-Then and If-Else rules proceeds to either the
then or else branch, depending on the current valuation of the given expression
e. Similarly, the Loop-Do and Loop-End rules proceed to (re-)enter the loop
when the given expression e evaluates to true, and step past the loop when e
evaluates to false. More interestingly, the Call rule creates a new procedure
frame f by evaluating the given argument e, and places f at the top of the
procedure-frame stack. The Return rule removes the top-most procedure frame
from the stack, and substitutes the valuation of the return expression e into the
assignment x := ? left below by the matching call statement. Note that the
transition relation →S is non-deterministic, since the evaluation of an expression
e can result in an arbitrary set of possible values.

C Full Listing of Example Programs of Section 4

The first program P1(i), parameterized by i ∈ N, has a single Boolean global
variable b, i procedures named p1, . . . , pi, which assert b to be false and set b

17

Skip

C[skip; s]
S−→ C[s]

Assume
true ∈ e(C)

C[assume e]
S−→ C[skip]

Assign
v ∈ e(C)

C[x := e]
S−→ C[skip] (x← v)

If-Then
true ∈ e(C)

C[if e then s1 else s2]
S−→ C[s1]

If-Else
false ∈ e(C)

C[if e then s1 else s2]
S−→ C[s2]

Loop-Do
true ∈ e(C)

C[while e do s]
S−→ C[s;while e do s]

Loop-End
false ∈ e(C)

C[while e do s]
S−→ C[skip]

Call
v ∈ e(C) f = 〈v, sp〉

C[call x := p e]
S−→ C[x := ?] · f

Return
f = 〈`, S[return e]〉 v ∈ e(C · f)

C[x := ?] · f S−→ C[x := v]

Fig. 10. The single-processor transitions relation →S for the standard sequential pro-
gram statements.

to true, and i procedures named q1, . . . , qi which set b to false. Initially, P1(i)
sets b to false, and enters a loop in which each iteration posts some pj followed
by some qj . Since a qj task must be executed between each pj task, each of the
assertions are guaranteed to hold.

var b: bool

// for j = 1, . . . , i
proc pj ()

assert !b;

b := true;

return

// for j = 1, . . . , i
proc qj ()

b := false;

return

proc main ()

b := false;

while ? do
if ? then post p1 ()

else if ? then post p2 ()

..

else post pi ();

if ? then post q1 ()

else if ? then post q2 ()

..

else post qi ()

return

Figure 6a compares the time required to verify P1(i) (using the Boogie
verification engine [4]) for various values of i, and various bounds n on loop
unrolling.Note that although every execution of P1(i) has only 2 phases, to
explore all n loop iterations in any given execution, the size of queues must be at
least 2n, since two tasks are posted per iteration.

Our second program P2 is biased to support the bounded task-queue encoding.
P2 again has a single Boolean global variable b, and two procedures: p1 asserts

18

b to be false, sets b to true, and posts p2, while p2 sets b to false and posts
p1. Initially, the program P2 sets b to false and posts a single p1 task. Again
here, since a p2 task must execute between each p1 task, each of the assertions
are guaranteed to hold.

var b: bool

proc main ()

b := false;

post p1 ()

return

proc p1 ()

assert !b;

b := true;

post p2 ();

return

proc p2 ()

b := false;

post p1 ()

return

Figure 6b compares the time required to verify P2 for various bounds n on
the number of tasks explored. Note that although every execution of P2 uses only
size 1 task-queues, to explore all n tasks in any given execution, the number of
phases must be at least n, since each task must execute in its own phase.

D The Multi-Processor Breadth-First Scheduler

Here we define a deterministic, non-blocking, delay-accessible delaying scheduler
Mbfs which though perhaps odd from an operational point of view, has a very
useful application: given a multi-processor message-passing program P , the phase-
and delay-bounded executions of P according to Mbfs are simulated by executions
of a sequential program P ′; furthermore, P ′ is obtained by a simple code-to-code
translation of P which does not explicitly represent pending-task queues.

Let U be a set of identifiers uniquely identifying each task along an execution
with a single initially-pending task u0 ∈ U . Our scheduler keeps a monotonically
increasing phase number i ∈ N, along with an ordered task-posting tree T over
nodes U , a completion-labeling

√
: U → B, and a phase-labeling Φ : U → N.

Initially the tree contains a single node u0, with Φ(u0) = 0 and
√

(u0) = false.
As additional tasks are posted, we add them as children of the posting task, in
the order they are posted. Normally, the scheduler allows tasks to execute to
completion; when a task does complete, the scheduler marks it as completed.
When choosing the next task to execute, our scheduler selects the smallest—in
breadth-first order over the task-posting tree—unexecuted task in the current
phase; if there are no non-completed tasks in the current phase, the scheduler
moves to the next phase. In this way, the scheduler executes all tasks in phase
order, and same-phase tasks in breadth-first order of the task-posting tree.

To implement delaying, our scheduler also keeps a phase-delay counter ∆(ρ) :
N for each processor ρ. Supposing an executing task u has phase-i on a processor
whose phase-delay counter has current value j, the task u is treated as though
it is in phase i + j. When a processor is delayed, its phase-delay counter is
simply incremented; the effect is to shift all following tasks on the given processor
one additional phase later. Delaying causes the currently executing task to be
interrupted and resumed in the following phase.

19

Formally the Breadth-First Scheduler Mbfs = 〈D, empty, enabled, step, delay〉
is defined over scheduler objects m = 〈i, T,

√
, Φ,∆〉 ∈ D as described above;

the initial object is empty = 〈0, T0,
√

0, Φ0, ∆0〉, where T0 is the single-node tree
with root u0,

√
0(u) = false and Φ0(u) = 0 for all u ∈ U , and ∆0(ρ) = 0

for all ρ ∈ Pids. The enabled(〈i, T,
√
, Φ,∆〉 , ξ) operation uniquely returns the

processor identifier ρ of the smallest task u—according to the breadth-first order
of T—such that Φ(u) +∆(ρ) = i. The step(〈i1, T1,

√
1, Φ1, ∆〉 , ξ1, ξ2) operation

for a transition τ = ξ1(ρ)→S ξ2(ρ) returns 〈i2, T2,
√

2, Φ2, ∆〉 such that

– If τ is a Complete-step of task u, then
√

2 =
√

1(u 7→ true); otherwise√
2 =
√

1.
– If τ is a Post- or Self-Post-step of task u posting task u′, then T2 is

obtained from T1 by adding to u new a rightmost child u′, and Φ2 = Φ1(u′ 7→
Φ1(u) +∆(u)); otherwise, T2 = T1 and Φ2 = Φ1.

– If there no longer exists a non-completed task u on some processor ρ′ such
that Φ2(u) +∆(ρ′) = i1 then i2 = i1 + 1; otherwise i2 = i1.

The delay(〈i1, T,
√
, Φ,∆1〉 , ρ, ξ) operation returns 〈i2, T,

√
, Φ,∆2〉 such that

– ∆2 = ∆1 (ρ 7→ ∆1(ρ) + 1) increments ∆1’s mapping for processor ρ.
– If there no longer exists a non-completed task u on some processor ρ′ such

that Φ(u) +∆2(ρ′) = i1, then i2 = i1 + 1; otherwise i2 = i1.

According to our definition, Mbfs repeatedly picks a unique processor ρ to execute
such that ρ is non-idle or has pending tasks, and ρ’s first non-idle or pending
task u has the lowest offsetted phase Φ(u) +∆(ρ) of any task on any processor.

Note that Mbfs is a deterministic delaying scheduler which executes all tasks
of a given phase before any task of a subsequent phase. Since Mbfs must pick
an enabled task so long as there are pending tasks on some processor, Mbfs is
non-blocking. Finally, since for any i = Φ(u) +∆(ρ), repeatedly delaying every
other processor ρ′ 6= ρ eventually increments ∆(ρ′) such that for any pending u′

on ρ′, Φ(u′) +∆(ρ′) > i, Mbfs is delay accessible.
On non-delaying executions, Mbfs essentially performs a phase-by-phase

breadth-first traversal of the task-posting tree T—a tree which includes tasks
across all processors. Interestingly and essentially for our sequential encoding of
Mbfs in Section 5, on a per-phase basis, with respect to any individual processor,
the breadth-first traversal of the task-posting tree is identical to depth-first
traversal. This follows from the fact that no task may have a same-processor
ancestor in the same phase, and that processors do not share memory.

E Proofs to Selected Theorems

Theorem 3. The k-phase bounded state-reachability problem is undecidable for
multi-processor programs with finite data domains.

Proof. We proceed by reduction from Post’s correspondence problem [18]: given
words α1, . . . , αn, β1, . . . , βn ∈ Σ∗ of a finite alphabet Σ such that |Σ| ≥ 2, find

20

a sequence i1 . . . ik ∈ {1 . . . n}∗ such that αi1αi2 . . . αik = βi1βi2 . . . βik . For this
problem instance we build the following finite-data asynchronous message-passing
program with four processors ρ0, ρ1, ρ2, and ρ3:

var turn: {L, R}
var prev: Σ
var done[{L, R}]: B
var empty: B

proc hold (var side: {L, R}, x: Σ)
post ρ3 check (side, x);
return

proc check (var side: {L, R}, x: Σ)
assume side = turn;
assume !done[side];
assume turn = R => prev = x;
prev := x;
empty := false;
if turn = L then

turn := R
else

turn := L;
return

proc last (var side: {L, R})
post ρ3 last’ (side);
return

proc last’ (var side: {L, R})
assume turn = L;
done[side] := true;
return

proc main ()
while ? do

if ? then
post ρ1 hold (L, α1(1));
.. ;
post ρ1 hold (L, α1(|α1|));
post ρ2 hold (R, β1(1));
.. ;
post ρ2 hold (R, β1(|β1|));

... else
post ρ1 hold (L, αn(1));
.. ;
post ρ1 hold (L, αn(|αn|));
post ρ2 hold (R, βn(1));
.. ;
post ρ2 hold (R, βn(|βn|));

post ρ1 last (L);
post ρ2 last (R)
return

// initially on each processor
turn = L

and done[L] = done[R] = false
and empty = true

// check reachability to
done[L] = done[R] = true and empty = false

Initially, the main procedure is pending on processor ρ0.
In each loop iteration, main chooses a branch corresponding to an index

i ∈ {1 . . . n} and posts each symbol of αi individually and in order to ρ1, and
each symbol of βi individually and in order to ρ2. In this way, main sends to ρ1 the
sequence αi1 . . . αik , and to ρ2 the sequence βi1 . . . βik in k loop iterations, each
terminated by a last message. Each instance of the hold tasks which execute
on ρ1 and ρ2 simply propagate their symbol to ρ3. Using the global variable
turn, ρ3 ensures that he only sees symbols sent from ρ1 and ρ2 in alternating
order, starting with ρ1. Using the global variable prev, ρ3 ensures that each
symbol of βi1 . . . βik sent from ρ2 matches the previous symbol of αi1 . . . αik sent
from ρ1. Finally, if ρ3 receives both terminating last’ messages from ρ1 and ρ2
before another L-turn, then he has successfully checked the equality of sequences
αi1 . . . αik = βi1 . . . βik . Thus, when down[L] and done[R] are both set to true,
this means main was able to guess a solution i1 . . . ik to the correspondence
problem. ut

21

	Bounded Phase Analysis of Message-Passing Programs
	Introduction
	Asynchronous Message-Passing Programs
	Program Syntax
	Single-Processor Semantics
	Multi-Processor Semantics

	Phase-Bounded Execution
	Phase-Bounding for Single-Processor Programs
	Phase-Bounding for Multi-Processor Programs
	Related Work
	Conclusion
	Syntactic Extensions Used in Our Code Translations
	Multiple types.
	Multiple variables.
	Local variable declarations.
	Unused values.
	Unused branches.
	Increment.
	Let bindings.
	Arrays.

	Sequential Program Semantics
	Full Listing of Example Programs of Section 4
	The Multi-Processor Breadth-First Scheduler
	Proofs to Selected Theorems

