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Abstract 

Community structure discovery in complex networks is a quite challenging problem spanning many 

applications in various disciplines such as biology, social network and physics. Emerging from various 

approaches numerous algorithms have been proposed to tackle this problem. Nevertheless little 

attention has been devoted to compare their efficiency on realistic simulated data. To better 

understand their relative performances, we evaluate systematically eleven algorithms covering the 

main approaches. The Normalized Mutual Information (NMI) measure is used to assess the quality of 

the discovered community structure from controlled artificial networks with realistic topological 

properties. Results show that along with the network size, the average proportion of intra-community 

to inter-community links is the most influential parameter on performances. Overall, “Infomap” is the 

leading algorithm, followed by “Walktrap”, “SpinGlass” and “Louvain” which also achieve good 

consistency. 

 

Keywords: Complex Networks, Community Structure, Benchmark Graphs, Normalized Mutual 
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1. Introduction 

 
Complex networks have become a very popular modeling tool during the last decade. They allow 

studying a given system by representing its components and their relationships with nodes and links, 

respectively [1]. Complex network analysis helps surfacing the studied system properties which could 

not be discovered at first sight. One of the most prominent sub-domains in complex network analysis is 

community detection. A community is a cohesive subset of nodes with denser inner links, relatively to 

the rest of the network [2]. A community structure is a set of communities, or more precisely a 

partition of the network node set. This popular research topic has applications in many fields such as 

biology, social science, physics, computer science, business science, etc. Tens of algorithms have been 

proposed to deal with community structure discovery. They are based on a whole range of principles 

such as hierarchical clustering, optimization methods, graph partitioning, spectral properties of the 

network, and others.  

Authors traditionally test their community detection algorithms on benchmark graphs [3,4], artificial 

or from the real-world. However, limiting these tests to real-world networks can be considered as an 

issue for several reasons. First, obtaining such networks is a costly and difficult task, and determining 

reference communities can be done only by experts. The benchmarks consequently contain only a few 

graphs, and their communities are not always defined objectively. Second, a complex network is 

characterized by various topological properties such as its average degree, degree distribution, shortest 

average path, etc. As it is not possible to control these features in a real-world network the algorithm is 

tested on a very specific and limited set of features. Artificial networks seem to overcome these 

limitations, because it is possible to randomly generate many of them, while controlling their 

properties. All that is needed is a generative model able to produce networks with features similar to 

those of real-world networks. Of course, artificial networks must not be seen as a substitute to real-

world networks, but rather as a complement. The most popular generative model used to test 

community detection algorithms, has been defined by Newman and Girvan [5]. However, although 

widely used for comparative purposes [2,5-7], it is limited in terms of realism [8]. Indeed it generates 

small networks with equal size communities and the degrees of the nodes are approximately the same. 

To overcome these drawbacks several variants producing larger networks and communities with 

heterogeneous sizes have been defined. Although these implement some improvements on certain 



properties, they still lack some important real-world properties like power-law distributed community 

sizes. More recently, a different approach appeared, based on some rewiring process [8,9]. It increased 

the realism level even more by producing networks with power-law distributed degree. Among these 

works, the model proposed by Lancichinetti et al. [8], exhibits the most realistic properties. Indeed it is 

able to generate networks with controlled power-law degree and power-law community size 

distributions. This new benchmark graph allows revisiting the problem of community structure 

discovery algorithms comparison. Indeed, until now, there is no agreement about a set of reliable 

algorithms that one can use in applications. Furthermore little is known about the relationship between 

performances and networks parameters. This work aims to provide some answers on these issues of 

primary importance for applications. To do so, we explore a wide range of community detection 

methods originating from different approaches on a set of artificial networks with various size and 

topological properties. We use the normalized mutual information measure [10] to quantify the 

similarity between the original generated community structure and the one estimated by the algorithms 

and to assess the quality of algorithms under investigation. 

The rest of the paper is organized as follows. In section 2, we give an overview of the main families 

of community detection algorithms and present briefly some representative ones selected in order to 

perform our comparison. In section 3, we describe the network generation model used to create the 

artificial networks, and the normalized mutual information measure which allows us to assess the 

algorithms performances. In section 4, we present the results of the comparative evaluation and discuss 

the algorithms performances. We conclude in section 5 with some general observations. 

 

2. Community Detection Algorithms 

 
Identifying communities in a network is an important issue for many real-world applications in 

various scientific fields. Over the years, many methods have been devised to provide efficient 

community discovery algorithms. As the spectrum is wide, building taxonomy of solutions is not easy. 

They can be classified in different ways, and depending on the selected criteria, one algorithm can 

belong to more than one category. Here, we choose to focus on the process implemented by the 

algorithms. We consider this as their main characteristic, since it directly affects the nature of the 

detected communities. As a result, we group the algorithms in six different categories. In this section, 

we describe these categories and the representative set of algorithms we selected. 

  

2.1. Link-Centrality-Based Algorithms 
 

The algorithms based on link-centrality measures rely on a hierarchical divisive approach. Initially 

the whole network is seen as a single community, i.e. all nodes are in the same community. The most 

central links are then repeatedly removed. The underlying assumption is that these particular links are 

located between the communities. After a few steps, the network is split in several components which 

can be considered as communities in the initial network. Iterating the process, one can split each 

discovered community again, resulting in a finer community structure. This eventually leads to a 

network in which each node is isolated, and therefore constitutes its own community. By considering 

the communities detected at each step of the process, one obtains a hierarchy of community structures. 

The choice of the best one is generally performed using a measure estimating the quality of community 

structures, such as the modularity [2].  

Algorithms of this category differ in the way they select the links to be removed. The first and most 

known algorithm using this approach was proposed by Newman [5], and relies on the edge-

betweenness measure. It estimates the centrality of a link by considering the proportion of shortest 

paths going through it in the whole network. As the complexity of this algorithm is high, it is not well 

suited for very large networks. 

Radicchi et al. proposed a variation called Radetal [11], based on link transitivity instead of edge-

betweenness. This measure is defined as the number of triangles to which a given link belongs, divided 

by the number of triangles that might potentially include it. Its lower complexity makes it more 

appropriate for large networks. It is used as the representative of the link centrality based approach and 

will be referred as RA in the following. 



2.2. Modularity Optimization Algorithms 
 

Modularity is a prominent measure of the quality of a community structure introduced by Newman 

and Girvan [2]. It measures internal connectivity of identified communities with reference to a 

randomized null model with the same degree distribution. Modularity optimization algorithms try to 

find the best community structure in terms of modularity. They diverge on the optimization process 

they are based on. As this approach is very influential in the community detection literature we 

consider three algorithms for investigation. 

FastGreedy (FG) developed by Newman et al. [6] relies on a greedy optimization method applied to 

a hierarchical agglomerative approach. The agglomerative approach is symmetrical to the divisive one 

described in the previous subsection. In the initial state, each node constitutes its own community. The 

algorithm merges those communities step by step until only one remains, containing all nodes. The 

greedy principle is applied at each step, by considering the largest increase (or smallest decrease) in 

modularity as the merging criterion. Because of its hierarchical nature, FG produces a hierarchy of 

community structures like the divisive approaches. The best one is selected by comparing their 

modularity values. 

Louvain (LV) is another optimization algorithm proposed by Blondel et al. [12]. It is an 

improvement of FG, introducing a two-phase hierarchical agglomerative approach. During the first 

phase, the algorithm applies a greedy optimization to identify the communities. During the second 

phase, it builds a new network whose nodes are the communities found during the first phase. The 

intra-community links are represented by self-loops, whereas the inter-community links are aggregated 

and represented as links between the new nodes. The process is repeated on this new network, and 

stops when only one community remains.  

Spinglass (SG) by Reichardt and Bornholdt [13] relies on an analogy between a very popular 

statistical mechanic model called Potts spin glass, and the community structure. It applies the 

simulated annealing optimization technique on this model to optimize the modularity.  

 

2.3. Spectral Algorithms 
 

Spectral algorithms take advantage of various matrix representations of networks. Classic spectral 

graph partitioning techniques focus on the eigenvectors of the Laplacian matrix. They were designed to 

find the partition minimizing the links lying in-between node groups. However, these methods were 

designed for slightly different contexts (e.g. user-specified number of communities). For real-world 

complex networks, the community number is unknown. Thus, these methods are not efficient in our 

case. The methods we selected are variants adapted to complex networks analysis. 

Leading Eigenvector (LEV) is proposed by Newman [14]. It applies the classic graph partitioning 

approach, but to a so-called modularity matrix instead of the Laplacian. Doing so, it performs an 

optimization of the modularity instead of the objective measures used in classic graph partitioning, 

such as the minimal cut. 

Commfind (CF) is developed by Donetti and Muñoz [15]. It combines the analysis of the Laplacian 

matrix eigenvectors used in classic graph partitioning with a cluster analysis step. Instead of using the 

best eigenvector to iteratively perform bisections of the network, it takes advantage of the � best ones. 

Communities are obtained by a cluster analysis of the projected nodes in this �-dimensional space. 

 

2.4. Random-Walk-Based Algorithms 
 

Several algorithms use random walks in various ways to partition the network into communities. 

We retain two of them in our comparisons. 

Walktrap (WT) by Pons and Latapy [7] uses a hierarchical agglomerative method like FG but with a 

different merging criterion. Unlike FG, which relies on the modularity measure, WT uses a node-to-

node distance measure to identify the closest communities. This distance is based on the concept of 

random-walk. If two nodes are in the same community, the probability to get to a third one located in 

the same community through a random walk should not be very different for both of them. The 

distance is constructed by summing these differences over all nodes, with a correction for degree. 



MarkovCluster (MCL) simulates a diffusion process in the network to detect communities [16]. 

This method relies on the network transfer matrix, which describes the transition probabilities for a 

random walker evolving in this network. Two transformations; expansion and inflation are iteratively 

applied on this matrix until convergence. Expansion raises the transfer matrix to a power �. The result 
is a matrix showing the probability for a random walker to start from node � and reach node � in � 
steps. Inflation consists in raising each element in the matrix to some specified power, in order to favor 

the higher probability values. These correspond to nodes presumably belonging to the same 

community. The resulting matrix is then normalized to get a new transfer matrix, and the process is 

repeated until convergence. The final matrix can be interpreted as the adjacency matrix of a network 

with disconnected components, which correspond to communities in the original network. 

 

2.5. Information-Based Algorithms 

 
Information-Based algorithms use tools derived from the information theory to estimate the best 

partition of the network. The main idea of those approaches is to take advantage of the community 

structure in order to represent the network using less information than that encoded in the full 

adjacency matrix. We selected two algorithms from this category.  

Infomod (IND) was proposed by Rosvall and Bergstorm [17]. It is based on a simplified 

representation of the network focusing on the community structure: a community matrix and a 

membership vector. The former is an adjacency matrix defined at the level of the communities (instead 

of the nodes), and the latter associates each node to a community. The authors use the mutual 

information measure to quantify the amount of information from the original network contained in the 

simplified representation. They obtain the best partition by considering the representation associated to 

the maximal mutual information.  

Infomap (INP) is another algorithm developed by Rosvall and Bergstorm [18]. The community 

structure is represented through a two-level nomenclature based on Huffman coding: one to distinguish 

communities in the network and the other to distinguish nodes in a community. The problem of finding 

the best partition is expressed as minimizing the quantity of information needed to represent some 

random walk in the network using this nomenclature. With a partition containing few inter-community 

links, the walker will probably stay longer inside communities, therefore only the second level will be 

needed to describe its path, leading to a compact representation. The authors optimize their criterion 

using simulated annealing. 

 

2.6. Other Algorithms 
 

A number of algorithms do not fit in the previously described approaches. We selected the Label 

Propagation (LP) algorithm by Raghavan et al. [19], which uses the concept of node neighborhood and 

simulates the diffusion of some information in the network to identify communities. Initially, each 

node is labeled with a unique value. Then an iterative process takes place, where each node takes the 

label which is the most spread in its neighborhood (ties are broken randomly). This process goes on 

until convergence, i.e. each node has the majority label of its neighbors. Communities are then 

obtained by considering groups of nodes with the same label. By construction, one node has more 

neighbors in its community than in the others.  

 

3. Method  

 
3.1. Artificial Network Generation 

 
In many community detection works, artificial networks with a community structure are generated 

using models comparable to Newman and Girvan’s [5,6]. It produces networks with a degree following 

a Poisson distribution. Yet, it is well known that in most real-world networks, the degree follows a 

power-law distribution [1]. Networks with this property are called scale-free, because the shape of their 

degree distribution does not depend on their size (some other properties may, though). Moreover, in 



Newman and Girvan’s approach, all the communities have the same size, whereas in real-world 

networks, the community size is supposed to follow a power-law distribution too.  

Lancichinetti et al. proposed a new class of benchmark graph to generate undirected and 

unweighted networks with mutually exclusive communities [8]. We use the abbreviation LFR to refer 

to this model in the following. In the produced networks, nodes degrees and community sizes are both 

power-law distributed. Moreover, this method allows controlling directly the following parameters: 

number of nodes  � , desired average ��	  and maximum �
��  degrees, exponent   for the degree 

distribution, exponent �  for the community size distribution, and mixing coefficient  μ . The latter 
represents the desired average proportion of links between a node and nodes located outside its 

community, called inter-community links. Consequently, the proportion of intra-community links 

is 1– μ. It is generally not possible to meet this constraint exactly, and the mixing coefficient value is 

therefore only approximated in practice. It is an important parameter, because it determines how 

clearly the communities are defined in terms of structure. For small values, the communities are 

distinctly separated, whereas for high values, the network has almost no community structure, making 

community identification a difficult task. There is a limit value ( μ��
 ,) above which LFR cannot 

produce networks with a significant community structure (there is more inter-community than intra-

community links). This limit depends on the number of nodes in the whole network (�) and in the 
largest community (max����

�) [20]: 
 

μ��
 �
�� � max����

��
�

 
(1) 

 

The LFR algorithm proceeds in three-steps. First, it uses the configuration model to generate a 

network with average degree  ��	 , maximum degree �
��  and power-law degree distribution with 

exponent . Second, the nodes are affected to the communities so that their sizes follow a power-law 

distribution with exponent �. Third, an iterative process takes place to randomly rewire certain links, 

so that μ is approximated, but without changing the degree distribution.  

 

3.2. Performance Assessment 

 
The assessment of the quality must be reliable in order to compare efficiently the communities 

detected by the tested algorithms. We use artificial networks, whose communities are known a priori. 

In this context, it is possible to quantify the match between the actual and estimated communities 

through several different measures. Normalized mutual information (NMI) is a recent measure used in 

the context of classic cluster analysis, to compare two different partitions of the same data set [10]. 

Because of its widespread use and efficiency, we selected this measure to compare algorithms in this 

study. The measure is derived from a confusion matrix whose element ��� represents the number of 

nodes classified in community � by the considered algorithm, when they actually belong to community 

�. This matrix is usually rectangular, because the algorithm does not necessary estimate the correct 

number of communities. 

 

 !" �
�2 ∑ ∑ ��� log����� �∑ �� (� ∑ ����⁄ ���

∑ ��* log�∑ ��� �⁄ �� + ∑ �*� log�∑ ��� �⁄ ��
 

(2) 

 

NMI ranges from 0 to 1.If the estimated communities correspond perfectly to the actual ones, the 

measure takes the value 1. It is zero when the estimated communities are independent from the actual 

ones. 

 

4. Results & Discussion 
 

We generate a collection of networks using the LFR model. The parameter values we use are typical 

of measurements on real-world networks. Experimental studies show the  coefficient usually ranges 



from 2 to 3 [1]. The power-law parameter � for the community size distribution is known to range 

from 1 to 2 [2]. The average and maximal degrees generally depend on the number of nodes in the 

network. For a scale-free network, it is estimated to be ��	~�
��
/0*1

 and �
��~�2 �0/2�⁄  [1] respectively. 

The parameter values used in our experiments are indicated in Table 1. 

 

Table 1. Network generation parameters 

Parameter Value 

Node Number ��� 3100,500,1000,50006 

Average Degree ���	� 35,15,306 

Maximum Degree ��
��� 3 7 ��	 

Degree Distribution exponent �� 32, 36 

Community Size Distribution 

Exponent ��� 
31, 26 

Mixing Coefficient �μ� 80.05; 0.95< with a 0.05 step 

 

For each combination of parameters, we produce a sample containing 25 networks. We test the 

eleven community detection algorithms presented in section 2 on all generated samples and assess their 

partitioning performance using NMI. To compare them, we average the measured NMI values over the 

25  networks of each sample. We then analyze those results relatively to each parameter taken 

individually. The performance of the algorithms does not change considerably for different values of  
and �. To assess their influence, we calculate Pearson’s correlation between each parameter and the 

NMI values. According to these correlation values, the performance of the algorithms are not linked to 

� and . Indeed the correlation values are always less than 0.06 in absolute value. This is not the case 
for the mixing coefficient which is highly correlated to the performances, (correlations above 0.5).The 
average and maximum degrees as well have non-negligible influence if we refer to the correlation 

values (above 0.3). 
As expected, the parameter with the strongest effect on the algorithms performance is > . This 

parameter directly affects the community structure. One would expect a good algorithm to find a 

relatively correct community structure until μ��
 . In Figure 1, we represent the NMI variation as a 

function of mixing coefficient value for networks of size 5000. The largest observed community size 

is 700  for these networks, thus μ��
 � 0.86 . One can distinguish two distinct parts in this plot, 

separated by μ��
 . Above this value the generated networks have no community structure, and are 

therefore inappropriate for our study. Let’s focus on the values lower than μ��
. . For all the algorithms 

the performance decreases when the mixing coefficient increase. We can distinguish three different 

type of behavior according to the shape of variation (reverse sigmoid, linear, and irregular). Except for 

Radetal, Fast Greedy and Commfind, the curves representing the performance of the algorithms take 

the form of reverse sigmoid, with different slopes and inflection points. Among them, Infomap 

performs very well for a wide range of mixing coefficient value almost until it reaches μ��
 . This 

algorithm gives the best results in terms of NMI. Walktrap, Spinglass, and Label Propagation also 

display good, although lower performances. Louvain performance starts to decrease before the other 

algorithms, but it is still efficient. MarkovCluster performances start to decrease when > gets close to 
0.4. But, despite this behavior, the NMI value stays relatively high (around 0.8), even when > gets 
closer to 1. We observe more detailed the result of MarkovCluster for the second zone when the 

community structure is not well defined. We see that this algorithm finds many small communities 

including only one or two nodes. Although it does not finds appropriate communities with reference 

structure, the NMI values are quite high. This can be explained the sensitiveness of this measure to 

community sizes. Leading Eigenvector is clearly the less performing algorithm exhibiting a reverse 

sigmoid shape behavior. Even for small values of the mixing coefficient, it cannot find the exact 

community structure. Performances decrease more linearly for Commfind and FastGreedy. They can 

discover the exact community structure only when the communities are well separated. The curve 

representing the performance of Radetal is not regular. Like the linearly decreasing algorithms, its 

performance is good for well separated communities but the mixing coefficient increases its 



performance is not monotonic, and alternates between increases and decreases. When  the mixing 

coefficient gets closer to the limit, it undergoes a sudden drop like reverse sigmoid-shaped algorithms. 

If we consider its average performance, we see that Radetal does not perform as well as the algorithms 

having a reverse sigmoid shape but better than the linearly decreasing ones. 

 

 
Figure 1. The networks are generated with parameter values � � 5000, ≈3, � � 2, ��	 � 30. Each 

point corresponds to an average over 25 networks. The vertical line at µ � 0.86 represents the average 
limit above which communities stop being clearly separated. Performances are expressed in terms of 

NMI for 11 algorithms.  

 

We do not represent the standard deviation on the curves as it affects the overall readability of the 

figure. We nevertheless considered this information during the evaluation of the algorithms. All 

algorithms exhibit high standard deviation when the performance decreases. Additionally, standard 

deviation is overall generally higher for Leading Eigenvector, Commfind, Radetal and Label 

Propagation. Label Propagation is particularly erratic: when it is applied several times on the same 

network, it can output very different partitions. Besides, the density of the networks affects the 

consistency and performance of the algorithms too. All else being equal, the performance dispersion 

between sample networks increases as network density increases. We observe a similar behaviour for 

all algorithms when considering larger size networks. Nevertheless we observe three types of 

behaviour: performances can get better, worse or remains the same when the networks get larger. 

Infomap and Walktrap are already the best performing algorithms for smaller networks, and they 

perform better for larger ones. On the contrary, Radetal, Commfind, Leading Eigenvector, Louvain and 

Infomod perform worse. Radetal, Commfind, Leading Eigenvector cannot find the exact community 

structures and their performances start dropping before the mixing coefficient reaches the limit value 

(μ��
 � 0.86). This is not as true for Infomod and Louvain, but while they both can find exact 
community structures for lower network sizes, they cannot do the same thing for higher ones. The 

other algorithms performances stay the same. Fixing all other parameters and increasing network size 

in LFR model increases community number and community size heterogeneity. This may explain the 

observed differences between the different algorithms. In fact some algorithms may be more sensitive 

to the size of communities.  

The average degree parameter also affects the algorithms performances. Figure 2 displays the NMI 

values of Walktrap for different average degrees. We present here the most significant plot, but our 



comments are valid for all algorithms. For > B μ��
, we see that the higher the degree, the better the 

performance. This can be explained by the fact communities have a higher density due to the larger 

average degree. The parameter > determines the proportion of outer links to the total degree of a node. 

When the average degree increases for a fixed > , the total number of inter-community and intra-

community links increase. But the inter-community links are distributed between many different 

communities. That is why, the relative cohesion of communities increases. Thus, to discover the 

community structure is easier for the algorithms. However, if the network density exceeds a limit 

which depends on the network and community size, we cannot observe the same effect.  

 

 
Figure 2. The networks are generated with parameter values � � 5000, ≈3, � � 2, ��	 � 5,15,30. 
Each point corresponds to an average over 25 networks. The vertical line at µ � 0.86 represents the 
average limit above which communities stop being clearly separated. Performances are expressed in 

terms of NMI for Walktrap algorithm.  

 

Although it is somewhat risky to generalize from the study of a limited number of algorithms we 

can still learn something about the comparative performance of different categories of algorithms 

studied. First of all spectral and link-centrality-based algorithm’s partitioning performance is one step 

behind than other categories. Their performance depends on the network generation parameters very 

much. They are not only working with high dispersion for different network sizes and average degrees 

but also results worse. It is difficult to form an opinion as clear-cut on the behavior of modularity 

optimization and information-based algorithms categories. Indeed some algorithms from those 

categories (Infomod from information-based and FastGreedy from modularity optimization) do not 

work well while others give very satisfactory results. As for random-walk based category both 

algorithms under study perform well for a great range of parameter variations. They exhibit less 

dispersion and their performance does not change very much with average degree or network size 

changes. LabelPropagation which is the only representative of the other algorithms category exhibits 

different performance trend depending on network size. If we do not take into account its high standard 

deviation we may conclude that it is more suited to large network size.  

 
 



Computation time is also an important issue for practical applications. From this point of view 

LabelPropagation is the most effective. This algorithm works in linear time. Unfortunately it is 

characterized by a wide dispersion. Louvain and Infomap are not excessively time consuming. 

However, they still work almost %80  slower than LabelPropagation. Although the partitioning 

performances of Walktrap, MarkovCluster and Spinglass are good, those algorithms are very CPU 

intensive. This limits their use on large networks. 

 

5. Conclusion 
 

In this paper, we compared eleven different community detection algorithms. We used a set of 

artificial networks generated with the model defined by Lancichinetti et al. This model produces 

networks with a community structure, and power-law-distributed degree and community size. A 

specific parameter called mixing coefficient allows controlling the strength of the community structure. 

We used the normalized mutual information measure to assess the performance of the algorithms. Our 

results show variations of the mixing coefficient have a clear effect on the algorithms performances. 

Network size and average degree also affect the performances, to a lesser extent though. Other 

parameters of the model have a very limited effect. 

 In all cases Infomap outperforms all the other algorithms under investigation. It succeeds in 

identifying the communities even for high mixing coefficient values. Walktrap, MarkovCluster, 

SpinGlass and Louvain also have an excellent performance level, although not as good. Leading 

Eigenvector and Commfind are clearly outclassed. Label Propagation exhibits very different results for 

sample networks generated with the same parameters values. The network size and the average degree 

are two other parameters which influence algorithms performance. When the network size increases, 

some algorithms (Infomap, Infomod, Louvain) perform better, some others perform worse (Commfind, 

SpinGlass, LeadingEigenvector, Louvain, Radetal) and for the rest of the algorithms (Walktrap, 

FastGreedy, MarkovCluster), the performances does not change. For all algorithms, the higher the 

degree, the better the performance.  

To assess the quality of community structure discovery algorithms, we rely on the normalized 

mutual information. However this measure, which is commonly used in the context of classical, 

clustering to compare two different partitions, does not take into account the topological properties of 

the compared community structures. A natural extension of this work consists of investigating this 

complementary aspect. In the future, we plan to use community-oriented topological measures to 

compare the community structure revealed by competing algorithms. The interest of such an approach 

is to shed additional light on the present evaluation. 

 

6. References 

 
[1] Mark Newman, “The structure and function of complex networks”, SIAM Review, vol. 45, pp. 

167-256, 2003. 

[2] Mark Newman, Michelle Girvan, “Finding and evaluating community structure in networks”, 

Physical Review E, vol. 69, no. 2, p. 026113, 2004. 

[3] Dongming Chen, Jing Wang, Xiaodong Chen, Xiaowei Xu, “A Search Algorithm for Clusters in a 

Network or Graph”, JDCTA: International Journal of Digital Content Technology and its 

Applications, vol. 4, no. 6, pp. 115-122, 2010. 

[4] Sheng Bin, Gengxin Sun, “An Algorithm for Detecting Community Structure of Complex 

Networks based on Clustering”, JDCTA: International Journal of Digital Content Technology and 

its Applications, vol. 5, no. 7, pp. 326-334, 2011. 

[5] Michelle Girvan, Mark Newman, “Community structure in social and biological networks”, 

Proceedings of the National Academy of Sciences of the United States of America, vol. 99, no. 12, 

pp. 7821-7826, 2002. 

[6] Mark Newman, “Fast algorithm for detecting community structure in networks”, Physical Review 

E, vol. 69, no. 6, p. 066133, 2004. 

[7] Pascal Pons, Matthieu Latapy, “Computing communities in large networks using random walks”, 

Computer and Information Sciences - Iscis 2005, Proceedings, vol. 3733, pp. 284-293, 2005. 



[8] Andrea Lancichinetti, Santo Fortunato, Filippo Radicchi, “Benchmark graphs for testing 

community detection algorithms”, Phys Rev E, vol. 78, no. 4 Pt 2, p. 046110, 2008. 

[9] James Bagrow, “Evaluating local community methods in networks”, Journal of Statistical 

Mechanics: Theory and Experiment, vol. 2008, no. 05, p. P05001, 2008. 

[10] Ana L. N. Fred, Anil K. Jain, “Robust Data Clustering”, in IEEE Computer Society Conference on 

Computer Vision and Pattern Recognition. vol. 2: IEEE Computer Society, 2003, pp. 128-136.. 

[11] Filippo Radicchi, Claudio Castellano, Federico Cecconi, Vittorio Loreto, and Domenico Parisi, 

“Defining and identifying communities in networks”, Proceedings of the National Academy of 

Sciences of the United States of America, vol. 101, no. 9, pp. 2658-2663, 2004. 

[12] Vincent D. Blondel, Jean-Loup Guillaume, Renaud Lambiotte, Etienne Lefebvre, “Fast unfolding 

of communities in large networks”, J Stat Mech, p. P10008, 2008. 

[13] Jörg Reichardt, Stefan Bornholdt, “Statistical mechanics of community detection”, Phys. Rev. E, 

vol. 74, no. 1, p. 016110, 2006. 

[14] Mark Newman, “Finding community structure in networks using the eigenvectors of matrices”, 

Physical Review E, vol. 74, no. 3, pp. -, 2006. 

[15] Luca Donetti, Miguel Munoz, “Improved spectral algorithm for the detection of network 

communities”, arXiv, vol. physics/0504059v1, 2005. 

[16] Stijn van Dongen, “Graph clustering via a discrete uncoupling process”, SIAM J Matrix Anal 

Appl, vol. 30, no. 1, pp. 121-141, 2008. 

[17] Martin Rosvall, Carl Bergstrom, “An information-theoretic framework for resolving community 

structure in complex networks”, Proceedings of the National Academy of Sciences of the United 

States of America, vol. 104, no. 18, pp. 7327-7331, 2007. 

[18] Martin Rosvall, Carl Bergstrom, “Maps of random walks on complex networks reveal community 

structure”, Proceedings of the National Academy of Sciences, vol. 105, no. 4, p. 1118, 2008. 

[19] Usha Nandini Raghavan, Réka Albert, Soundar Kumara, “Near linear time algorithm to detect 

community structures in large-scale networks”, Phys. Rev. E, vol. 76, no. 3, p. 036106, 2007. 

[20] Andrea Lancichinetti, Santo Fortunato, “Benchmarks for testing community detection algorithms 

on directed and weighted graphs with overlapping communities”, Phys. Rev. E, vol. 80, no. 1, p. 

016118, 2009. 

 

 


