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ABSTRACT 

The selection of the best classification algorithm for a given dataset is a very 

widespread problem, occuring each time one has to choose a classifier to solve a 

real-world problem. It is also a complex task with many important methodological 

decisions to make. Among those, one of the most crucial is the choice of an 

appropriate measure in order to properly assess the classification performance and 

rank the algorithms. In this article, we focus on this specific task. We present the 

most popular measures and compare their behavior through discrimination plots. 

We then discuss their properties from a more theoretical perspective. It turns out 

several of them are equivalent for classifiers comparison purposes. Futhermore. 

they can also lead to interpretation problems. Among the numerous measures 

proposed over the years, it appears that the classical overall success rate and 

marginal rates are the more suitable for classifier comparison task. 

 

Keywords: Classification, Accuracy Measure, Classifier Comparison, 

Discrimination Plot. 

 

 

1 INTRODUCTION 

 

 The comparison of classification algorithms is 

a complex and open problem. First, the notion of 

performance can be defined in many ways: 

accuracy, speed, cost, readability, etc. Second, an 

appropriate tool is necessary to quantify this 

performance. Third, a consistent method must be 

selected to compare the measured values.  

 As performance is most of the time expressed 

in terms of accuracy, we focus on this point in this 

work. The number of accuracy measures appearing 

in the classification literature is extremely large. 

Some were specifically designed to compare 

classifiers , but most were initially defined for other 

purposes, such as measuring the association 

between two random variables [2], the agreement 

between two raters [3] or the similarity between 

two sets [4]. Furthermore, the same measure may 

have been independently developed by different 

authors, at different times, in different domains, for 

different purposes, leading to very confusing 

typology and terminology. Besides its purpose or 

name, what characterizes a measure is the definition 

of the concept of accuracy it relies on. Most 

measures are designed to focus on a specific aspect 

of the overall classification results [5]. This leads to 

measures with different interpretations, and some 

do not even have any clear interpretation. Finally, 

the measures may also differ in the nature of the 

situations they can handle [6]. They can be 

designed for binary (only two classes) or multiclass 

(more than two classes) problems. They can be 

dedicated to mutually exclusive (one instance 

belongs to exactly one class) or overlapping classes 

(one instance can belong to several classes) 

situations. Some expect the classifier to output a 

discrete score (Boolean classifiers), whereas other 

can take advantage of the additional information 

conveyed by a real-valued score (probabilistic or 

fuzzy classifiers). One can also oppose flat (all 

classes on the same level) and hierarchical 

classification (a set of classes at a lower level 

constitutes a class at a higher level). Finally, some 

measures are sensitive to the sampling design used 

to retrieve the test data [7]. 

 Many different measures exist, but yet, there is 

no such thing as a perfect measure, which would be 

the best in every situation [8]: an appropriate 

measure must be chosen according to the 

classification context and objectives. Because of the 

overwhelming number of measures and of their 

heterogeneity, choosing the most adapted one is a 

difficult problem. Moreover, it is not always clear 

what the measures properties are, either because 

they were never rigorously studied, or because 



 

specialists do not agree on the question (e.g. the 

question of chance-correction [9]). Maybe for these 

reasons, authors very often select an accuracy 

measure by relying on the tradition or consensus 

observed in their field. The point is then more to 

use the same measure than their peers rather than 

the most appropriate one. 

 In this work, we reduce the complexity of 

choosing an accuracy measure by restraining our 

analysis to a very specific but widespread, situation. 

We discuss the case where one wants to select the 

best classification algorithm to process a given data 

set [10]. An appropriate way to perform this task 

would be to study the data properties first, then to 

select a suitable classification algorithm and 

determine the most appropriate parameter values, 

and finally to use it to build the classifier. But not 

everyone has the statistical expertise required to 

perform this analytic work. Therefore, in practice, 

the most popular method consists in sampling a 

training set from the considered population, 

building various classifiers with different 

classification algorithms and/or parameters, and 

then comparing their performances empirically on 

some test sets sampled from the same population. 

Finally, the classifier with highest performance is 

selected and used on the rest of the population. 

 We will not address the question of the method 

used to compare performances. Instead, we will 

discuss the existing accuracy measures and their 

relevance to our specific context. We will be 

focusing on comparing basic classifiers, outputting 

discrete scores for flat mutually-exclusive classes. 

Throughout this paper, we will make the following 

assumptions linked to our context. First, as we want 

to discriminate some classifiers, if two measures 

rank them similarly, we consider these measures as 

equivalent, even if they do not return the exact 

same accuracy values. Second, since we compare 

some classifiers on the same dataset, the class 

proportions in the processed data are fixed. 

 In the next section, we review the works 

dealing with similar problems. We then introduce 

the notations used in the rest of the paper in section 

3. In section 4, we review the main measures used 

as accuracy measures in the classification literature. 

In section 5, we compare them empirically, by 

considering some typical cases. In section 6, we 

introduce the notion of discrimination plot to 

compare and analyze the behavior of the measures. 

Finally, in section 7, we compare their functional 

properties and discuss their relevance relatively to 

our specific case. 

 

2 RELATED WORKS 

 

 Several previous works already compared 

various measures, but with different purposes or 

methods. In [11], Congalton described the various 

aspects of accuracy assessment and compared a few 

measures in terms of functional traits. However, the 

focus is rather on estimating the quality of a single 

classifier than on comparing several of them. In 

other words, the discussion concerns whether or not 

the value of a given measure is close to the studied 

classifier actual accuracy, and not on the ability of 

this measure to discriminate between classifiers. 

 Ling et al. defined the notions of consistency 

and discriminancy to compare measures [12]. They 

stated two measures are consistent if they always 

discriminate algorithms similarly. A measure is 

more discriminant than the other if it is the only one 

(of the two) sensitive to differences in the processed 

data. The authors use these concepts to compare 2 

widespread measures. The notion of consistency 

fits the previous definition of measure equivalence 

we adopted in our specific context. However, Ling 

et al.’s focus is on real-valued output scores and 

binary classification problems. 

 In [13], Flach compared 7 measures through 

the use of ROC plots. He studied how these 

measures behave when varying the classes relative 

proportions in the dataset. For this purpose, he 

considered the isometrics of a given measure (i.e. 

the zones of the ROC space for which the measure 

returns the same value), and investigated how 

changes in the class proportions affect them. He 

defined the equivalence of two measures in the 

context of classifiers comparison in a way relatively 

similar to Ling et al.’s consistency [12]. His work 

also focused on binary problems. 

 Sokolova & Lapalme considered 24 measures, 

on both binary and multiclass problems (and others) 

[6]. They studied the sensitivity of these measures 

to specific changes in the classified dataset 

properties. Using the same general idea than Flach 

[13] (isometrics), they developed the notion of 

invariance, by identifying the changes in the 

confusion matrix which did not affect the measure 

value. Note they focused on class-specific changes. 

The measures were compared in terms of 

invariance: two measures are said to be similar if 

they are invariant to the same modifications. This is 

stricter than what we need in our context, since 

some modification might change the accuracy but 

not the algorithms relative ranking. 

 In [14], Albatineh et. al performed an analytical 

study of 28 accuracy measures. They considered 

these measures in the context of cluster analysis 

accuracy assessment, but the 22  confusion 

matrices they analyzed are similar to those obtained 

for binary classification problems. They showed 

many of the considered measures are equivalent (i.e. 

return the same values) when a correction for 

chance (cf. section 4.6) is applied. Besides the fact 

the authors focus on binary problems, this work 

also differs from ours because of the much stricter 

notion of equivalence: two measures can provide 

different values but rank classifiers similarly. 

Moreover, the relevance of chance correction has 



 

yet to be discussed in our context. 

 By opposition to the previous analytical works, 

a number of authors adopted an empirical approach. 

The general idea is to apply several classifiers to a 

selection of real-world data sets, and to process 

their accuracy through various measures. These are 

then compared in terms of correlation. Caruana & 

Niculescu-Mizil adopted this method to compare 9 

accuracy measures [15], but their focus was on 

binary classification problems, and classifiers able 

to output real-valued scores (by opposition to the 

discrete scores we treat here). Liu et al. [16] and 

and Ferri et al. [17] considered 34 and 18 measures, 

respectively, for both binary and multiclass 

problems (amongst others). The main limitation 

with these studies is they either use data coming 

from a single applicative domain (such as remote 

sensing in [16]), or rely on a small number of 

datasets (7 in [15] and 30 in [17]). In both cases, 

this prevents a proper generalization of the obtained 

observations. Ferri et al. completed their empirical 

analysis by studying the effect of various types of 

noise on the measures, through randomly generated 

data. However their goal was more to characterize 

the measures sensitivity than to compare them 

directly. 

 

3 NOTATIONS AND TERMINOLOGY 

 

 Consider the problem of estimating k  classes 

for a test set containing n  instances. The true 

classes are noted 
iC , whereas the estimated classes, 

as defined by the considered classifier, are noted 

iĈ  ( ki1 ). The proportion of instances 

belonging to class 
iC  in the dataset is noted i . 

 Most measures are not processed directly from 

the raw classifier outputs, but from the confusion 

matrix built from these results. This matrix 

represents how the instances are distributed over 

estimated (rows) and true (columns) classes. 

 

Table 1: a general confusion matrix. 

 

 1C    kC  

1Ĉ  11p    kp1
 

        

kĈ  1kp    kkp  

 

 In Table 1, the terms 
ijp  ( kji,1 ) 

correspond to the proportion of instances estimated 

to be in class number i  by the classifier (i.e. 
iĈ ), 

when they actually belong to class number j  (i.e. 

jC ). Consequently, diagonal terms ( ji ) 

correspond to correctly classified instances, 

whereas off-diagonal terms ( ji ) represent 

incorrectly classified ones. Note some authors 

invert estimated and true classes, resulting in a 

transposed matrix [13, 18].  

 The sums of the confusion matrix elements 

over row i  and column j  are noted 
ip  and 

jp , 

respectively, so we have 
jjp . 

  When considering one class i  in particular, one 

may distinguish four types of instances: true 

positives (TP) and false positives (FP) are instances 

correctly and incorrectly classified as 
iĈ , whereas 

true negatives (TN) and false negatives (FN) are 

instances correctly and incorrectly not classified as 

iĈ , respectively. The corresponding proportions 

are defined as 
iiTP pp , 

iiiFN ppp , 

iiiFP ppp  and 
FNFPTPTN pppp 1 , 

respectively. 

 Note some authors prefer to define the 

confusion matrix in terms of counts rather than 

proportions, using values of the form 
ijij npn . 

Since using proportions is generally more 

convenient when expressing the accuracy measures, 

we prefer to use this notation in this article. 

  

4 SELECTED MEASURES 

 

In this section, we describe formally the most 

widespread measures used to compare classifiers in 

the literature. These include association measures, 

various measures based on marginal rates of the 

confusion matrix, and chance-corrected agreement 

coefficients. Since these can be described according 

to many traits, there are as many typologies as 

authors. In this article, we will mainly oppose class-

specific measures, i.e. those designed to assess the 

accuracy of a single class, and multiclass measures, 

able to assess the overall classifier accuracy. Note 

the class-specific ones generally correspond to 

measures defined for binary problems and applied 

on multiclass ones. 

 

4.1 Nominal Association Measures 

 A measure of association is a numerical index, 

a single number, which describes the strength or 

magnitude of a relationship. Many association 

measures were used to assess classification 

accuracy, such as: chi-square-based measures 

( coefficient, Pearson’s C , Cramer’s V , etc. [2]), 

Yule’s coefficients, Matthew’s correlation 

coefficient, Proportional reduction in error 

measures (Goodman & Kruskal’s  and , Theil’s 

uncertainty coefficient, etc.), mutual information-

based measures [19] and others. Association 



 

measures quantify how predictable a variable is 

when knowing the other one. They have been 

applied to classification accuracy assessment by 

considering these variables are defined by the 

distributions of instances over the true and 

estimated classes, respectively. 

 In our context, we consider the distribution of 

instances over estimated classes, and want to 

measure how much similar it is to their distribution 

over the true classes. The relationship assessed by 

an association measure is more general [2], since a 

high level of association only means it is possible to 

predict estimated classes when knowing the true 

ones (and vice-versa). In other terms, a high 

association does not necessary correspond to a 

match between estimated and true classes. For 

instance, if one considers a binary classification 

problem, both perfect classification and perfect 

misclassification give the same maximal 

association value. 

 

Table 2: confusion matrix displaying a case of 

perfect misclassification leading to a maximal 

association measure. 

 

 1C  
2C  3C  

1Ĉ  0.00 0.00 0.33 

2Ĉ  0.33 0.00 0.00 

3Ĉ  0.00 0.34 0.00 

 

 Consequently, a confusion matrix can convey 

both a low accuracy and a high association at the 

same time (as shown in Table 2), which makes 

association measures unsuitable for accuracy 

assessment.  

  

4.2 Overall Success Rate 

 Certainly the most popular measure for 

classification accuracy [20], the overall success 

rate is defined as the trace of the confusion matrix: 

 
k

i

iipOSR
1

 (1) 

 

 This measure is multiclass, symmetrical, and 

ranges from 0 (perfect misclassification) to 1 

(perfect classification). Its popularity is certainly 

due to its simplicity, not only in terms of processing 

but also of interpretation, since it corresponds to the 

observed proportion of correctly classified 

instances. 

 

4.3 Marginal Rates 

 We gather under the term marginal rates a 

number of widely spread asymmetric class-specific 

measures. The TP Rate and TN Rate are both 

reference-oriented, i.e. they consider the confusion 

matrix columns (true classes). The former is also 

called sensitivity [20], producer’s accuracy [11] and 

Dice’s asymmetric index [21]. The latter is 

alternatively called specificity [20]. 

 

FNTPTPi pppTPR  (2) 

FPTNTNi pppTNR  (3) 

 

 The estimation-oriented measures, which focus 

on the confusion matrix rows (estimated classes), 

are the Positive Predictive Value (PPV) and 

Negative Predictive Value (NPV) [20]. The former 

is also called precision [20], user’s accuracy [11] 

and Dice’s association index [21]. 

 

FPTPTPi pppPPV  (4) 

FNTNTNi pppNPV  (5) 

 

 TNR and PPV are related to type I error (FP) 

whereas TPR and NPV are related to type II error 

(FN). All four measures range from 0 to 1, and their 

interpretation is straightforward. TPR (resp. TNR) 

corresponds to the proportion of instances 

belonging (resp. not belonging) to the considered 

class and actually classified as such. PPV (resp. 

NPV) corresponds to the proportion of instances 

predicted to belong (resp. not to belong) to the 

considered class, and which indeed do (resp. do 

not). 

 Finally, note some authors use the 

complements of these measures. For instance, the 

False Positive Rate 
ii TNRFPR 1  is also called 

fallout [22] or false alarm rate [23], and is notably 

used to build ROC curves [20].  

 

4.4 F-measure and Jaccard Coefficient 

 The F-measure corresponds to the harmonic 

mean of PPV and TPR [20], therefore it is class-

specific and symmetric. It is also known as F-score 

[15], Sørensen’s similarity coefficient [24], Dice’s 

coincidence index [21] and Hellden’s mean 

accuracy index [25]: 

 

FPFNTP

TP

ii

ii
i

ppp

p

TPRPPV

TPRPPV
F

2

2
2  (6) 

 

 It can be interpreted as a measure of 

overlapping between the true and estimated classes 

(other instances, i.e. TN, are ignored), ranging from 

0 (no overlap at all to 1 (complete overlap). 

 The measure known as Jaccard’s coefficient of 

community was initially defined to compare sets [4], 

too. It is a class-specific symmetric measure 

defined as: 

 



 

FNFPTPTPi ppppJCC  (7) 

 

 It is alternatively called Short’s measure [26]. 

For a given class, it can be interpreted as the ratio 

of the estimated and true classes intersection to 

their union (in terms of set cardinality). It ranges 

from 0 (no overlap) to 1 (complete overlap). It is 

related to the F-measure [27]: 
iii FFJCC 2 , 

which is why we describe it in the same section. 

 

4.5 Classification Success Index 

 The Individual Classification Success Index 

(ICSI), is a class-specific symmetric measure 

defined for classification assessment purpose [1]: 

 

1

111

ii

iii

TPRPPV

TPRPPVICSI
 (8) 

 

 The terms 
iPPV1  and 

iTPR1  correspond 

to the proportions of type I and II errors for the 

considered class, respectively. ICSI is hence one 

minus the sum of these errors. It ranges from –1 

(both errors are maximal, i.e. 1) to 1 (both errors 

are minimal, i.e. 0), but the value 0 does not have 

any clear meaning. The measure is symmetric, and 

linearly related to the arithmetic mean of TPR and 

PPV, which is itself called Kulczynski’s measure 

[28]. 

 The Classification Success Index (CSI) is an 

overall measure defined simply by averaging ICSI 

over all classes [1]. 

 

4.6 Agreement Coefficients 

 A family of chance-corrected inter-rater 

agreement coefficients has been widely used in the 

context of classification accuracy assessment. It 

relies on the following general formula: 

 

eeo PPPA 1  (9) 

 

 Where 
oP  and 

eP  are the observed and 

expected agreements, respectively. The idea is to 

consider the observed agreement as the result of an 

intended agreement and a chance agreement. In 

order to get the intended agreement, one must 

estimate the chance agreement and remove it from 

the observed one. 

 Most authors use OSRPo
, but disagree on 

how the chance agreement should be formally 

defined, leading to different estimations of 
eP . For 

his popular kappa coefficient (CKC), Cohen used 

the product of the confusion matrix marginal 

proportions [3]: 

i

iie ppP . Scott’s pi 

coefficient (SPC) relies instead on the class 

proportions measured on the whole data set (or its 

estimation), noted 
ip  [29]: 

2

i

ie pP . Various 

authors, including Maxwell for his Random Error 

(MRE) [30], made the assumption classes are 

evenly distributed: kPe 1 . 

 The problems of assessing inter-rater 

agreement and classifier accuracy are slightly 

different though. Indeed, in the former, the true 

class distribution is unknown, whereas in the latter 

it is completely known. Both raters are considered 

as equivalent and interchangeable, in the sense they 

are both trying to estimate the true classes. On the 

contrary, in our case, the classes estimated by the 

classifier are evaluated relatively to the true classes. 

The correction for chance strategies presented 

above are defined in function of this specific trait of 

the inter-rater agreement problem. They might not 

be relevant in our situation.  

  

4.7  Ground Truth Index 

 Türk’s Ground Truth Index (GTI) is another 

chance-corrected measure, but this one was defined 

specially for classification accuracy assessment 

[18]. Türk supposes the classifier has two 

components: one is always correct, and the other 

classify randomly. For a given class 
jC , a 

proportion 
j
 of the instances are supposed to be 

classified by the infallible classifier, and therefore 

put in 
jĈ . The remaining instances (i.e. a 

proportion 
jjb 1 ) are distributed by the 

random classifier over all estimated classes 

(including 
jĈ ) with a probability 

ia  for 
iĈ . In 

other words, according to this model, each off-

diagonal term of the confusion matrix can be 

written as a product of the form 
jiij bap  ( ji ). 

This corresponds to the hypothesis of quasi-

independence of non-diagonals  of Goodman, 

whose iterative proportional fitting method allows 

estimating 
ia  and 

jb .  

 Türk based his GTI  on the general formula 

of Eq. (9), but unlike the previously presented 

agreement coefficients, he uses 
io TPRP  

and
ie aP . He therefore designs a class-specific 

measure, corresponding to a chance-corrected 

version of the TPR. It is interpreted as the 

proportion of instances the classifier will always 

classify correctly, even when processing other data. 

The way this measure handles chance correction is 

more adapted to classification than the agreement 

coefficients [27]. However, it has several 

limitations regarding the processed data: it cannot 

be used with less than three classes, or on perfectly 

classified data, and most of all it relies on the quasi-

independence hypothesis. This condition is 



 

extremely rarely met in practice (e.g. less than 10% 

of the real-world cases considered in [16]). For this 

reason we will not retain the GT index in our study. 

 

 Finally, Table 3 displays the measures selected 

to be studied more thoroughly in the rest of this 

article, with their main properties 

 

Table 3: selected accuracy measures and their main 

properties: focus (either multiclass –MC– or class-

specific –CS), chance-corrected, symmetrical and 

range. 

 

Name Focus Ch. Sym. Range 

OSR MC No Yes 1;0  

TPR CS No No 1;0  

TNR CS No No 1;0  

PPV CS No No 1;0  

NPV CS No No 1;0  

F-meas. CS No No 1;0  

JCC CS No No 1;0  

ICSI CS No No 1;1  

CSI MC No No 1;1  

CKP MC Yes Yes 1;  

SPC MC Yes Yes 1;  

MRE MC Yes Yes 
1;

1

1

k
 

 

5 CASE STUDIES 

 

 In this section, we discuss the results obtained 

on a few confusion matrices in order to analyze the 

properties and behavior of the measures reviewed 

in the previous section. We first consider extreme 

cases, i.e. perfect classification and 

misclassification. Then study a more realistic 

confusion matrix including a few classification 

errors. 

 

5.1 Extreme Cases 

 

 All measures agree to consider diagonal 

confusion matrices such as the one presented in 

Table 4 as the result of a perfect classification. In 

this case, the classifier assigns each instance to its 

true class and the measure reaches its maximal 

value.  

 A perfect misclassification corresponds to a 

matrix whose trace is zero, as shown in Tables 2 

and 5. In this case, the measures diverge. Their 

behavior depends on the way they consider the 

distribution of errors over the off-diagonal cells. 

OSR is not sensitive to this distribution since only 

the trace of the confusion matrix is considered. TPR, 

PPV, JCC and F-measure are not concerned neither, 

since having no TP automatically causes these 

measure to have a zero value. CSI consequently 

always reach its minimal value too, since it depends 

directly on TPR and PPV, and so does ICSI. 

 

Table 4: A confusion matrix illustrating a case of 

perfect classification. 

 

 1C  
2C  3C  

1Ĉ  0.33 0.00 0.00 

2Ĉ  0.00 0.34 0.00 

3Ĉ  0.00 0.00 0.33 

 

 The chance-corrected measures are affected 

according to the model of random agreement they 

are based upon. For the misclassification case 

depicted by Table 2, all of them have the same 

value 0.5. But for the misclassification case 

observed in Table 5, we obtain the following 

values: 43.0CKC , 61.0SPC  and 

50.0MRE . This is to compare with the 

previously cited measures, which do not 

discriminate these two cases of perfect 

misclassification. 

 

Table 5: A confusion matrix illustrating a case of 

perfect misclassification. 

 

 1C  
2C  3C  

1Ĉ  0.00 0.10 0.10 

2Ĉ  0.30 0.00 0.10 

3Ĉ  0.20 0.20 0.00 

 

 TNR and NPV react differently to the perfect 

misclassification case. Indeed, they are both related 

to the number of TN, which might not be zero even 

in case of perfect misclassification. In other words, 

provided each class is represented in the considered 

dataset, these measures cannot reach their minimal 

value for all classes in case of perfect 

misclassification. For instance, in Table 5 

6.01TNR  because 60% of the non-
1C  instances 

are not classified as 
1Ĉ . 

 

5.2 Intermediate Cases 

 

 Let us consider the confusion matrix displayed 

in Table 6, whose associated accuracy values are 

given in Table 7. We focus on the marginal rates 

first, beginning with the first class. The very high 



 

TPR indicates the classifier is good at classifying 

instances belonging to 
1C  (91% of them are placed 

in 
1Ĉ ), but not as much for instances belonging to 

other classes (lower TNR: only 79% of the non-
1C  

instances are not put in 
1Ĉ ). The predictive rates 

address the quality of the estimated classes, 

showing the classifier estimation is reliable for 

classes other than 
1Ĉ  (high NPV, 95% of the non-

1Ĉ  instances actually do not belong to 
1C ), but not 

as much for 
1Ĉ  (lower PPV, only 68% of the 

instances in 
1Ĉ  actually belong to 

1C ). 

 

Table 6: A confusion matrix illustrating an 

intermediate case of classification. The classifier is 

weaker for the second class. 

 

 1C  
2C  3C  

1Ĉ  0.30 0.12 0.02 

2Ĉ  0.02 0.19 0.01 

3Ĉ  0.01 0.03 0.30 

 

 The third class is interesting, because the other 

values in its column are the same as for the first 

class, whereas those on its row are better (i.e. 

smaller). The first observation explains why its 

TPR and NPV are similar to those of the first class, 

and the second why its TNR and PPV are higher. In 

other words, the classifier is better as classifying 

instances not belonging to 
3C  (higher TNR, 94% of 

the non-
3C  instances are not put in 

3Ĉ ) and the 

estimated class 
3Ĉ  is much more reliable (higher 

PPV, 88% of the instances in 
3Ĉ  actually belong to 

3C ). 

 

Table 7: accuracy values associated with the 

confusion matrix of Table 6. 

 Cls.1 Cls.2 Cls.3 Multi. 

OSR - - - 0.79 

TPR 0.91 0.56 0.91 - 

TNR 0.79 0.95 0.94 - 

PPV 0.68 0.86 0.88 - 

NPV 0.95 0.81 0.95 - 

F-meas. 0.78 0.68 0.90 - 

JCC 0.64 0.51 0.81 - 

(I)CSI 0.59 0.42 0.79 0.60 

CKP - - - 0.69 

SPC - - - 0.68 

MRE - - - 0.69 

 

 Finally, let us consider the second class, which 

is clearly the weakest for this classifier. The low 

TPR indicates the classifier has trouble recognizing 

all instances from 
2C  (only 56% are correctly 

classified). However, the other measures are 

relatively high: it manages not putting in 
2Ĉ  95% 

of the non-
2C  instances (TNR), and its estimations 

for 
2Ĉ  and the other classes are reliable: 86% of the 

instances put in 
2Ĉ  actually belong to 

2C  (PPV) 

and 81% of the instances not put in 
2Ĉ  actually do 

not belong to 
2C  (NPV). 

 The other class-specific measure (F-measure, 

JCC and CSI) corroborates the conclusions drawn 

for the marginal rates. They indicate the classifier is 

better on the third, then first, and second classes. 

Intuitively, one can deduce from these comments 

the classifier confuses some of the second class 

instances and incorrectly put them in the first one.  

 Now suppose we want to consider the 

performance of another classifier on the same data: 

then only the repartitions of instances in each 

column can change (the repartitions cannot change 

along the rows, since these depend on the dataset). 

Let us assume the new classifier is perfect on 
1C  

and 
3C , but distributes 

2C  instances uniformly in 

1Ĉ , 
2Ĉ  and 

3Ĉ , as shown in Table 8. We obtain 

the following values for the multiclass measures: 

78.0OSR , 62.0ICSI , CKP , SPC , 

67.0MRE . Interestingly, all multiclass measures 

consider the first classifier as better, except ICSI. 

This is due to the fact the average decrease in TPR 

observed for the second classifier relatively to the 

first is compensated by the PPV increase. This 

illustrates the fact all measures do not necessarily 

rank the classifiers similarly. Note that from the 

results reported in Table 7 one could have thought 

the contrary.  

  

Table 8: confusion matrix displaying the 

classification results of a second classifier. 

 

 1C  
2C  3C  

1Ĉ  0,33 0,11 0,00 

2Ĉ  0,00 0,12 0,00 

3Ĉ  0,00 0,11 0,33 

 

6 SENSITIVITY TO MATRIX CHANGES 

 

 Since measures possibly discriminate 

classifiers differently, we now focus on the nature 

of this disagreement. We study three points likely 



 

to affect the accuracy measures: the classifier 

distribution of error, the dataset class proportions 

and the number of classes. 

 

6.1 Methods 

 We first give an overview of our methods, and 

then focus on its different steps. We generate two 

series of matrices with various error distribution 

and fixed class proportions. We compute the 

accuracy according to every measure under study. 

For a given measure we then consider all possible 

pairs of matrices obtained by associating one matrix 

from the first series to one of the second series. For 

each pair we compute the difference between the 

two values of the measure. The line corresponding 

to a zero difference separates the plane between 

pairs for which the first matrix is preferred by the 

measure, and pairs for which the second one is. We 

call this line the discrimination line. 

 Our approach is related to the isometrics 

concept described in [13]. The main difference is 

our discrimination lines are function of the error 

distribution, while ROC curves uses TPR and FPR. 

Moreover, we focus on a single isometrics: the one 

associated with a zero difference. This allows us to 

represent several discrimination lines on the same 

plots. By repeating the same process for different 

class proportions, or number of classes, we can 

therefore study if and how the discrimination lines 

are affected by these parameters.  

 We now focus on the modeling of classification 

error distribution. Let us consider a confusion 

matrix corresponding to a perfect classification, as 

presented in Table 4. Applying a classifier with 

lower performance on the same dataset will lead to 

a matrix diverging only in the distribution of 

instances in columns taken independently. Indeed, 

since the dataset is fixed, the class proportions, and 

hence the distributions inside rows, cannot change 

(i.e. the 
i
 are constant). 

 

Table 9: confusion matrix with controlled errors 

for a classifier imperfect in all classes.  
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1
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j
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c

1
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 For simplicity purposes, we suppose the 

misclassified instances for some class 
iC  are 

uniformly distributed by the classifier on the other 

estimated classes 
ijĈ . In other words, the perfect 

classifier correctly puts a proportion 
i

 of the 

dataset instances in 
iĈ  and none in 

ijĈ , whereas 

our imperfect classifier correctly process only a 

proportion 
iic  ( 10 ic ) and incorrectly puts a 

proportion 
ij

i

k

c

1

1
 in each other class 

ijĈ , 

where 
ic1  is the accuracy drop for this class. 

This allows us to control the error level in the 

confusion matrix, a perfect classification 

corresponding to 1ic  for all classes. Table 9 

represents the confusion matrix obtained for a k -

class problem in the case of a classifier undergoing 

an accuracy drop in all classes. 

 By using a range of values in 1;0  for c , we 

can generate a series of matrices with decreasing 

error level. However, comparing pairs of matrices 

from the same series is fruitless, since it will lead 

by construction to the same discrimination lines for 

all measures, when we want to study their 

differences. We therefore considered two different 

series: in the first (represented on the x  axis), the 

same accuracy drop c  is applied to all classes, 

whereas in the second ( y  axis), it is applied only to 

the first class. In Table 9, the first series 

corresponds to cci
 ( i ), and the second to 

cc1
 and 12ic . We thus expect the accuracy 

measures to favor the second series, since only its 

first class is subject to classification errors.. 

 To investigate the sensitivity of the measures to 

different class proportions values (i.e. 
i

), we 

generated several pairs of series with controlled 

class imbalance. In the balanced case, each class 

represents a proportion ki 1  of the instances. 

We define the completely imbalanced case by 

defining the 1st class as having twice the number of 

instances in the 2nd one, which has itself twice the 

size of the 3rd one, and so on. In other words, 

122 kik

i
, where the denominator 

corresponds to the quantity 
1

0

2
k

m

m  and allows the 

i
 summing to unity. To control the amount of 

variation in the class proportion between the 

balanced and imbalanced cases, we use a 

multiplicative coefficient p  ( 10 p ). Finally, 

the class proportions are defined as: 

 

1221 kik

i pkpp  (10) 



 

 

 The classes are perfectly balanced for 0p  

and they become more and more imbalanced as p  

increases. For instance, a fully imbalanced 5-class 

datasets will have the following proportions: 0.52, 

0.26, 0.13, 0.06 and 0.03, from the 1st to 5th classes, 

respectively. For each measure, we are now able to 

plot a discrimination line for each considered value 

of p . This allows us not only to compare several 

measures for a given p value but also the different 

discrimination lines of a single measure as a 

function of p . 

 

6.2 Error Distribution Sensitivity  

  

 We generated matrices for 3 balanced classes 

( 0p ) using the methodology described above. 

Fig. 1 and 2 show the discrimination lines for class-

specific and multiclass measures, respectively. 

Except for TPR, all discrimination lines are located 

under the xy  line. So, as expected, the measures 

favor the case where the errors are uniformly 

distributed in one class ( y  series) against the case 

where the errors affect all the classes ( x  series). 
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Figure 1: Discrimination lines of all class-specific 

measures for classes 1 (top) and 2 (bottom), for 3 

balanced class ( 0p , 3k ). 

 

 For class-specific measures, we considered first 

class 1, which is affected by error distribution 

changes in both series. The discrimination lines are 

clearly different for all measures. TPR is affected 

by changes in the distribution of instances only 

inside the column associated to the considered class. 

In the case of the first class, these columns are 

similar on both axes: this explains the xy  

discrimination line. The F-measure additionally 

integrates the PPV value. This explains why it 

favors the y  series matrices. Indeed, the PPV is 

always greater (or equal) for this series due to the 

fact errors are present in the first class only. The 

discrimination line of JCC is exactly similar. NPV 

does not consider TP, so it is constant for the y  

series, whereas it decreases for the x  series. This is 

due to the fact more and more errors are added to 

classes 2 and 3 in these matrices when p  increases. 

This explains why matrices of the y  series are 

largely favored by this measure. PPV and TNR are 

represented as a vertical line on the extreme right of 

the plot. According to these measures, the y  series 

matrices are always more accurate. This is due to 

the fact both measures decrease when the error 

level increases for the x  series (
TNp  decreases, 

FPp  increases) whereas TNR is constant and PPV 

decreases less for the y  series. Finally, ICSI, which 

is a linear combination of PPV and TPR, lies in 

between those measures. 
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Figure 2: Discrimination lines of all multiclass 

measures, with 0p  and 3k . 

 

 The two other classes undergo similar changes, 



 

so we only report the results for class 2. Unlike 

class 1, both classes 2 and 3 are affected by errors 

only in the x  series matrices. Consequently, all 

measures clearly favor the y  series matrices, even 

more than for class 1. The discrimination lines for 

NPV and TPR take the form of a vertical line on the 

right of the plot. This is due to the fact both 

measures decrease only for x  series matrices 

(because of the increase in 
FNp  and 

TPp ). The F-

measure and JCC are still not discernable. TNR and 

PPV favor the y  series less than the other measures. 

This is due to the fact that on the one hand 
TPp  

decreases only for the x  series matrices, but on the 

other hand 
FPp  and 

TNp  decrease for both series. 

Finally, ICSI still lies in between PPV and TPR. 

 Except for CSI the discrimination lines of 

multiclass measures are identical. We can conclude 

that for balanced classes ( 0p ) these measures 

are equivalent. CSI is more sensitive to the type of 

error we introduced. Indeed it clearly favors the y  

series more than the other measures.  
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Figure 3: Discrimination lines of the F-measure for 

classes 1 (top) and 3 (bottom), with 3k . 

 

6.3 Class Proportions Distribution Sensitivity 

 We now study the sensitivity of the on 

measures on variation in the class proportions. 

Roughly speaking we observe two different type of 

behaviors: measures are either sensitive or 

insensitive to variations in the class proportions 

distribution. In the first case, the discrimination 

lines for the different values of p  are identical. In 

the second case, increasing the imbalance leads to 

lines located on the left of the 0p  line. The 

stronger the imbalance and the more the line is 

located on the left. This can be explained by the 

fact the more imbalanced the classes and the more 

similar the two series of matrices become, dragging 

the discrimination line closer to the xy  line. Fig. 

3 is a typical example of this behavior. It represents 

the results obtained for the F-measure applied to 

classes 1 and 3. Note that, like before, JCC and the 

F-measure have similar discrimination lines. 
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Figure 4: Discrimination lines of OSR (top) and 

CKC (bottom), with 3k . 

 

 Other than the F-measure, measures combining 

two marginal rates (ICSI, JCC) are sensitive to 

class proportions changes for all classes. This is not 



 

the case for simple marginal rates. TPR and NPV 

are not sensitive at all for any classes. TNR and 

PPV present the behavior of measures sensitive to 

this parameter, but only for classes 2 and 3. As 

mentioned before, by construction of the considered 

matrices (the y  series has errors only in class 1) 

they are always higher for the y  than the x  series, 

independently of the class proportions. Fig. 4 

represents results obtained for the multiclass 

measures. As previously observed in the balanced 

case ( 0p ), OSR, SPC and MRE share the same 

discrimination lines, and this independently of p . 

CKC was matching them for 0p , but this is no 

more the case for imbalanced classes. The plot for 

CSI (not represented here) is similar but with 

tighter discrimination lines, indicating it is less 

sensitive to proportion changes. 
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Figure 5: Discrimination lines of OSR for 0p  

(top) and 1p  (bottom), with 10;3k . 

 

6.4 Class Number Sensitivity 

 We finally focus on the effect of the number of 

classes on the multiclass measures. Fig. 5 shows the 

results for OSR applied on matrices with size 

ranging from 3 to 10, for balanced ( 0p ) and 

imbalanced ( 1p ) cases. All the measures follow 

the same behavior. Increasing the number of classes 

strengthens the preference towards the y  series 

matrices. In other words, having more classes gives 

more importance to the additional errors contained 

in the x  series matrices. The effect is stronger on 

the imbalanced matrices. In this case, most of the 

instances are in the first class, which is the only one 

similar between the two models, so its dilution has 

a stronger impact on the measured accuracy. 

 

7 DISCUSSION 

 

 As shown in the previous sections, measures 

differ in the way they discriminate different 

classifiers. However, besides this important aspect, 

they must also be compared according to several 

more theoretical traits. 

 

7.1 Class Focus 

 As illustrated in the previous sections, a 

measure can assess the accuracy for a specific class 

or over all classes. The former is adapted to 

situations where one is interested in a given class, 

or wants to conduct a class-by-class analysis of the 

classification results.  

 It is possible to define an overall measure by 

combining class-specific values measured for all 

classes, for example by averaging them, like in CSI. 

However, even if the considered class-specific 

measure has a clear meaning, it is difficult to give a 

straightforward interpretation to the resulting 

overall measure, other than in terms of combination 

of the class-specific values. Inversely, it is possible 

to use an overall measure to assess a given class 

accuracy, by merging all classes except the 

considered one [2]. In this case, the interpretation is 

straightforward though, and depends directly on the 

overall measure. 

 One generally uses a class-specific measure in 

order to distinguish classes in terms of importance. 

This is not possible with most basic overall 

measures, because they consider all classes to be 

equally important. Certain more sophisticated 

measures allow associating a weight to each class, 

though [7]. However, a more flexible method 

makes this built-in feature redundant. It consists in 

associating a weight to each cell in the confusion 

matrix, and then using a regular (unweighted) 

overall measure [27]. This method allows 

distinguishing, in terms of importance, not only 

classes, but also any possible case of classification 

error. 

 

7.2 Functional Relationships 

 It is interesting to notice that various 

combinations of two quantities can be sorted by 

increasing order, independently from the considered 



 

quantities: minimum, harmonic mean, geometric 

mean, arithmetic mean, quadratic mean, maximum 

[32]. If the quantities belong to 1;0 , we can even 

put their product at the beginning of the previous 

list, as the smallest combination. If we consider the 

presented measures, this means combinations of the 

same marginal rates have a predefined order for a 

given classifier. For instance, the sensitivity-

precision product will always be smaller than the F-

measure (harmonic mean), which in turn will 

always be smaller than Kulczynski’s measure 

(arithmetic mean). Besides these combinations of 

TPR and PPV, this also holds for various measures 

corresponding to combinations of TPR and TNR, 

not presented here because they are not very 

popular [20, 33]. 

 More importantly, some of the measures we 

presented are monotonically related, and this 

property takes a particular importance in our 

situation. Indeed, our goal is to sort classifiers 

depending on their performance on a given data set. 

If two measures are monotonically related, then the 

order will be the same for both measures. This 

makes the F-measure and Jaccard’s coefficient 

similar for classifier comparison, and so are the 

ICSI and Kulczynski’s measure, and of course all 

measures defined as complements of other 

measures, such as the FNR. This confirms some of 

our observations from the previous section: it 

explains the systematic matching between JCC and 

the F-measure discrimination lines.  

 

7.3 Range 

 In the classification context, one can consider 

two extreme situations: perfect classification (i.e. 

diagonal confusion matrix) and perfect 

misclassification (i.e. all diagonal elements are 

zeros). The former should be associated to the 

upper bound of the accuracy measure, and the latter 

to its lower bound.  

 Measure bounds can either be fixed or depend 

on the processed data. The former is generally 

considered as a favorable trait , because it allows 

comparing values measured on different data sets 

without having to normalize them for scale matters. 

Moreover, having fixed bounds makes it easier to 

give an absolute interpretation of the measured 

features.  

 In our case, we want to compare classifiers 

evaluated on the same data. Furthermore, we are 

interested in their relative accuracies, i.e. we focus 

only on their relative differences. Consequently, 

this trait is not necessary. But it turns out most 

authors normalized their measures in order to give 

them fixed bounds (usually 1;1  or 1;0 ). Note 

their exact values are of little importance, since any 

measure defined on a given interval can easily be 

rescaled to fit another one. Thus, several 

supposedly different measures are actually the same, 

but transposed to different scales [34].  

 

7.4 Interpretation 

 Our goal is to compare classifiers on a given 

dataset, for which all we need is the measured 

accuracies. In other words, numerical values are 

enough to assess which classifier is the best on the 

considered data. But identifying the best classifier 

is useless if we do not know the criteria underlying 

this discrimination, i.e. if we are not able to 

interpret the measure. For instance, being the best 

in terms of PPV or TPR has a totally different 

meaning, since these measures focus on type I and 

II errors, respectively. 

 Among the measures used in the literature to 

assess classifiers accuracy, some have been 

designed analytically, in order to have a clear 

interpretation (e.g. Jaccard’s coefficient [4]). 

Sometimes, this interpretation is questioned, or 

different alternatives exist, leading to several 

related measures (e.g. agreement coefficients). In 

some other cases, the measure is an ad hoc 

construct, which can be justified by practical 

constraints or observation, but may lack an actual 

interpretation (e.g. CSI). Finally, some measures 

are heterogeneous mixes of other measures, and 

have no direct meaning (e.g. the combination of 

OSR and marginal rates described in [35]). They 

can only be interpreted in terms of the measures 

forming them, and this is generally considered to be 

a difficult task. 

 

7.5 Correction for Chance 

 Correcting measures for chance is still an open 

debate. First, authors disagree on the necessity of 

this correction, depending on the application 

context [7, 27]. In our case, we want to generalize 

the accuracy measured on a sample to the whole 

population. In other terms, we want to distinguish 

the proportion of success the algorithm will be able 

to reproduce on different data from the lucky 

guesses made on the testing sample, so this 

correction seems necessary. 

 Second, authors disagree on the nature of the 

correction term, as illustrated in our description of 

agreement coefficients. We can distinguish two 

kinds of corrections: those depending only on the 

true class distribution (e.g. Scott’s and Maxwell’s) 

and those depending also on the estimated class 

distribution (e.g. Cohen’s and Türk’s). The former 

is of little practical interest for us, because such a 

measure is linearly related to the OSR (the 

correction value being the same for every tested 

algorithm), and would therefore lead to the same 

ordering of algorithms. This explains the systematic 

matching observed between the discrimination lines 

of these measures in the previous section. The latter 

correction is more relevant, but there is still concern 

regarding how chance should be modeled. Indeed, 

lucky guesses depend completely on the algorithm 



 

behind the considered classifier. In other words, a 

very specific model would have to be designed for 

each algorithm in order to efficiently account for 

chance, which seems difficult or even impossible.  

 

8 CONCLUSION 

 

 In this work, we reviewed the main measures 

used for accuracy assessment, from a specific 

classification perspective. We consider the case 

where one wants to compare different classification 

algorithms by testing them on a given data sample, 

in order to determine which one will be the best on 

the sampled population.  

 We first reviewed and described the most 

widespread measures, and introduced the notion of 

discrimination plot to compare their behavior in the 

context of our specific situation. We considered 

three factors: changes in the error level, in the class 

proportions, and in the number of classes. As 

expected, most measures have a proper way to 

handle the error factor, although some similarities 

exist between some of them. The effect of the other 

factors is more homogeneous: decreasing the 

number of classes and/or increasing their imbalance 

tend to lower the importance of the error level for 

all measures. 

 We then compared the measure from a more 

theoretical point of view. In the situation studied 

here, it turns out several traits of the measures are 

not relevant to discriminate them. First, all 

monotonically related measures are similar to us, 

because they all lead to the same ordering of 

algorithms. This notably discards a type of chance 

correction. Second, their range is of little 

importance, because we are considering relative 

values. Moreover, a whole subset of measures 

associating weights to classes can be discarded, 

because a simpler method allows distinguishing 

classes in terms of importance while using an 

unweighted multiclass measure. Concerning 

chance-correction, it appears it is needed for our 

purpose; however no existing estimation for chance 

seems relevant. Finally, complex measures based 

on the combination of other measures are difficult 

or impossible to interpret correctly. 

 Under these conditions, we advise the user to 

choose the simplest measures, whose interpretation 

is straightforward. For overall accuracy assessment, 

the OSR seems to be the most adapted. If the focus 

has to be made on a specific class, we recommend 

using both the TPR and PPV, or a meaningful 

combination such as the F-measure. A weight 

matrix can be used to specify differences between 

classes or errors.  

 We plan to complete this work by focusing on 

the slightly different case of classifiers with real-

valued output. This property allows using 

additional measures such as the area under the ROC 

curve and various error measures [20]. 
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