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In this paper, we prove existence and uniqueness of measure solutions for the Cauchy problem associated to the (vectorial) continuity equation with a non-local flow. We also give a stability result with respect to various parameters.

Introduction

In this paper, we consider the system of nonlocal continuity equations

∂ t ρ i + div ρ i V i (t, x, η i * ρ) = 0 , t ∈ R + , x ∈ R d , ρ i (0) = ρi , i ∈ {1, . . . , k} , (1.1) 
where the unknown ρ = (ρ 1 , . . . , ρ k ) is a vector of measures, η i = (η i,1 , . . . , η i,k ) is a vector of convolution kernels and we set η i * ρ = (η i,1 * ρ 1 , . . . , η i,k * ρ k ). For any time t 0, if µ t ∈ M + (R d ) is a bounded measure on R d and η t is a bounded function on R d , then the convolution is taken with respect to space only and is defined as usually as µ t * η t = R d η t (xy) dµ t (y). For example in [START_REF] Colombo | Control of the continuity equation with a non local flow[END_REF], the authors consider the scalar conservation law where V is a nonlocal functional with respect to ρ. This equation stands for various models such as a sedimentation model, a supplychain model, a pedestrian traffic model. For physical reason, in the following we are looking for positive solutions possibly with concentration, i.e. for any time t the solution has to be in M + (R d ) k .

Our goal here is to improve the results of [START_REF] Colombo | Control of the continuity equation with a non local flow[END_REF], not only by considering a system, but also lightening the hypotheses on V and η. We prove here existence and uniqueness of weak measure solutions to (1.1). Let us introduce the following sets of hypotheses:

(V): The vector field V (t, x, r) : R + × R d × R k → M d,k is uniformly bounded and it is Lipschitz in (x, r) ∈ R d × R k uniformly in time:

V ∈ L ∞ (R + × R d × R k ) ∩ L ∞ (R + , Lip(R d × R k , M d,k )) .
(η): The convolution kernel η(t, x) : R + × R d → M k is uniformly bounded and it is Lipschitz in x ∈ R d uniformly in time:

η ∈ L ∞ (R + × R d ) ∩ L ∞ (R + , Lip(R d , M k )) .
The main result of this paper is the following theorem.
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1.1. Theorem. Let ρ ∈ M + (R d ) k . Let us assume that V satisfies (V) and η satisfies (η). Then there exists a unique solution ρ ∈ L ∞ (R + , M + (R d ) k ) to (1.1) with initial condition ρ.

We refer to Section 2 for precise notations and definitions, in particular for the notion of solution.

1.2. Remark. Assume V satisfies (V) and η satisfies (η). Then Theorem 1.1 is completed by the following properties:

• If ρ ∈ L 1 (R d , (R + ) k ) then ρ ∈ C 0 (R + , L 1 (R d , (R + ) k ))
, up to redefinition on a negligible set of times, and for all time t 0, for all i ∈ {1, . . . , k} we have

ρ i (t) L 1 = ρi L 1 . • If ρ ∈ (L 1 ∩ L ∞ )(R d , (R + ) k ) then ρ ∈ L ∞ loc (R + , L ∞ (R d , (R + ) k ))
and for all time t 0, we have

ρ(t) L ∞ ρ L ∞ e Ct with C a constant dependent on Lip x (V ), Lip r (V ), Lip x (η) and ρ M . • Let ρ, σ ∈ M + (R d ) k such that for any i, ρi M = σi M .
Let ρ and σ be the solutions of (1.1) associated to the initial conditions ρ and σ, then we have the estimate:

W 1 (ρ t , σ t ) e Kt W 1 (ρ, σ) , where K = Lip x (V ) + Lip r (V )Lip x (η) ρ M + Lip r (V )Lip x (η) ρ M and W 1 (ρ t , σ t )
is the Wasserstein distance of order one between ρ t and σ t . These properties are described in Corollary 2.9 and in Proposition 4.2. The Wasserstein distance of order one is rigorously defined in Section 3.

1.3. Remark. In Theorem 1.1 as well as in the other results of this papers, it is in fact sufficient to require that

V i (t, x, r) is L ∞ in t, x and L ∞ loc in r. Indeed, ρ * η i is uniformly bounded by ρ M η L ∞ = M . Consequently, denoting B M the closed ball of center 0 and radius M in R k , it is sufficient to have V i ∈ L ∞ (R + × R d × B M ).
Note also that, restricting the definition of V and η to the time interval [0, T 0 ], we obtain a solution defined on the same time interval. Consequently, we can as well ask only V and η to be L ∞ loc in time instead of L ∞ .

The system (1.1) stands for a variety of models. Let us present first a macroscopic model of pedestrian traffic. In a macroscopic pedestrian crowd model, ρ is the density of the crowd at time t and position x and V is a vector field giving the speed of the pedestrian. According to the choice of V , various behaviors can be observed. Several authors already studied pedestrian traffic in two dimensions space (N = 2). Some of these models are local in ρ (see [START_REF] Bellomo | On the modelling of traffic and crowds -a survey of models, speculations, and perspectives[END_REF][START_REF] Coscia | First-order macroscopic modelling of human crowd dynamics[END_REF][START_REF] Hughes | A continuum theory for the flow of pedestrians[END_REF][START_REF] Hughes | The flow of human crowds[END_REF][START_REF] Maury | A macroscopic crowd motion model of the gradient-flow type[END_REF][START_REF] Maury | Handling congestion in crowd motion modeling[END_REF]) ; other models use not only the local density ρ(t, x) but the entire distribution of ρ, typically they depend on the convolution product ρ(t) * η (see [START_REF] Colombo | A class of non-local models for pedestrian traffic[END_REF][START_REF] Colombo | Control of the continuity equation with a non local flow[END_REF][START_REF] Colombo | Nonlocal crowd dynamics models for several populations[END_REF][START_REF] Colombo | An analytical framework to describe the interactions between individuals and a continuum[END_REF][START_REF] Di Francesco | On the Hughes' model for pedestrian flow: the one-dimensional case[END_REF][START_REF] Piccoli | Time-evolving measures and macroscopic modeling of pedestrian flow[END_REF]) which represents the spatial average of the density. Within the framework of (1.1), we can study the models presented in [START_REF] Colombo | Control of the continuity equation with a non local flow[END_REF][START_REF] Colombo | Nonlocal crowd dynamics models for several populations[END_REF][START_REF] Colombo | An analytical framework to describe the interactions between individuals and a continuum[END_REF]. In [START_REF] Colombo | Control of the continuity equation with a non local flow[END_REF], the authors considered for V the expression

V = v(ρ * η) v(x) ,
where v is a scalar function giving the speed of the pedestrians; η is a convolution kernel averaging the density; and v(x) is a bounded vector field giving the direction the pedestrian located in x will follow. This model is more adapted to the case of panic in which pedestrians will not deviate from their trajectory and will adapt their velocity to the averaged density. Indeed, even if the density is maximal on a given trajectory, if the averaged density is not maximal, the pedestrians will push, trying all the same to reach their goal. This behavior can be associated with rush phenomena in which people can even die due to overcompression (e.g. on Jamarat Bridge in Saudi Arabia, see [START_REF] Helbing | Dynamics of crowd disasters: An empirical study[END_REF]). A similar model was introduced in Piccoli & Tosin [START_REF] Cristiani | Multiscale modeling of granular flows with application to crowd dynamics[END_REF][START_REF] Piccoli | Time-evolving measures and macroscopic modeling of pedestrian flow[END_REF], where the authors instead of an isotropic convolution kernel, consider a nonlocal functional taking into account the direction in which the pedestrians are looking.

In [START_REF] Colombo | Control of the continuity equation with a non local flow[END_REF], the authors study the scalar case in the framework of Kružkov entropy solutions. They obtained existence and uniqueness of weak entropy solutions under the hypotheses

v ∈ W 2,∞ (R + , R + ), v ∈ (W 2,∞ ∩ W 2,1 )(R d , R d ), and η ∈ (W 2,∞ ∩ L 1 )(R d , R
). This result was slightly improved in [START_REF] Colombo | Nonlocal crowd dynamics models for several populations[END_REF] where, under the same set of hypotheses on v, v and η, the authors consider a system instead of a scalar equation and obtain global in time existence and uniqueness of entropy solutions. We recover these results with lighter hypotheses. Indeed, although we consider weak measure solutions, these in fact are unique and consequently coincide with entropy solutions when the initial condition is in L 1 .

Another model of crowd dynamics that we recover consists in the coupling of a group of density ρ(t, x) with an isolated agent located in p(t). This can modelize for example the interaction between groups of preys of densities ρ and an isolated predator located in p. Such a model was introduced in [START_REF] Colombo | An analytical framework to describe the interactions between individuals and a continuum[END_REF] where the authors obtained existence and uniqueness of weak entropy solutions under very strong hypotheses. We recover here partially the results concerning the coupling PDE/ODE of [START_REF] Colombo | An analytical framework to describe the interactions between individuals and a continuum[END_REF]. Indeed, the measure framework allows us also to introduce particles/individuals through Dirac measures. For instance, let us assume that

k = k 0 + k 1 such that ρ 1 , . . . , ρ k 0 are in fact functions belonging to L ∞ (R + , L 1 (R d , R + )) and that δ p 1 , . . . , δ p k 1 are Dirac measures located in p 1 (t), . . . , p k 1 (t) ∈ R d . Let us denote ρ = (ρ 1 , . . . , ρ k 0 ) ∈ R k 0 and p = (p 1 , . . . , p k 1 ) ∈ M d,k 1 .
We also denote with V i (resp. η i ) the vector fields (resp. kernels) associated to ρ, and with U i (resp. λ i ) the vector fields (resp. kernels) associated to p. Note that δ p j * λ i,j (x) = λ i,j (xp j ). By definition of weak measure solution (see Definition 2.2), if

p i ∈ C 1 ([0, T ], R d ), the Dirac measures are satisfying, for any i ∈ {1, . . . , k 1 } ṗi (t) = U i t, p i (t), ρ t * η i t (p i (t)), λ i,1 p i (t) -p 1 (t) , . . . , λ i,k 1 p i (t) -p k 1 (t) ,
which can be rewritten ṗi (t) = Φ i t, p(t), ρ t * η i t p i (t) . Consequently, in this case, the system (1.1) becomes

   ∂ t ρ i + div ρ i V i t, x, η i t * ρ t , λ i,j (x -p j (t)) k 1 j=1 = 0 , i ∈ {1, . . . , k 0 } , ṗj (t) = Φ j t, p(t), ρ t * η j t (p j (t)) , j ∈ {1, . . . , k 1 } .
So we are coupling ODE with conservation laws. System (1.1) can also stands for models of aggregation, studied in [START_REF] Carrillo | Global-in-time weak measure solutions and finite-time aggregation for nonlocal interaction equations[END_REF] under weaker hypotheses admitting singular kernels.

The system (1.1) comprised also a model of particles' sedimentation

∂ t ρ + ∂ x ((ρ * η) ρ) = 0
which has been introduced [START_REF] Rubinstein | Evolution equations for stratified dilute suspensions[END_REF] and studied in [START_REF] Zumbrun | On a nonlocal dispersive equation modeling particle suspensions[END_REF], where the author proved existence and uniquness of weak solutions with initial condition in L ∞ . Finally, a similar nonlocal model is the one the supply-chain model [START_REF] Armbruster | A model for the dynamics of large queuing networks and supply chains[END_REF][START_REF] Armbruster | A continuum model for a re-entrant factory[END_REF], in which we consider the nonlocal term 1 0 ρ(t, x) dx instead of a convolution product. This last model was studied for example in [START_REF] Coron | Analysis of a conservation law modeling a highly re-entrant manufacturing system[END_REF] with furthermore boundary conditions in x = 0 and x = 1.

The proof of Theorem 1.1 is divided into two main steps. First, we prove some a priori properties of the solutions (see Section 2): mainly, we prove that the weak measure solutions of (1.1) coincide with the Lagrangian solutions of this system. Important consequences are the conservation of the regularity of the initial condition and the strong continuity in time in the case the solution is a function, as stated in Remark 1.2.

Second, we prove the existence and uniqueness of Lagrangian solutions thanks to a fixed point argument (see Section 5). Indeed, introducing the set of probability measures endowed with the Wasserstein distance of order one, we are able to prove a stability estimate with respect to the nonlocal term (see Section 4). The technique used there is quite similar to the one of Loeper [START_REF] Loeper | Uniqueness of the solution to the Vlasov-Poisson system with bounded density[END_REF], who studied the Vlasov-Poisson equation and the Euler equation in vorticity formulation.

This article is organized as follows: in Section 2 we define the two different notions of solution and prove that they coincide. In Section 3 we give some useful tools on optimal tranport; in Section 4 we prove an important lemma giving a stability estimate and in Section 5, we give the proof of Theorem 1.1.

Notion of solutions

2.1. General notations. Let d ∈ N be the space dimension and k ∈ N be the size of the system. In the following, M d,k is the set of matrices of size d × k with real values and M k is the set of matrices of size k × k with real values. We denote by M(R d ) (resp. M + (R d )) the set of bounded (resp. bounded and positive) measure on R d and by P(R d ) the set of probability measures on R d , that is the set of bounded positive measures with total mass 1.

In the following the Lipschitz norms with respect to x or r are taken uniformly with respect to the other variables. That is to say, for example:

Lip x (V ) = sup t∈R + ,r∈R k {Lip x (V (t, •, r))} .
Let us also underline that in the computations, we considered the norm 1 on the vectors in R k . When considering another norm, a constant depending on k appears in the various estimates. Similarly, if ρ = (ρ 1 , . . . , ρ k ) ∈ M(R d ) k we define the total measure of ρ as

ρ M = ρ 1 M + . . . + ρ k M . The space L ∞ ([0, T ], M + (R d )) consists of the parametrized measures µ = (µ t ) t∈[0,T ] such that, for any φ ∈ C 0 c (R d , R), the application t → R d φ dµ t (x) is measurable and such that ess sup t∈[0,T ] µ t M < ∞. 2.2. Weak measure solutions. We say that ρ ∈ L ∞ ([0, T ], M + (R d ) k
) is a weak measure solution of (1.1) with initial condition ρ ∈ M + (R d ) k if, for any i ∈ {1, . . . , k} and for any test-function

φ ∈ C ∞ c (] -∞, T [×R d , R) we have T 0 R d ∂ t φ + V i (t, x, ρ * η i ) • ∇φ dρ i t (x) dt + R d φ(0, x) dρ i (x) = 0 .

Remark.

A priori for weak measure solutions of the continuity equation ∂ t ρ + div (ρb) = 0, with a given vector field b, we have only continuity in time for the weak topology (see [START_REF] Dafermos | Hyperbolic conservation laws in continuum physics, volume 325 of Grundlehren der Mathematischen Wissenschaften[END_REF]), that is to say, for all i ∈ {1, . . . , k}, for all φ ∈ C 0 c (R d , R), the application t → R d φ(x) dρ i t (x) is continuous, up to redefinition of ρ t on a negligible set of times.

In the case of the system (1.1), we have a gain of regularity in time when the initial condition is a function in L 1 (R d , (R + ) k ) (see Corollary 2.9).

2.4. Push-forward and change of variable. When µ is a measure on Ω and T : Ω → Ω ′ a measurable map, we denote T ♯ µ the push-forward of µ, that is the measure on Ω ′ such that, for every

φ ∈ C 0 c (Ω ′ , R), Ω ′ φ(x) dT ♯ µ(x) = Ω φ (T (y)) dµ(y) .
If we assume that µ and ν = T ♯ µ are absolutely continuous with respect to the Lebesgue measure so that there exist f, g ∈ L 1 such that dµ (x) = f (x) dx and dν (y) = g(y) dy, and that T is a Lip-diffeomorphism, then we have the change of variable formula

f (x) = g(T (x))|det(∇T (x))| .
(2.1)

Besides, we denote

P x : R d × R d → R d the projection on the first coordinate; that is, for any (u, v) ∈ R d × R d , P x (u, v) = u. In a similar way, P y : R d × R d → R d is the projection on the second coordinate; that is, for any (u, v) ∈ R d × R d , P y (u, v) = v. 2.5. Lagrangian solutions. We say that ρ ∈ L ∞ ([0, T ], M + (R d ) k
) is a Lagrangian solution of (1.1) with initial condition ρ ∈ M + (R d ) k if, for any i ∈ {1, . . . , k}, there exists an ODE flow

X i : [0, T ] × R d → R d , that is a solution of    dX i dt (t, x) = V i t, X i (t, x), ρ t * η i t (X i (t, x)) , X i (0, x) = x ; and such that ρ i t = X i t ♯
ρi where X i t : R d → R d is the map defined as X i t (x) = X i (t, x) for any (t, x) ∈ [0, T ] × R d . 2.6. Remark. Assume V satisfies (V) and η satisfies (η). Then, for any ρ ∈ L ∞ ([0, T ], M + (R d ) k ), the vector fields b = V (t, x, ρ t * η t ) Lipschitz in x and

Lip x (b) Lip x (V ) + Lip r (V )Lip x (η) ρ t M .
Consequently, if ρ t M is uniformly bounded, the ODE flow X i above is always well-defined, for a fixed ρ.

If ρ ∈ L 1 (R d , R + ), then the push-forward formula (2.1) becomes, for a.e. (t,

x) ∈ R + × R d , ρ i (t, X i (t, x)) = ρi (x) exp - t 0 div V i τ, X i (τ, x), ρ τ * η τ (X i (τ, x)) dτ . (2.2)
We now show that the two notions of solution in fact coincide.

2.7.

Theorem. If ρ is a Lagrangian solution of (1.1), then ρ is also a weak measure solution of (1.1). Conversely, if ρ is a weak measure solution of (1.1), then ρ is also a Lagrangian solution of (1.1).

Proof. 1. Let ρ be a Lagrangian solution of (1.1). Let us denote b i = V i (t, x, ρ * η i ) and let X i be the ODE flow associated to b i . Then, for any

φ ∈ C ∞ c (] -∞, T [×R d , R), we have T 0 R d ∂ t φ(t, x) + b i (t, x) • ∇φ(t, x) dρ t (x) dt = T 0 R d ∂ t φ(t, X i t (x)) + b i (t, X i t (x)) • ∇φ(t, X i t (x)) dρ(x) dt = T 0 R d d dt φ(t, X i t (x)) dρ(x) dt = R d φ(T, X i (T, x)) dρ(x) - R d φ(0, x) dρ(x) = - R d φ(0, x) dρ(x) ,
which proves that ρ is also a weak measure solution.

2. Let ρ be a weak measure solution of (1.1). For any i ∈ {1, . . . , k}, let us denote b i (t, x) = V i (t, x, ρ * η i ). Let σ be the Lagrangian solution of the equation

∂ t σ i + div (σ i b i ) = 0 , σ i (0, •) = ρi , (2.3) 
which exists and is unique since b i is Lipschitz as noted in Remark 2.6. Then, arguing similarly as in point 1, σ is also a weak measure solution to (2.3). Denoting u i = ρ iσ i , we obtain that u i is a weak measure solution of the equation

∂ t u i + div (u i b i ) = 0 with initial condition u i (0, •) = 0. Consequently, for any φ ∈ C ∞ c (] -∞, T [×R d , R), T 0 R d ∂ t φ + b i (t, x) • ∇φ du t dt = 0 . Let ψ ∈ C 0 c (] -∞, T [×R d , R). Since b i ∈ L ∞ ([0, T ] × R d , R d ) is Lipschitz in x, by computation along the characteristics, we can find φ ∈ C 1 c (] -∞, T [×R d , R) so that ψ = ∂ t φ + b i (t, x) • ∇φ. Hence, for any ψ ∈ C 0 c (] -∞, T [×R d , R
), we have T 0 R d ψ du t dt = 0, which implies u ≡ 0 a.e. and ρ = σ a.e. Consequently, we have also b i (t, x) = V i (t, x, σ * η i ), and σ = ρ is finally a Lagrangian solution of (1.1).

2.8. Definition. As a consequence of the previous theorem, in the following we simply call solution of (1.1) a weak measure solution or a Lagrangian solution of (1.1), that in fact coincide.

It is now possible to prove some of the properties given in Remark 1.2. 2.9. Corollary. Assume that V satisfies (V) and η satisfies (η).

Let ρ ∈ L ∞ ([0, T ], M + (R d ) k ) be a solution to (1.1) with initial condition ρ ∈ M + (R d ) k . • If ρ ∈ L 1 (R d , (R + ) k ). Then we have ρ ∈ C 0 ([0, T ], L 1 (R d , (R + ) k )) and for all time t ∈ [0, T ], all i ∈ {1, . . . , k}, ρ i (t) L 1 = ρi L 1 . • If furthermore ρ ∈ (L 1 ∩L ∞ )(R d , (R + ) k ), then for all t ∈ [0, T ] we have ρ(t) ∈ L ∞ (R d , (R + ) k )
and we have the estimate

ρ(t) L ∞ ρ L ∞ e Ct ,
where C depends on ρ M , V and η.

Proof. Let ρ be a solution of (1.1) with initial condition ρ ∈ L 1 (R d , (R + ) k ). According to Definition 2.8, ρ is a Lagrangian solution associated to a flow X and we have immediately that ρ

L 1 = ρ(t) L 1 . Besides, as b i (t, x) = V i (t, x, ρ * η i ) ∈ L ∞ ([0, T ] × R d , R d ) is bounded in t and Lipschitz in x, then X i t ∈ Lip(R d , R d ) and we can use the change of variable formula (2.2). If ρ ∈ L ∞ (R d , R k ), with C = Lip x (V ) + Lip r (V )Lip x (η) ρ M ,
we obtain the desired L ∞ bound and ρ(t) ∈ L ∞ for all t ∈ [0, T ]. The continuity in time can be proved directly by estimating ρ tρ s L 1 using Egorov Theorem. This computation is straightforward although a bit long so we prefer to omit the details.

Besides, note that the continuity in time is also ensured by the results of DiPerna & Lions [14, Section 2.II] and the notion of renormalized solutions.

Some tools from optimal mass transportation

Let us remind the definition of the Wasserstein distance of order 1.

3.1. Definition. Let µ, ν be two Borel probability measures on R d . We denote Ξ (µ, ν) the set of plans, that is the set of probability measures γ ∈ M + (R d × R d ) such that P x♯ γ = µ and P y ♯ γ = ν. We define the Wasserstein distance of order one between µ and ν by

W 1 (µ, ν) = inf γ∈ Ξ (µ,ν) R d ×R d |x -y| dγ(x, y) . (3.1) 
Let ρ = (ρ 1 , . . . , ρ k ), σ = (σ 1 , . . . , σ k ) be two vectors such that ρ 1 , . . . , ρ k and σ 1 , . . . , σ k are Borel probability measures on R d . We define the Wasserstein distance of order one between ρ and σ, denoted W 1 (ρ, σ), as

W 1 (ρ, σ) = k i=1 W 1 (ρ i , σ i ) . (3.2) 
3.2. Remark. By [23, Theorem 1.3], for any µ, ν ∈ P(R d ), there exist a plan γ 0 ∈ Ξ(µ, ν) realizing the minimum in the Wasserstein distance so that

W 1 (µ, ν) = R d
|x -y| dγ 0 (x, y) .

3.3.

Remark. Let ρ ∈ M + (R d ) k be a probability measure ; and let X, Y : R d → R d be mappings such that f = X ♯ dρ and g = Y ♯ dρ. Then, the probability measure γ = (X, Y ) ♯ dρ satisfies P x♯ γ = f , P y ♯ γ = g and so

W 1 (f, g) R d ×R d |x -y| dγ(x, y) = R d |X -Y | dρ(x) .
3.4. Proposition (cf. Villani [23, p. 207]). Let µ, ν be two probability measures. The Wasserstein distance of order one between µ and ν satisfies

W 1 (µ, ν) = sup Lip(φ) 1 R d φ(x) (dµ(x) -dν(x)) .

The main stability estimate

In the following we consider probability measures instead of bounded positive measures. This is not a real restriction since we pass from one case to the other just by a rescaling.

Before giving a stability estimate in Proposition 4.2, we prove a technical lemma.

4.1. Lemma. Let V satisfy (V) and η satisfy (η). Let r, s ∈ P(R d ) k . For any i ∈ {1, . . . , k}, we have the following estimate

V i (t, x, r * η i t ) -V i (t, x, s * η i t ) L ∞ Lip r (V i ) Lip x (η i ) W 1 (r, s) .
In the previous lemma, the quantity W 1 (r, s) could be infinite. If we restrict ourselves to bounded positive measures with first moment finite, then the quantity above is always finite.

Proof. The proof follows from Proposition 3.4 on the Wasserstein distance. Note first that in the case Lip(η i,j ) = 0 then η i,j is constant and we have (r js j ) * η i,j (x) = 0 Lip(η i,j )W 1 (r j , s j ). Now, in the case Lip(η i,j ) = 0, thanks to Proposition 3.4, we have

(r j -s j ) * η i,j (x) = R d η i,j (x -y)(dr j (y) -ds j (y)) = Lip(η i,j ) R d η i,j (x -y) Lip(η i,j )
(dr j (y) -ds j (y))

Lip(η i,j ) sup

Lip(φ) 1 R d
φ(y)(dr j (y) -ds j (y)) = Lip(η i,j )W 1 (r j , s j ) .

As we obtain the same estimate for -(r js j ) * η i,j (x), we can conclude that

V i (t, x, r * η i ) -V i (t, x, s * η i ) L ∞ Lip r (V i ) (r -s) * η i L ∞ Lip r (V i ) Lip(η i ) W 1 (r, s) . Let r, s ∈ L ∞ ([0, T ], P(R d ) k
). We want to compare the following equations, in which the nonlocal has been replaced by fixed applications, so that the system is made of decoupled equations. for all i ∈ {1, . . . , k}

∂ t ρ i + div ρ i V i (t, x, η i * r) = 0 , ρ i (0, •) = ρi , for all i ∈ {1, . . . , k} ∂ t σ i + div σ i U i (t, x, ν i * s) = 0 , σ i (0, •) = σi . (4.1)
4.2. Proposition. Assume V, U satisfy (V) and η, ν satisfy (η). Let ρ, σ be two probability measures such that for any i, ρi M = σi M . Let r, s ∈ L ∞ ([0, T ], P(R d ) k ). If ρ and σ are Lagrangian solutions of (4.1) associated to the initial conditions ρ and σ, then we have the estimate:

W 1 (ρ t , σ t ) e Ct W 1 (ρ, σ) + Cte Ct sup t∈[0,T ] W 1 (r t , s t ) + η -ν L ∞ + V -U L ∞ (4.2)
where C is a constant depending on Lip x (V ), Lip r (V ), Lip x (η) and ρ M . Furthermore, in the special case r = ρ and s = σ, we get:

W 1 (ρ t , σ t ) e Kt W 1 (ρ, σ) + Kte Kt [ η -ν L ∞ + V -U L ∞ ] , (4.3) 
where Kis a constant depending on Lip x (V ), Lip r (V ), Lip x (η) and ρ M .

Note that the estimate above comprises the case W 1 (ρ, σ) = ∞.

Proof. Let ρ, σ be two Lagrangian solutions to the Cauchy problem for (1.1) with initial conditions ρ and σ respectively. Let X, Y be the associated ODE flows. For any t ∈ [0, T ], we define the map

X i t ⋊ ⋉ Y i t : R d × R d → R d × R d by X i t ⋊ ⋉ Y i t (x, y) = (X i t (x), Y i t (y)) , for any (x, y) ∈ R d × R d .
Let γ i 0 ∈ Ξ (ρ i , σi ) so that P x♯ γ i 0 = ρi and P y ♯ γ i 0 = σi . Let us define the probability measure γ

i t = (X i t ⋊ ⋉ Y i t ) ♯ γ i 0 . Then, P x♯ γ i t = ρ i t and P y ♯ γ i t = σ i t so that γ i t ∈ Ξ (ρ i t , σ i t ). Let R > 0, we define, for t 0 Q R (t) = k i=1 X i t (B R )×Y i t (B R ) |x -y| dγ i t (x, y) = k i=1 B R ×B R X i t (x) -Y i t (y) dγ i 0 (x, y) .
Note first that Q R is Lipschitz. Indeed, let t, s 0, then we have

|Q R (t) -Q R (s)| k i=1 B R ×B R X i t (x) -Y i t (y) -X i s (x) -Y i s (y) dγ i 0 (x, y) k i=1 B R ×B R X i t (x) -Y i t (y) -X i s (x) + Y i s (y) dγ i 0 (x, y) k i=1 B R ×B R X i t (x) -X i s (x) + Y i t (y) -Y i s (y) dγ i 0 (x, y) k i=1 B R ×B R V i L ∞ + U i L ∞ |t -s| dγ i 0 (x, y) ( V L ∞ + U L ∞ ) γ 0 M |t -s| . (4.4) 
Let us assume that W 1 (ρ, σ) < ∞, otherwise the thesis is trivial. Then, by Remark 3.2, for all i ∈ {1, ..., k}, we can find a bounded positive measure γ i 0 ∈ Ξ (ρ i , σi ) so that

W 1 (ρ i , σi ) = R d ×R d |x -y| dγ i 0 (x, y) .
Consequently we have, for any R 0, Q R (0) W 1 (ρ, σ). Hence, using (4.4), for any t 0, we have

Q R (t) Q R (0) + ( U L ∞ + V L ∞ ) γ 0 M t W 1 (ρ, σ) + ( U L ∞ + V L ∞ ) γ 0 M t .
Thus, for any t

0, Q R (t) remains finite when R → ∞ and since R → Q R (t) is increasing with respect to R, we can define Q(t) = lim R→∞ Q R (t).
In the particular case r = ρ and s = σ, applying (4.6) to (4.5) we obtain

Q ′ (t) 2CQ(t) + C ( η -ν L ∞ + U -V L ∞ ) .
Applying Gronwall Lemma, we finally obtain Q(t) e 2Ct Q(0) + Cte 2Ct ( ην L ∞ + U -V L ∞ ), which is (4.3).

Proof of the main theorem

The proof of Theorem 1.1 is based on the following idea: let us fix the nonlocal term and, instead of (1.1), we study the Cauchy problem

∂ t ρ + div (ρ V (t, x, r * η)) = 0 , ρ(0) = ρ , (5.1) 
where r is a given application. We consider here probability measures. In the more general case of positive measures with the same total mass, by rescaling we are back to the case of probability measures.

Let us introduce the application

Q : r → ρ X → X , (5.2) 
where we consider the space X = L ∞ ([0, T ], P(R d ) k ) for T chosen in such a way that:

(a): The space X is equipped with a distance d that makes X complete: for µ, ν ∈ X , we define d(µ, ν) = sup t∈[0,T ] W 1 (µ t , ν t ) .

(b): The application Q is well-defined: the Lagrangian solution ρ ∈ X to (5.1) exists and is unique (for a fixed r). Indeed, let X t be the ODE flow associated to V (t, x, r t * η t ), then we can define ρ t = X t♯ ρ. Since ρ is a positive measure, then so is ρ t . (c): The application Q is a contraction: this is given by Proposition 4. Observe that uniqueness can be also obtained directly by the stability estimate (4.3) in the particular case V i = U i , η i = ν i , ρ = σ.

  2. Indeed, let r, s in L ∞ ([0, T ], M + (R d ) k ) and denote ρ = Q(r), σ = Q(s) the associated solutions to(5.1). Note that ρ and σ have the same initial condition. Thanks to Proposition 4.2, we obtain the contraction estimates sup[0,T ] W 1 (ρ t , σ t ) CT e CT sup [0,T ] W 1 (r t , s t ) ,where C depends only on Lip x (V ), Lip r (V ), Lip x (η) and ρ M .Hence, for T small enough, by the Banach fixed point Theorem we obtain existence and uniqueness in X of a Lagrangian solution to (1.1) for t ∈ [0, T ]. As ρ T M = ρ M the coefficient C does not depend on time and we can iterate the procedure. Thus we have existence and uniqueness on [0, +∞[.

Let us now consider Q. The same computation as in (4.4) ensures that Q is Lipschitz so we can differentiate for almost every t and obtain

Note that

Using Lemma 4.1 we obtain

Taking the sup in time of W 1 (r t , s t ) on the right-hand side and applying Gronwall Lemma, we get

Note now that, thanks to remark (3.3), for any t 0

Furthermore, we have chosen γ 0 in an optimal way thanks to Remark 3.2 so that Q(0) = W 1 (ρ, σ). Hence we obtain, for any t ∈ [0, T ]:

which is the expected result (4.2).