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VALUATION OF THE PREPAYMENT OPTION OF A PERPETUAL

CORPORATE LOAN

TIMOTHEE PAPIN∗
AND GABRIEL TURINICI†

Abstract. We investigate in this paper a perpetual prepayment option related to a corporate
loan. The default intensity of the �rm is supposed to follow a CIR process. We assume the contractual
margin of the loan is de�ned by the credit quality of the borrower and the liquidity cost that re�ects
the funding cost of the bank. Two frameworks are discussed: �rstly a loan margin without liquidity
cost and secondly a multi-regime framework with a liquidity cost dependent on the regime. The
prepayment option needs speci�c attention as the payo� itself is an implicit function of the parameters
of the problem and of the dynamics. In the unique regime case, we establish quasi analytic formulas
for the payo� of the option; in both cases we give a veri�cation result that allows to compute the price
of the option. Numerical results that implement the �ndings are also presented and are completely
consistent with the theory; it is seen that when liquidity parameters are very di�erent (i.e., when a
liquidity crisis occur) in the high liquidity cost regime the exercise domain may entirely disappear,
meaning that it is not optimal for the borrower to prepay during such a liquidity crisis. The method
allows to quantify and interpret these �ndings.

Key words. liquidity regime, loan prepayment, mortgage option, American option, perpetual
option, option pricing, Snell envelope, prepayment option, CIR process, switching regimes, Markov
modulated dynamics.

AMS subject classi�cations. 91G20, 91G30, 91G40, 91G50, 91G60, 91G80, 93E20

1. Introduction. When a �rm needs money it can turn to its bank which lends
it against e.g., periodic payments in a form of a loan. In almost every loan contract,
the borrower has the option to prepay a portion or all the nominal at any time without
penalties.

We assume in this model that the risk-less interest rate, denoted by r, is constant
and known. The liquidity cost dynamics will be described later. The interest rate of
the loan is the sum of the constant interest rate, a margin de�ned according to the
credit quality of the borrower and a liquidity cost that re�ects the funding costs of
the lender, the bank.

In order to decide whether the exercise of the option is worthwhile the borrower
(the �rm) compares the actualized value of the remaining payments with the nominal
value to pay. If the remaining payments exceed the nominal value then it is optimal
for the borrower to re�nance his debt at a lower rate.

When the borrower is subject to default, the computation of the actualization is
less straightforward. It starts with considering all possible scenarios of evolution for
the default intensity in a risk-neutral framework and compute the average value of the
remaining payments (including the �nal payment of the principal if applicable); this
quantity will be called �PV RP �(denoted ξ) and is the present value of the remaining
payments i.e., the cash amount equivalent, both for borrower and lender in this model
of the set of remaining payments. The PV RP is compared with the nominal : if the
PV RP value is larger than the nominal then the borrower should prepay, otherwise
not. Recall that at the initial time the payments correspond to a rate, the sum of the
interest rate and a contractual margin ρ0, which is precisely making the two quantities
equal. Note that in order to compute the price of the embedded prepayment option
the lender also uses the PV RP as it will be seen below.
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For a bank, the prepayment option is essentially a reinvestment risk i.e., the risk
that the borrower decides to repay earlier his/her loan and that the bank can not
reinvest its excess of cash in a new loan. So the longer the maturity of the loan,
the riskier the prepayment option. Therefore, it is interesting to study long-term
loans that are set for more than three years and can run for more than twenty years.
The valuation problem of the prepayment option can be modeled as an American
embedded option on a risky debt owned by the borrower. As Monte-Carlo simulations
are slow to converge and that the binomial tree techniques are time-consuming for
long-term loans (cf. works by D. Cossin et al. [9]), we decided to focus, in this paper,
on the prepayment option for perpetual loan.

When valuing �nancial products with long maturity, the robustness with respect
to shocks and other exogenous variabilities is important. Among problems that have
to be treated is the liquidity and its variability. Liquidity is crucial for the stability of
the �nancial system. Past events like the Asian crisis of 1997 [16]; the Russian �nancial
crisis of 1998 [3]; the defaults of hedge funds and investment �rms like LTCM, Enron,
Worldcom and Lehman Brothers defaults, sovereign debts crisis of 2010-11 and so
on prove that banks hold signi�cant liquidity risk in their balance sheets. A liquidity
crisis can have a severe impact on a bank's funding costs, its market access (reputation
risk) and short-term funding capabilities.

Following the state of the economic environment, the liquidity can be de�ned by
distinct states. Between two crises, investors are con�dent and banks �nd it easier to
launch their long term re�nancing programs through regular bonds issuances. Thus
the liquidity market is stable. Unfortunately, during crisis, liquidity becomes scarce,
pushing the liquidity curve to very high levels which can only decrease if con�dence
returns to the market. The transition between these two distinct behaviors is rarely
smooth but rather sudden.

In order to model the presence of distinct liquidity behaviors we will simulate
the liquidity cost by a continuous time Markov chain that can have a discrete set of
possible values, one for each regime that is encountered in the liquidity evolution.

From a technical point of view this paper faces several non-standard conditions:
although the goal is to value a perpetual American option the payo� of the option is
highly non-standard (is dependent on the PV RP ). As a consequence, the characteri-
zation of the exercise region is not standard and technical conditions have to be met.
Furthermore, our focus here is on a speci�c type of dynamics (of CIR type) with even
more speci�c interest on the situation when several regimes are present.

The balance of the paper is as follows: in the remainder of this section (Sub-
Section 1.1) we review the related existing literature; in Section 2, we consider that the
liquidity cost is negligible and that the borrower credit risk is de�ned by his/her default
intensity (called in the following simply �intensity�) which follows a CIR stochastic
process. In this situation, we are able to obtain a quasi-analytic formula for the
PVRP. In Section 3 we explore the situation when the liquidity cost, de�ned as the
cost of the lender to access the cash on the market, has several distinct regimes that
we model by a Markov chain. We write the pricing formulas and theoretically support
an algorithm to identify the boundary of the exercise region; numerical examples and
concluding remarks close the paper.

1.1. Related literature. There exist few articles (e.g., works by D. Cossin et
al. [9]) on the loan prepayment option but a close subject, the prepayment option in
a �xed-rate mortgage loan, has been widely covered in several papers by J.E. Hilliard
and J.B. Kau [12] and more recent works by Chen et al. [7]. To approximate the
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PDE satis�ed by the prepayment option, they de�ne two state variables (interest rate
and house price). Their approach is based on a bi-variate binomial option pricing
technique with a stochastic interest rate and a stochastic house value.

Another contribution by D. Cossin et al. [9] applies the binomial tree technique
(but of course it is time-consuming for long-term loans due to the nature of binomial
trees) to corporate loans. They consider a prepayment option with a 1 year loan with
a quarterly step but it is di�cult to have an accurate assessment of the option price
for a 10 years loan.

There also exist mortgage prepayment decision models based on Poisson re-
gression approach for mortgage loans. See, for example, E.S. Schwartz and W.N.
Torous [22]. Unfortunately, the volume and history of data are very weak in the
corporate loan market.

Due to the form of their approach, these papers did not have to consider the ge-
ometry of the exercise region because it is explicitly given by the numerical algorithm.
This is not the case for us and requires that particular care be taken when stating the
optimality of the solution. Furthermore, to the best of our knowledge, none of these
approaches explored the circumstance when several regimes exist.

The analysis of Markov-modulated regimes has been investigated in the literature
when the underlying(s) follow the Black& Scholes dynamics with drift and volatility
having Markov jumps; several works are of interest in this area: Guo and Zhang [26]
have derived the closed-form solutions for vanilla American put; Guo analyses in [11]
Russian (i.e., perpetual look-back) options and is able to derive explicit solutions for
the optimal stopping time; in [24] Y. Xu and Y. Wu analyse the situation of a two-
asset perpetual American option where the payo� function is a homogeneous function
of degree one; Mamon and Rodrigo [19] �nd explicit solutions to vanilla European
options. Bu�ngton and Elliott [5] study European and American options and obtain
equations for the price. A distinct approach (Hopf factorization) is used by Jobert
and Rogers [15] to derive very good approximations of the option prices for, among
others, American puts. Other contributions include [25, 23], etc.

Works involving Markov switched regimes and CIR dynamics appears in [10]
where the bond valuation problem is considered (but not in the form of an Ameri-
can option; their approach will be relevant to the computation of the payo� of our
American option although in their model only the mean reverting level is subject to
Markov jumps) and in [27] where the term structure of the interest rates is analysed.

On the other hand numerical methods are proposed in [13] where it is found that a
�xed point policy iteration coupled with a direct control formulation seems to perform
best.

Finally, we refer to [14] for theoretical results concerning the pricing of American
options in general.

2. Perpetual prepayment option with a stochastic intensity CIR model.

We assume throughout the paper that the interest rate r is constant. Therefore, the
price of the prepayment option only depends on the intensity evolution over time.
We model the intensity dynamics by a Cox-Ingersoll-Ross process (see [6, 2, 17] for
theoretical and numerical aspects of CIR processes and the situations where the CIR
process has been used in �nance):

dλs = γ(θ − λs)ds + σ
√

λsdWs, γ, θ, σ > 0, λ0 = λ0 (2.1)

It is known that if 2γθ ≥ σ2 then CIR process ensures an intensity strictly positive.
Fortunately, as it will be seen in the following, the PVRP is given by an analytic
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formula.

2.1. Analytical formulas for the PVRP. Assume a loan with a �xed coupon
de�ned by the interest rate r and an initial contractual margin ρ0. Here ρ0 does
not take into account any commercial margin, see Remark (1). Let ξ(t, T, λ) be, the
present value of the remaining payments at time t of a corporate loan with initial
contractual margin ρ0 (depending on λ0), intensity at time t, λt, following the risk-
neutral equation (2.1) with λt = λ, has nominal amount K and contractual maturity
T . Here the assignment λt = λ means that the dynamics of λt starts at time t from
the numerical value λ. All random variables will be conditional by this event, see eg.
Equation (2.3).

Therefore the loan value LV (t, T, λ) is equal to the present value of the remaining
payments ξ(t, T, λ) minus the prepayment option value P (t, T, λ).

LV (t, T, λ) = ξ(t, T, λ) − P (t, T, λ) (2.2)

The present value of the cash �ows discounted at the (instantaneous) risky rate
r + λt, is denoted by ξ. The in�nitesimal cash �ow at time t is K(r + ρ0) and the
�nal payment of the principal K. Then:

ξ(t, T, λ) = E

[

K · (r + ρ0)

∫ T

t

e−
R

t̃

t
(r+λu)dudt̃ + Ke−

R

T

t
r+λudu

∣

∣

∣
λt = λ

]

(2.3)

For a perpetual loan the maturity T = +∞. Since λt is always positive r+λt > 0
and thus the last term tend to zero when T → ∞. A second remark is that since γ, θ
and σ independent of time, ξ is independent of the starting time t :

ξ(t, λ) = E

[

K · (r + ρ0)

∫ +∞

t

e−
R

t̃

t
r+λududt̃

∣

∣

∣
λt = λ

]

(2.4)

= E

[

K · (r + ρ0)

∫ +∞

0

e−
R

t̃

0
r+λududt̃

∣

∣

∣
λ0 = λ

]

=: ξ(λ), (2.5)

where the last equality is a de�nition. For a CIR stochastic process, we obtain (see [6,
17]),

ξ(λ) = K · (r + ρ0)

∫ +∞

0

e−rt̃B(0, t̃, λ)dt̃ (2.6)

where for general t, t̃ we use the notation:

B(t, t̃, λ) = E

[

e−
R

t̃

t
λudu

∣

∣

∣
λt = λ

]

. (2.7)

Note that B(t, t̃, λ) is a familiar quantity and analytic formulas are available for Equa-
tion 2.7, see Lando [18] page 292. The intensity is following a CIR dynamic therefore,
for general t, t̃:

B(t, t̃, λ) = α(t, t̃)e−β(t,t̃)λ, (2.8)

with,

α(t, t̃) =

(

2h e(γ+h) t̃−t
2

2h + (γ + h)(e(t̃−t)h − 1)

)

2γθ

σ2

β(t, t̃) =
2(e(t̃−t)h − 1)

2h + (γ + h)(e(t̃−t)h − 1)
, where h =

√

γ2 + 2σ2. (2.9)
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where γ and σ are the parameters of the CIR process of the intensity in Equation (2.1).
Obviously B(0, t, λ) is monotonic with respect to λ, thus the same holds for ξ.

The margin ρ0 is the solution of the following equilibrium equation:

ξ(λ0) = K (2.10)

which can be interpreted as the fact that the present value of the cash �ows (according
to the probability of survival) is equal to the nominal K:

ρ0 =
1

∫ +∞

0
e−rt̃B(0, t̃, λ0)dt̃

− r. (2.11)

Note that we assume no additional commercial margin.
Remark 1. If an additional commercial margin µ0 is considered then ρ0 is �rst

computed as above and then replaced by ρ0 = ρ0 + µ0 in Equation (2.6). Equa-

tions (2.10) and (2.11) will not be veri�ed as such but will still hold with some λ0

instead of λ0; for instance we will have

ρ0 =
1

∫ +∞

0
e−rt̃B(0, t̃, λ0)dt̃

− r. (2.12)

With these changes all results in the paper are valid, except that when computing for
operational purposes once the price of the prepayment option is computed for all λ
one will use λ = λ0 as price relevant to practice.

Remark 2. Some banks allow (per year) a certain percentage of the prepaid
amount without penalty and the rest with a penalty. This circumstance could be in-
corporated into the model by changing the de�nition of the payo� by subtracting the
penalty. This will impact the formula 2.14.

From de�nition (2.7) of B(t, t̃, λ) it follows that B(t, t̃, λ) < 1 thus

e−rt̃B(0, t̃, λ0) < e−rt̃

and as a consequence

∫ +∞

0

e−rt̃B(0, t̃, λ0)dt̃ <

∫ +∞

0

e−rt̃dt̃ = 1/r (2.13)

which implies that ρ0 > 0.

2.2. Valuation of the prepayment option. The valuation problem of the pre-
payment option can be modelled as an American call option on a risky debt owned by
the borrower. Here the prepayment option allows borrower to buy back and re�nance
his/her debt according to the current contractual margin at any time during the life
of the option. As the perpetual loan, the option value will be assumed independent
of the time t.

As discussed above, the prepayment exercise results in a payo� (ξ(t, T, λ) − K)+

for the borrower. The option is therefore an American call option on the risky as-
set ξ(t, T, λt) and the principal K (the amount to be reimbursed) being the strike.
Otherwise we can see it as an American option on the risky λt with payo�,

χ(t, λ) := (ξ(t, λ) − K)+ (2.14)
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or, for our perpetual option:

χ(λ) := (ξ(λ) − K)+. (2.15)

We will denote by A the characteristic operator (cf. [28, Chapter 7.5]) of the CIR
process i.e. the operator that acts on any C2 class function v by

(Av)(λ) = γ(θ − λ)∂λv(λ) +
1

2
σ2λ∂λλv(λ). (2.16)

Denote for a, b ∈ R and x ≥ 0 by U(a, b, x) the solution to the con�uent hyperge-
ometric di�erential (also known as the Kummer) equation [1]:

xz′′(x) + (b − x)z′(x) − az(x) = 0 (2.17)

that increase at most polynomially at in�nity and is �nite (not null) at the origin.
Recall also that this function is proportional to the the con�uent hypergeometric
function of the second kind U(a, b, x) (also known as the Kummer's function of the
second kind, Tricomi function, or Gordon function); for a, x > 0 the function U(a, b, x)
is given by the formula:

U(a, b, x) =
1

Γ(a)

∫ +∞

0

e−xtta−1(1 + t)b−a−1dt. (2.18)

When a ≤ 0 one uses other representations (see the cited references; for instance one
can use a direct computation or the recurrence formula U(a, b, x) = (2a − b + z −
2)U(a + 1, b, x)− (a + 1)(a− b + 2)U(a + 2, b, x)); it is known that U(a, b, x) behaves
as x−a at in�nity. Also introduce for x ≥ 0:

W (x) = ex γ−h

σ2 x
σ2

−2γθ

σ2 U

(

−
−rσ2 − σ2h + γ2θ + γhθ

σ2h
, 2 −

2γθ

σ2
,
2h

σ2
x

)

, (2.19)

where h =
√

γ2 + 2σ2.
Theorem 3.

1. Introduce for Λ > 0 the family of functions: PΛ(λ) such that:

PΛ(λ) = χ(λ) ∀λ ∈ [0,Λ] (2.20)

(APΛ)(λ) − (r + λ)PΛ(λ) = 0, ∀λ > Λ (2.21)

lim
λ→Λ

PΛ(λ) = χ(Λ), (2.22)

lim
λ→∞

PΛ(λ) = 0. (2.23)

Then

PΛ(λ) =

{

χ(λ) ∀λ ∈ [0,Λ]
χ(Λ)
W (Λ)W (λ) ∀λ ≥ Λ.

(2.24)

2. Suppose now a Λ∗ ∈]0, ρ0 ∧ λ0[ exists such that:

dPΛ∗(λ)

dλ

∣

∣

∣

λ=(Λ∗)+
=

dχ(λ)

dλ

∣

∣

∣

λ=(Λ∗)−
. (2.25)

Then the price of the prepayment option is P (λ) = PΛ∗(λ).
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Proof. We start with the �rst item: it is possible to obtain a general solution
of (2.21) in an analytic form. We recall that z(X) = U(a, b,X) is the solution of
the Kummer equation (2.17). A cumbersome but straightforward computation shows
that the general solution vanishing at in�nity of the PDE (2.21) is W (λ) thus

PΛ(λ) = CΛW (λ) ∀λ > Λ (2.26)

with some CΛ > 0 to be determined. Now use the boundary conditions. If λ = Λ by
continuity χ(Λ) = PΛ(Λ) = CΛW (Λ). Thus, CΛ = χ(Λ)

W (Λ) . Division by W is legitimate
because by de�nition, W (x) > 0 for all x > 0.

We now continue with the second part of the theorem. The valuation problem
of an American option goes through several steps: �rst one introduces the admissible
trading and consumption strategies cf. [20, Chapter 5]; then one realizes using results
in cited reference (also see [21, 17]) that the price P (λ) of the prepayment option in-
volves computing a stopping time associated to the payo�. Denote by T the ensemble
of (positive) stopping times; we conclude that:

P (λ) = sup
τ∈T

E(e−
R

τ

0
r+λuduχ(λτ )|λ0 = λ). (2.27)

Further results derived for the situation of a perpetual (standard) American put
options [14, 4] show that the stopping time has a simple structure: a critical level exists
that split the positive axis into two regions: to the left the exercise region where it is
optimal to exercise and where the price equals the payo� and a continuation region
(to the right) where the price satis�es a partial di�erential equation similar to Black-
Scholes equation. We refer to [8] for how to adapt the theoretical arguments for the
situation when the dynamics is not Black-Scholes like but a CIR process.

The result builds heavily on the fact that the discounted payo� of the standard
situation of an American put e−rt(S−K)−, is a submartingale. For us the discounted
payo� is

e−
R

t

0
r+λuduχ(λt) = e−

R

t

0
r+λudu(ξ(λt) − K)+ (2.28)

and checking this condition requires here more careful examination which is the object
of Lemma 2.1. It is now possible to apply Thm. 10.4.1 [28, Section 10.4 page 227]
(see also [8] for speci�c treatment of the CIR process) which will show that P (λ) is
the true option price if the following conditions are satis�ed:

1. on ]0,Λ∗[ we have P (λ) = χ(λ) = (ξ(λ) − K)+ and the relation (2.34) holds;
2. the solution candidate P (λ) satis�es the relation

(AP )(λ) − (r + λ)P (λ) = 0, ∀λ > Λ∗. (2.29)

3. the function P (λ) is C1 everywhere, continuous at the origin and C2 on each
sub-interval ]0,Λ∗[ and ]Λ∗,∞[.

The theorem also says that the borrower exercises his option on the exercise region
[0,Λ∗] while on the continuation region ]Λ∗,∞[ the borrower keeps the option because
it is worth more non-exercised.

We now show that PΛ∗ veri�es all conditions above which will allow to conclude
that P = PΛ∗ . The requirement 1 is proved in Lemma 2.1; the requirement 3 amounts
at asking that the optimal frontier value Λ∗ be chosen such that:

dPΛ∗(λ)

dλ

∣

∣

∣

λ=(Λ∗)+
=

dχ(λ)

dλ

∣

∣

∣

λ=(Λ∗)−
. (2.30)
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The requirement 2 implies that in the continuation region the price is the solution
of the following PDE:

(AP )(λ) − (r + λ)P (λ) = 0, ∀λ > Λ∗. (2.31)

For this PDE we need boundary conditions. The condition at λ = Λ∗ is

P (λ)
∣

∣

∣

λ=Λ∗

= χ(λ)
∣

∣

∣

λ=Λ∗

. (2.32)

When λ = +∞ the default intensity is in�nite thus the time to failure is zero thus
the borrower has failed ; in this case the option is worthless i.e.

lim
λ→∞

P (λ) = 0. (2.33)

These conditions give exactly the de�nition of PΛ∗ , q.e.d.
Lemma 2.1. The following inequality holds:

(Aχ)(λ) − (r + λ)χ(λ) < 0, ∀λ < ρ0 ∧ λ0. (2.34)

Proof. Recall that χ(λ) = (ξ(λ) − K)+; the de�nition (2.5) of ξ implies (cf. [28,
Section 8.2 and exercise 9.12 p 203]) that ξ is solution of the following PDE:

(Aξ)(λ) − (r + λ)ξ(λ) + (r + ρ0)K = 0, ∀λ > 0. (2.35)

For λ < λ0 we have ξ(λ) > K = ξ(λ0) thus
(

A(ξ(·) − K)+
)

(λ) − (r + λ)(ξ(λ) − K)+ (2.36)

=
(

A(ξ(·) − K)
)

(λ) − (r + λ)
(

ξ(λ) − K
)

(2.37)

= (Aξ)(λ) − (r + λ)ξ(λ) + (r + λ)K (2.38)

= −(r + ρ0)K + (r + λ)K = (λ − ρ0)K < 0 ∀λ < ρ0 ∧ λ0. (2.39)

Note that the Theorem 3 is only a su�cient result (a so-called "veri�cation"
result) ; under the assumption that a Λ∗ ful�lling the hypotheses of the Theorem
exist the question is how to �nd it.

Two approaches can be considered; �rst, it is enough to �nd a zero of the following

function Λ 7→ Υ(Λ) :=
(

∂PΛ(λ)
∂λ

∣

∣

∣

λ=Λ+
− ∂χ(λ)

∂λ

∣

∣

∣

λ=Λ−

)

(the last equality is a de�nition).

Of course ∂χ(λ)
∂λ

∣

∣

∣

λ=λ0+ǫ
= 0 and

∂Pλ0+ǫ(λ)

∂λ

∣

∣

∣

λ=λ0+ǫ
< 0 thus Υ(λ0+ǫ) < 0 for any ǫ > 0

hence Υ(λ0) ≤ 0. Thus it is natural not to look for Λ∗ outside the interval [0, λ0].
The theorem asks furthermore to restrict the search to the interval [0, λ0 ∧ ρ0].

A di�erent convenient procedure to �nd the critical Λ∗ is to consider the depen-
dence Λ 7→ PΛ(λ0). Let us consider the stopping time τΛ that stops upon entering
the domain [0,Λ]. We remark that by a Feynman-Kac formula (cf. [28, p 203])

PΛ(λ) = E(e−
R τΛ
0 r+λuduχ(λτΛ

)|λ0 = λ). (2.40)

From (2.27) P (λ) ≥ PΛ(λ) for any λ thus Λ∗ is the value that maximizes (with respect
to Λ) the function Λ 7→ PΛ(λ0). To comply with the theorem the maximization is
performed in the interval [0, λ0 ∧ ρ0].
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0
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0.015

0.02

0.025

Λ

Fig. 2.1. We illustrate here the dependence of PΛ(λ0) as a function of Λ; this allows to �nd
the optimal value Λ∗ that maximize the option price. For the numerical example described here we
obtain Λ∗ = 123 bps.
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0.9

0.92
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1

λ

Fig. 2.2. Loan value as a function of the intensity. The loan value is decreasing when there is
a degradation of the credit quality (i.e., λ increases) and converges to 0.

2.3. Numerical Application. We consider a perpetual loan (T = +∞) with a
nominal amount K = 1 and the borrower default intensity λt follows a CIR dynamics
with parameters: initial intensity λ0 = 300 bps, volatility σ = 0.05, average intensity
θ = 200 bps, reversion coe�cient γ = 0.5. We assume a constant interest rate
r = 300bps i.e., r = 3%. Recall that a basis point, denoted "1 bps" equals 10−4.

In order to �nd the initial contractual margin we use equation (2.11) and �nd
ρ0 = 208 bps.

At inception, the present value of cash �ows is at par, so ξ(λ0) = 1. The prepay-
ment option price is P (+∞, λ0) = 0.0232 i.e., P (λ0) = 2.32% ·K. Therefore the loan
value equals ξ(λ0) − P (λ0) = 0, 9768.

The value Λ∗ = 123 bps is obtained by maximizing PΛ(λ0) as indicated in the
Remarks above; the dependence of PΛ(λ0) with respect to Λ is illustrated in Figure 2.1.
The loan value will equal to par if the intensity decreases until the exercise region
(λ < Λ∗) see Figures 2.2. The continuation and exercise regions are depicted in
Figure 2.3. We postpone to Section 3.5 the description of the numerical method to
solve (2.21).
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Fig. 2.3. Prepayment option price P (λ) (solid line) and payo� χ(λ) (dashed line) as a function
of the intensity λ. Two regions appear : the continuation region λ > Λ∗ and the exercise region
λ ≤ Λ∗.

3. Perpetual prepayment option with a switching regime. In this second
part, the perpetual prepayment option is still an option on the credit risk, intensity,
but now also the liquidity cost. The liquidity cost is de�ned as the speci�c cost of a
bank to access the cash on the market. This cost will be modeled with a switching
regime with a Markov chain of �nite states of the economy. The interest rate r is still
assumed constant. Therefore, the assessment of the loan value and its prepayment
option is a N -dimensional problem. The intensity is still de�ned by a Cox-Ingersoll-
Ross process with 2kθ ≥ σ2:

dλt = γ(θ − λt)dt + σ
√

λtdWt, λ0 = λ0. (3.1)

3.1. Theoretical regime switching framework. We assume the economic
state of the market is described by a �nite state Markov chain X = {Xt, t ≥ 0}. The
state space X can be taken to be, without loss of generality, the set of unit vectors
E = {e1, e2, ..., eN}, ei = (0, ..., 0, 1, 0, ..., 0)T ∈ R

N . Here T is the transposition oper-
ator.

Assuming the process Xt is homogeneous in time and has a rate matrix A, then
if pt = E[Xt] ∈ R

N ,

dpt

dt
= Apt (3.2)

and,

Xt = X0 +

∫ t

0

AXudu + Mt, (3.3)

where M = {Mt, t ≥ 0} is a martingale with respect to the �ltration generated by X.
In di�erential form

dXt = AXtdt + dMt, X0 = X0. (3.4)

We assume the instantaneous liquidity cost of the bank depends on the state X of the
economy, so that

lt = 〈l, Xt〉 (3.5)
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Denote by ak,j the entry on the line k and the column j of the N ×N matrix A with
ak,j ≥ 0 for j 6= k and

∑N
j=1 ak,j = 0 for any k.

3.2. Analytical formulas for the PVRP. Assume a loan has a �xed coupon
de�ned by the constant interest rate r and an initial contractual margin ρ0 calculated
at the inception for a par value of the loan. Let ξ(t, T, λt, Xt) be, the present value
of the remaining payments at time t of a corporate loan where: λt is the intensity at
time t; T is the contractual maturity; K is the nominal amount and Xt is the state
of the economy at time t.

The loan value LV (t, T, λ) is still equal to the present value of the remaining
payments ξ(t, T, λ) minus the prepayment option value P (t, T, λ).

LV (t, T, λ) = ξ(t, T, λ) − P (t, T, λ) (3.6)

The PVRP ξ is the present value of the cash �ows discounted at the risky rate,
where the risky rate at time t is the constant risk-free rate r plus the liquidity cost lt
and the intensity λt. Similar to the discussion in the Subsection 2.1, ξ is not depending
on time when T = +∞ (perpetual loan). So we denote,

ξ(λ, X) := K (r + ρ0) E

[
∫ +∞

0

e−
R

t̃

0
r+lu+λududt̃

∣

∣

∣
λ0 = λ, X0 = X

]

(3.7)

We consider that there is no correlation between the credit risk, i.e., the intensity λt,
of the borrower and the cost to access the cash on the market, i.e. the liquidity cost
lt, of the lender. Therefore, we have,

ξ(λ, X) = K (r + ρ0)

∫ +∞

0

e−rt̃
E

[

e−
R

t̃

0
λudu

∣

∣

∣
λ0 = λ

]

×E

[

e−
R

t̃

0
ludu

∣

∣

∣
X0 = X

]

dt̃ (3.8)

Remark 4. The crucial information here is that the coe�cients γ, θ, σ of the CIR
process are not depending on the regime X thus we can separate the CIR dynamics
and the Markov dynamics at this level. A di�erent approach can extend this result by
using the properties of the PVRP as explained in the next section.

Note that (cf. Subsection 2.1 equation (2.7))

E

[

e−
R

t

0
λudu

∣

∣

∣
λ0 = λ

]

= B(0, t, λ) (3.9)

and B(0, t, λ) is evaluated using equations (2.8) - (2.11). In order to compute

E

[

e−
R

t̃

0
ludu

∣

∣

∣
X0 = X

]

let fk(t) be de�ned by:

fk(t) = E

[

e−
R

t

0
ludu

∣

∣

∣
X0 = ek

]

. (3.10)

Let τ , the time of the �rst jump from X0 =< X, ek > to some other state. We
know (cf. Lando [18] paragraph 7.7 p 211) that τ is a random variable following an
exponential distribution of parameter αk with,

αk =
∑

j 6=k

ak,j (3.11)
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We also know that conditional to the fact that a jump has occurred at time τ the
probability that the jump is from state ek to state ej is pk,j , where

pk,j =
ak,j

αk
(3.12)

Thus,

fk(t) = P(τ > t)e−lkt + P(τ ≤ t)e−lkτ
∑

j 6=k P(lτ = lj)E
[

e−
R

t

τ
ludu

∣

∣

∣
Xτ =< X, ej >

]

= e−(lk+αk)t + αk

∫ t

0
e−(lk+αk)τ

∑

j 6=k pk,jfj(t − τ)dτ

Then,

e(lk+αk)tfk(t) = 1 + αk

∫ t

0
e(lk+αk)(t−τ)

∑

j 6=k pk,jfj(t − τ)dτ

= 1 + αk

∫ t

0
e(lk+αk)s

∑

j 6=k pk,jfj(s)ds

By di�erentiation with respect to t:

d

dt

[

e(lk+αk)tfk(t)
]

= αke(lk+αk)t
∑

j 6=k

pk,jfj(t)

Then

dfk(t)

dt
+ (lk + αk)fk(t) = αk

∑

j 6=k

pk,jfj(t)

Thus,

dfk(t)

dt
=





∑

j 6=k

αkpk,jfj(t)



− (lk + αk)fk(t) (3.13)

Denote F (t) = (f1(t), f2(t), ..., fN (t))
T and introduce the N × N matrix B,

Bi,j =

{

αipi,j if i 6= j
−(αi + li) if i = j

(3.14)

From equation (3.13) we obtain,

dF (t)

dt
= BF (t) thus F (t) = eBtF (0) (3.15)

with the initial condition,

F (0) =
(

fk(0)
)N

k=1
= (1, 1, ..., 1)T ∈ R

N . (3.16)

We have therefore analytic formulas for the PVRP ξ(λ, X). We refer the reader
to [10] for similar considerations on a related CIR switched dynamics.

Remark 5. When all liquidity parameters lk are equal (to some quantity l) then
B = A − l · Id and then we obtain (after some computations) that fk(t) = e−lt thus
the payo� is equal to that of a one-regime dynamics with interest rate r + l, which
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is consistent with intuitive image we may have. Another limiting case is when the
switching is very fast, see also Remark 8 item 5 for further details.

The margin ρ0 is set to satisfy the equilibrium equation

ξ(λ0, X0) = K. (3.17)

Similar arguments to that in previous section show that ρ0 > mink lk > 0. See
Remark 1 for the situation when a additional commercial margin is to be considered.

We will also need to introduce for any k = 1, ..., N the value Λ
0

k such that

ξ(Λ
0

k, ek) = K. (3.18)

Of course, Λ
0

X0
= λ0. Recall that ξ(λ, ek) is decreasing with respect to λ; when

ξ(0, ek) < K there is no solution to eqn. (3.17) and we will choose by convention

Λ
0

k = 0.

3.3. Further properties of the PVRP ξ. It is useful for the following to
introduce a PDE formulation for ξ. To ease the notations we introduce the operator
AR that acts on functions v(λ, X) as follows:

(ARv)(λ, ek) = (Av)(λ, ek)−(r+lk+λ)v(λ, ek)+

N
∑

j=1

ak,j

(

v(λ, ej)−v(λ, ek)
)

. (3.19)

Having de�ned the dynamics (3.1) and (3.4) one can use an adapted version of
the Feynman-Kac formula in order to conclude that PVRP de�ned by (3.7) satis�es
the equation:

(ARξ) + (r + ρ0)K = 0. (3.20)

Remark 6. When the dynamics involves di�erent coe�cients of the CIR process
for di�erent regimes (cf. also Remark 4) the Equation (3.20) changes in that it will
involve, for ξ(·, ek), the operator

Ak(v)(λ) = γk(θk − λ)∂λv(λ) +
1

2
σ2

kλ∂λλv(λ). (3.21)

instead of A.

3.4. Valuation of the prepayment option. The valuation problem of the
prepayment option can be modelled as an American call option on a risky debt owned
by the borrower with payo�:

χ(λ, X) = (ξ(λ, X) − K)+. (3.22)

Here the prepayment option allows borrower to buy back and re�nance his/her debt
according to the current contractual margin at any time during the life of the option.

Theorem 7. For any N-tuple Λ = (Λk)N
k=1 ∈ (R+)N introduce the function

PΛ(λ, X) such that:

PΛ(λ, ek) = χ(λ, ek) ∀λ ∈ [0,Λk] (3.23)

(ARPΛ)(λ, ek) = 0, ∀λ > Λk, k = 1, ..., N (3.24)

lim
λ→Λk

PΛ(λ, ek) = χ(Λk, ek), if Λk > 0, k = 1, ..., N (3.25)

lim
λ→∞

PΛ(λ, ek) = 0, k = 1, ..., N. (3.26)
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Suppose a Λ∗ ∈
∏N

k=1[0, (ρ0 − lk)+ ∧ Λ
0

k] exists such that for all k = 1, ..., N :

PΛ∗(λ, X) ≥ χ(λ, X) ∀λ, X (3.27)
∂PΛ∗(λ, ek)

∂λ

∣

∣

∣

λ=(Λ∗

k
)+

=
∂χ(λ, ek)

∂λ

∣

∣

∣

λ=(Λ∗

k
)−

if Λ∗
k > 0 (3.28)

N
∑

j=1

ak,j

(

PΛ∗(λ, ej) − χ(λ, ej)
)

+ K(λ + lk − ρ0) ≤ 0 ∀λ ∈] min
j

Λ∗
j ,Λ

∗
k[. (3.29)

Then P = PΛ∗ .
Proof. Similar arguments as in the proof of Thm. 3 lead to consider the American

option price in the form

P (λ, X) = sup
τ∈T

E

[

e−
R

τ

0
r+lu+λuduχ(λτ , Xτ )

∣

∣

∣
λ0 = λ, X0 = X

]

.

We note that for Λ ∈ (R∗
+)N if τΛ is the stopping time that stops upon exiting the

domain λ > Λk when X = ek then

PΛ(λ, X) = E

[

e−
R τΛ
0 r+lu+λuduχ(λτΛ

, XτΛ
)
∣

∣

∣
λ0 = λ, X0 = X

]

.

Remark that for Λ ∈ (R∗
+)N the stopping time τΛ is �nite a.e. Thus for any Λ ∈

(R∗
+)N we have P ≥ PΛ; when Λ has some null coordinates the continuity (ensured

among others by the boundary condition (3.23)) shows that we still have P ≥ PΛ.
In particular for Λ∗ we obtain P ≥ PΛ∗ ; all that remains to be proved is the reverse
inequality i.e. P ≤ PΛ∗ .

To this end we use a similar technique as in Thm. 10.4.1 [28, Section 10.4 page
227] (see also [26] for similar considerations). First one can invoke the same arguments
as in cited reference (cf. Appendix D for technicalities) and work as if PΛ∗ is C2 (not
only C1 as the hypothesis ensures).

Denote DΛ∗ = {(λ, ek)|λ ∈ [0,Λ∗
k], k = 1, ..., N} (which will be the exercise region)

and CΛ∗ its complementary with respect to R+ × E (which will be the continuation
region).

The Lemma 3.1 shows that ARPΛ∗ is non-positive everywhere (and is null on
CΛ∗). The Îto formula shows that

d
(

e−
R

t

0
r+ls+λsdsPΛ∗(λt, Xt))

)

= e−
R

t

0
r+ls+λsds(ARPΛ∗)(λt, Xt))dt + d(martingale)

(3.30)
Taking averages and integrating from 0 to some stopping time τ it follows from
ARPΛ∗ ≤ 0 that

PΛ∗(λ, X) ≥ E

[

e−
R

τ

0
r+lu+λuduPΛ∗(λτ , Xτ )

∣

∣

∣
λ0 = λ, X0 = X

]

≥ E

[

e−
R

τ

0
r+lu+λuduχ(λτ , Xτ )

∣

∣

∣
λ0 = λ, X0 = X

]

.

Since this is true for any stopping time τ the conclusion follows.
Lemma 3.1. Under the hypothesis of the Thm. 7 the following inequality holds

(strongly except for the values (λ, X) = (Λ∗
j , ek) and everywhere in a weak sense):

(ARPΛ∗)(λ, X) ≤ 0, ∀λ > 0,∀X. (3.31)
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Proof. The non-trivial part of this lemma comes from the fact that if for �xed
k we have for λ in a neighborhood of some λ1: PΛ∗(λ, ek) = χ(λ, ek) this does not
necessarily imply (ARPΛ∗)(λ1, ek) = (ARχ)(λ1, ek) because AR depends on other
values PΛ∗(λ, ej) with j 6= k.

From (3.24) the conclusion is trivially veri�ed for X = ek for any λ ∈]Λ∗
k,∞[.

We now analyse the situation when λ < minj Λ∗
j ; this means in particular that

0 ≤ λ < minj Λ∗
j ≤ Λ

0

ℓ for any ℓ thus Λ
0

ℓ > 0. Note that Λ∗
k < Λ

0

k implies ξ(Λ∗
k, ek) ≥

ξ(Λ
0

k, ek) = K for any k = 1, ..., N thus χ(λ, ek) = ξ(λ, ek)−K for any λ ∈ [0,Λ∗
k] and

any k. Furthermore since λ < minj Λ∗
j we have PΛ∗(λ, ek) = χ(λ, ek) = ξ(λ, ek) − K

for any k. Fix X = ek; then

(ARPΛ∗)(λ, ek) = (ARχ)(λ, ek) = (AR(ξ − K))(λ, ek) = (ARξ)(λ, ek) −AR(K)

= −(r + ρ0)K − (r + lk + λ)K = K(lk + λ − ρ0) ≤ K(lk + Λ∗
k − ρ0) ≤ 0 (3.32)

the last inequality being true by hypothesis.
A last situation is when λ ∈] minj Λ∗

j ,Λ
∗
k[; there PΛ∗(λ, ek) = χ(λ, ek) but some

terms PΛ∗(λ, ej) for j 6= k may di�er from χ(λ, ej). More involved arguments are
invoked in this case. This point is speci�c to the fact that the payo� χ itself has a
complex structure and as such was not emphasized in previous works (e.g., [26], etc.).

Recalling the properties of ξ one obtains (and since PΛ∗(λ, ek) = χ(λ, ek)):

(ARPΛ∗)(λ, ek) = (Aχ)(λ, ek) − (r + lk + λ)χ(λ, ek) +
N
∑

j=1

ak,j

(

PΛ∗(λ, ej) − χ(λ, ek)
)

= (ARχ)(λ, ek) +

N
∑

j=1

ak,j

(

PΛ∗(λ, ej) − χ(λ, ej)
)

= (ARξ)(λ, ek) −AR(K) +

N
∑

j=1

ak,j

(

PΛ∗(λ, ej) − χ(λ, ej)
)

= −K(r + ρ0) + (r + lk + λ)K +
N
∑

j=1

ak,j

(

PΛ∗(λ, ej) − χ(λ, ej)
)

≤ 0, (3.33)

where for the last inequality we use hypothesis (3.29). Finally, since we proved that
(ARPΛ∗)(λ, X) ≤ 0 strongly except for the values (λ, X) = (Λ∗

j , ek) and since PΛ∗ is of
C1 class we obtain the conclusion (the weak formulation only uses the �rst derivative
of PΛ∗).

Remark 8. Several remarks are in order at this point:
1. when only one regime is present i.e., N = 1 the hypothesis of the Theorem

are identical to that of Thm. 3 since (3.29) is automatically satis�ed.
2. when N > 1 checking (3.29) does not involve any computation of derivatives

and is straightforward.
3. as mentioned in the previous section, the Theorem is a veri�cation result

i.e., only gives su�cient conditions for a candidate to be the option price.
Two possible partial converse results are possible: a �rst one to prove that
the optimal price is indeed an element of the family PΛ. A second converse

result is to prove that supposing P = PΛ∗ then Λ∗ ∈
∏N

k=1[0, (ρ0 − lk)+ ∧Λ
0

k]
and (3.27)-(3.29) are satis�ed.
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4. the search for the candidate Λ∗ can be done either by looking for a zero of

the function Λ 7→ Υ(Λ) :=
(

∂PΛ∗ (λ,ek)
∂λ

∣

∣

∣

λ=(Λ∗

k
)+

− ∂χ(λ,ek)
∂λ

∣

∣

∣

λ=(Λ∗

k
)−

)N

k=1
or by

maximizing on
∏N

k=1]0, (ρ0 − lk) ∧ Λ
0

k[ the function Λ 7→ PΛ(λ0, X0).
5. if the optimization of PΛ(λ0, X0) is di�cult to perform, one can use a con-

tinuation argument with respect to the coupling matrix A. Denote by Λ∗(A)
the optimal value of Λ∗ as function of A. When A = 0 each Λ∗

k is found
as in Section 2 (the problem separates into N independent i.e., no coupled,
valuation problems, each of which requiring to solve a one dimensional opti-
mization) and we construct thus Λ∗(0). When considering µA with µ → ∞
at the limit the optimal Λ∗(∞A) has all entries equal to Λ∗

mean where Λ∗
mean

is the optimal value for a one-regime (N = 1) dynamics with risk-less interest

rate r being replaced by r +
PN

k=1
lk/αk

P

N
k=1

1/αk
. Having established the two extremal

points the candidate Λ∗(A) is searched within the N -dimensional segment
[Λ∗(0),Λ∗(∞A)].

3.5. Numerical Application. The numerical solution of the partial di�erential
equation (3.24) is required. We use a �nite di�erence method. The �rst derivative is
approximated by the �nite di�erence formula:

∂

∂λ
PΛ(λ, X) =

PΛ(λ + δλ, X) − PΛ(λ − δλ, X)

2δλ
+ O(δλ2) (3.34)

while the second derivative is approximated by:

∂2

∂λ2
PΛ(λ, X) =

PΛ(λ + δλ, X) − 2PΛ(λ + δλ, X) + PΛ(λ − δλ, X)

δλ2
+ O(δλ2) (3.35)

To avoid working with an in�nite domain a well-known approach is to de�ne an
arti�cial boundary λmax. Then a boundary condition is imposed on λmax which leads
to a numerical problem in the �nite domain ∪N

k=1[Λ
∗
k, λmax]. In this numerical appli-

cation, λmax = 400 bps. We discretize [Λ∗, λmax] with a grid such that δλ = 1bps.
Two approaches have been considered for imposing a boundary value at λmax: either
consider that PΛ(λmax, ek) = 0, ∀k = 1, ..., N (homogeneous Dirichlet boundary con-
dition) or that ∂

∂λPΛ(λmax, ek) = 0, ∀k = 1, ..., N (homogeneous Neuman boundary
condition). Both are correct in the limit λmax → ∞. We tested the precision of
the results by comparing with numerical results obtained on a much larger grid (10
times larger) while using same δλ. The Neumann boundary condition gives much
better results for the situations we considered and as such was always chosen (see also
Figure 3.3).

We consider a perpetual loan with a nominal amount K = 1 and the borrower
default intensity λt follows a CIR dynamics with parameters: initial intensity λ0 =
300bps, volatility σ = 0.05, average intensity θ = 200bps, reversion coe�cient γ = 0.5.
We assume a constant interest rate r = 1% and a liquidity cost de�ned by a Markov
chain of two states l1 = 150bps and l2 = 200bps. For N = 2 the rate A matrix is
completely de�ned by α1 = 1/3, α2 = 1.

In order to �nd the initial contractual margin we use equation (2.11) and �nd
ρ0 = 331 bps in the state 1. The contractual margin takes into account the credit
risk (default intensity) and the liquidity cost. We have thus Λ

0

1 = λ0; we obtain then

Λ
0

2 = 260bps.
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Fig. 3.1. We illustrate here the dependence of PΛ(λ0, X0) as a function of Λ; this allows to
�nd the optimal (Λ∗

1
= 122bps, Λ∗

2
= 64bps) that maximizes the option price.
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Fig. 3.2. Loan value as a function of the intensity. Top: regime X = e1; bottom: regime
X = e2. The loan value is decreasing when there is a degradation of the credit quality (i.e. when λ

increases) and converges to 0.

The optimal value Λ∗ is obtained by maximizing PΛ(λ0, X0) and turns out to be
(Λ∗

1,Λ
∗
2) = (122bps, 64bps), see Figure 3.1. To be accepted, this numerical solution

has to verify all conditions of the Theorem 7. The hypothesis (3.27) and (3.29)
are satis�ed (see Figure 3.3) and the hypothesis (3.29) is accepted after calculation.

Moreover Λ∗
1 ≤ (ρ0 − l1) ∧ Λ

0

1 and the analogous holds for Λ∗
2.

In the state X0 = 1, the present value of cash �ows is at par, so ξ(λ0, X0) = 1.
The prepayment option price is P (λ0, X0) = 0.0240. Therefore the loan value equals
ξ(λ0, X0) − P (λ0, X0) = 0.9760.

The loan value will equal to the nominal if the intensity decreases until the exercise
region λ ≤ Λ∗ see Figure 3.2. The continuation and exercise regions are depicted in
Figure 3.3.

3.6. Regimes when is never optimal to exercise. When the liquidity pa-
rameters corresponding to given regimes are very di�erent it may happen that the
optimization of PΛ(λ0, X0) over Λ gives an optimum value Λ∗ with some null coordi-
nates Λki

, i = 1, .... This may hint to the fact that in this situation it is never optimal
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Fig. 3.3. The price of the prepayment option PΛ∗ (λ) (solid line) and the payo� χ(λ) (dashed
line) as function of the intensity λ. Top: regime X = e1; bottom: regime X = e2. For each regime
two regions appear : the continuation region λ > Λ∗

i
and the exercise region λ ≤ Λ∗

i
.

to exercise during the regimes eki
, i = 1, .... This is not surprising in itself (remember

that this is the case of an American call option) but needs more care when dealing

with. Of course when in addition Λ
0

ki
= 0 the payo� being null it is intuitive that the

option should not be exercised.
Remark 9. Further examination of the Theorem 3 calls for the following remarks:

1. the boundary value set in eqn. (3.23) for some regime ek with Λ∗
k = 0 deserves

an interpretation. The boundary value does not serve to enforce continuity
of λ 7→ PΛ(λ) because there is no exercise region in this regime . Moreover
when 2γθ ≥ σ2 the intensity λu does not touch 0 thus the stopping time τΛ∗

is in�nite in the regime ek (thus the boundary value in 0 it is never used and
thus need not be enforced); from a mathematical point of view it is known
that no boundary conditions are required at points where the leading order
di�erential operator is degenerate.

2. it is interesting to know when such a situation can occur and how can one
interpret it. Let us take a two-regime case (N = 2): l1 a �normal� regime
and l2 the �crisis� regime (l2 ≥ l1); when the agent contemplates prepayment
the more severe the crisis (i.e. larger l2 − l1 ) the less he/she is likely to
prepay during the crisis when the cash is expensive (high liquidity cost). We
will most likely see that for l1 = l2 some exercise region exists while starting
from some large l2 the exercise region will disappear in regime e2. This is
completely consistent with the numerical results reported in this paper.

3.7. Numerical Application. We consider the same situation as in Section 3.7
except that l1 = 50bps and l2 = 250 bps. In order to �nd the initial contractual margin
we use equation (2.11) and �nd ρ0 = 305 bps in the state 1. The contractual margin
takes into account the credit risk (default intensity) and the liquidity cost. As before

Λ
0

1 = λ0 but here we obtain Λ
0

2 = 221bps.
The couple (Λ∗

1 = 121bps,Λ∗
2 = 0) (see Figure 3.4) maximizes PΛ(λ0, X0). There

does not exist a exercise boundary in the state 2. The loan value will equal the
par if the intensity decreases until the exercise region λ ≤ Λ∗ see Figure 3.5. The
continuation and exercise regions are depicted in Figure 3.6.

To be accepted as true price the numerical solution PΛ∗ has to verify all hypothesis
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Fig. 3.5. Loan value as a function of the intensity. Top: regime X = e1; bottom: regime
X = e2. The loan value is decreasing when there is a degradation of the credit quality (i.e. when λ

increases) and converges to 0.

and conditions of the Theorem 7. In the regime X = e1, the hypothesis (3.27)
and (3.28) are veri�ed numerically (see also Figure 3.6) and the hypothesis (3.29) is

accepted after calculation. Moreover Λ∗
k ≤ (ρ0 − lk) ∧ Λ

0

k for k = 1, 2.
In the state X = e1, the present value of cash �ows is at par, so ξ(λ0, X0) = K = 1.

The prepayment option price is P (λ0) = 0.0245. Therefore the loan value LV equals
ξ(λ0) − P (λ0) = 0.9755.

4. Concluding remarks. We proved in this paper two su�cient theoretical re-
sults concerning the prepayment option of corporate loans. In our model the interest
rate is constant, the default intensity follows a CIR process and the liquidity cost fol-
lows a discrete space Markov jump process. The theoretical results were implemented
numerically and show that the prepayment option cost is not negligible and should be
taken into account in the asset liability management of the bank. Moreover it is seen
that when liquidity parameters are very di�erent (i.e., when a liquidity crisis occur)
in the high liquidity cost regime the exercise domain may entirely disappear, meaning
that it is not optimal for the borrower to prepay during such a liquidity crisis.
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Fig. 3.6. The price of the prepayment option PΛ∗ (λ) (solid line) and the payo� χ(λ) (dashed
line) as function of the intensity λ. Top: regime X = e1; bottom: regime X = e2. Two regions
appear : the continuation region λ > Λ∗
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and the exercise region λ ≤ Λ∗

1
. For the second regime

there is no exercise region.
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