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VALUATION OF THE PREPAYMENT OPTION OF A PERPETUAL

CORPORATE LOAN

TIMOTHEE PAPIN∗ AND GABRIEL TURINICI†

Abstrat. We investigate in this paper a perpetual prepayment option related to a orporate
loan. The default intensity of the �rm is supposed to follow a CIR proess. Two frameworks are
disussed: �rst a onstant interest rate and a seondly a multi-regime framework where the interest
rate is augmented by a liquidity fator dependent on the regime. The prepayment option needs
spei� attention as the payo� itself is an impliit funtion of the parameters of the problem and of
the dynamis. We establish in the unique regime ase analyti formulas for the payo� of the option;
in both ases we give a veri�ation result that allows to ompute the prie of the option. Numerial
results that implement the �ndings are also presented and are ompletely onsistent with the theory;
it is seen that when liquidity parameters are very di�erent (i.e., when a liquidity risis our) in the
high liquidity ost regime the exerise domain may entirely disappear meaning that it is not optimal
for the borrower to prepay during suh a liquidity risis. The method allows to quantify and interpret
these �ndings.

Key words. liquidity regime, loan prepayment, mortgage option, Amerian option, perpetual
option, option priing, Snell envelope, prepayment option, CIR proess, swithing regimes, Markov
modulated dynamis.

AMS subjet lassi�ations. 91G20, 91G30, 91G40, 91G50, 91G60, 91G80, 93E20

1. Introdution. When a �rm needs money it an turn to its bank whih lends

it against e.g., periodi payments in a form of a loan. A loan ontrat issued by a bank

for its orporate lients is a �nanial agreement that often omes with more �exibility

than a retail loan ontrat. These options are designed to meet lients' expetations

and an inlude e.g., a prepayment option (whih entitles the lient, if he desires

so, to pay all or a fration of its loan earlier than the maturity), a multi-urreny

option, a multi-index option, et. On the other hand, there are also some mehanisms

to protet the lender from the deterioration of the borrower's redit quality e.g., a

priing grid based on the borrower rating or proteting guaranties.

The main option remains however the prepayment option and it will be the subjet

of this entire paper. In almost every loan ontrat, the borrower has the free option

to prepay a portion or all the nominal. Even if the tehnialities are, as it will be seen

in the following, di�erent, the onept of this option is very lose to the embedded

option of a allable bond. When market interest rates have gone down the issuer of

the bond an buy bak his debt at a de�ned all prie before the bond reahes its

maturity date. It allows the issuer to re�nane its debt at a heaper rate.

In order to deide whether the exerise of the option is worthwhile the borrower

ompares the remaining payments (atualized by the interest rate he an obtain at

that time) with the nominal value. If the remaining payments exeed the nominal

value then it is optimal for the borrower to re�nane his debt at a lower rate.

When the interest rates are not onstant or borrower is subjet to default the

omputation of the atualization is less straightforward. It starts with onsidering all

possible senarios of evolution for interest rate and default intensity in a risk-neutral

framework and ompute the average value of remaining payments (inluding the �nal

payment of the prinipal if appliable); this quantity will be alled �PV RP �(denoted

ξ) and is the present value of the remaining payments i.e., the ash amount equivalent,
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both for borrower and lender in this model of the set of remaining payments. The

PV RP is ompared with the nominal : if the PV RP value is larger than the nominal

then the borrower should prepay, otherwise not. Reall that at the initial time the

payments orrespond to a rate, the sum of the interest rate and a ontratual margin

ρ0, whih is preisely making the two quantities equal. Note that in order to ompute

the prie of the embedded prepayment option the lender also uses the PV RP as it

will be seen below.

For a bank, the prepayment option is essentially a reinvestment risk i.e., the risk

that the borrower deides to repay earlier his/her loan and that the bank an not

reinvest his/her exess of ash in a new loan. So the longest the maturity of the loan,

the riskier the prepayment option. Therefore, it is interesting to study long-term

loans that are set for more than three years and an run for more than twenty years.

The valuation problem of the prepayment option an be modelled as an Amerian

embedded option on a risky debt owned by the borrower. As Monte-Carlo simulations

are slow to onverge to assess aurately the ontinuation value of the option during

the life of the loan and that the binomial tree tehniques are time-onsuming for long-

term loans (f. works by D. Cossin et al. [8℄), we deided to fous, in this paper, on

the prepayment option for perpetual loan.

When valuing �nanial produts with long maturity the robustness with respet

to shoks and other exogenous variabilities is important. Among problems that have

to be treated is the liquidity and its variability. Liquidity is the key of the stability of

the entire �nanial system and an ause banks' failures if systemi liquidity squeezes

appear in the �nanial industry. Historial events like the Asian risis of 1997; the

Russian �nanial risis of 1998; the defaults of hedge funds and investment �rms like

LTCM, Enron, Worldom and Lehman Brothers defaults, sovereign debts risis of

2010-11 and so on prove that banks hold signi�ant liquidity risk in their balane

sheets. Even if liquidity problems have a very low probability to our, a liquidity

risis an have a severe impat on a bank's funding osts, its market aess (reputation

risk) and short-term funding apabilities.

Following the state of the eonomi environment, the liquidity an be de�ned by

distint states. Between two risis, investors are on�dent and banks �nd it easier to

launh their long term re�naning programs through regular bonds issuanes. Thus

the liquidity market is stable. Unfortunately, during risis, liquidity beome sare,

pushing the liquidity urve to very high levels whih an only derease if on�dene

returns to the market. The transition is between these two distint behaviors is rarely

smooth but rather sudden.

In order to model the presene of distint liquidity behaviors we will simulate

the liquidity ost by a ontinuous time Markov hain that an have a disrete set of

possible values, one for eah regime that is enountered in the liquidity evolution.

From a tehnial point of view this paper faes several non-standard onditions:

although the goal is to value a perpetual Amerian option the payo� of the option is

highly non-standard (is dependent on the PV RP ). As a onsequene the harateri-

zation of the exerie region is not standard and tehnial onditions have to be met.

Furthermore our fous here is on a spei� type of dynamis (of CIR type) with even

more spei� interest on the situation when several regimes are present.

The balane of the paper is as follows: in the remainder of this setion (Sub-

Setion 1.1) we review the related existing literature; in Setion 2, we onsider that

the liquidity ost is negligible and the borrower redit risk de�ned by his/her default

intensity (alled in the following simply �intensity�) whih follows a CIR stohasti
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proess. We are able to obtain in this situation quasi-analyti formulas for the pre-

payment option prie. In Setion 3 we explore the situation when the liquidity ost,

de�ned as the ost of the lender to aess the ash on the market, has several distint

regimes that we model by a Markov hain. We write the priing formulas and theo-

retially support an algorithm to identify the boundary of the exerie region; �nal

numerial examples lose the paper.

1.1. Related literature. There exist few artiles (e.g., works by D. Cossin et

al. [8℄) on the loan prepayment option but a lose subjet, the prepayment option in

�xed-rate mortgage loan, has been widely overed in several papers by J.E. Hilliard

and J.B. Kau [11℄ and more reent works by Chen et al. [6℄. To approximate the PDE

satis�ed by the prepayment option, they de�ne two state variables (interest rate and

house prie). Their approah is based on a bivariate binomial option priing tehnique

with a stohasti interest rate and a stohasti house value.

Another ontribution by D. Cossin et al. [8℄ applies the binomial tree tehnique

(but of ourse it is time-onsuming for long-term loans due to the nature of binomial

trees) to orporate loans. They onsider a prepayment option with a 1 year loan with

a quarterly step but it is di�ult to have an aurate assessment of the option prie

for a 10 years loan.

There also exist mortgage prepayment deision models based on Poisson re-

gression approah for mortgage loans. See, for example, E.S. Shwartz and W.N.

Torous [21℄. Unfortunately, the volume and history of data are very weak in the

orporate loan market.

Due to the form of their approah, these papers did not have to onsider the ge-

ometry of the exerie region beause it is expliitly given by the numerial algorithm.

This is not the ase for us and requires that partiular are be taken when stating the

optimality of the solution. Furthermore, to the best of our knowledge, none of these

approahes explored the irumstane when several regimes exist.

The analysis of Markov-modulated regimes has been investigated in the literature

when the underlying(s) follow the Blak& Sholes dynamis with drift and volatility

having Markov jumps; several works are of interest in this area: Guo and Zhang [25℄

have derived the losed-form solutions for vanilla Amerian put; Guo analyses in [10℄

Russian (i.e., perpetual look-bak) options and is able to derive expliit solutions

for the optimal stopping time; in [23℄ Y. Xu and Y. Wu analyse the situation of a

two-asset perpetual Amerian option where the pay-o� funtion is a homogeneous

funtion of degree one; Mamon and Rodrigo [17℄ �nd expliit solutions to vanilla

European options. Bu�ngton and Elliott [4℄ study European and Amerian options

and obtain equations for the prie. A distint approah (Hopf fatorization) is used

by Jobert and Rogers [14℄ to derive very good approximations of the option pries

for, among others, Amerian puts. Other ontributions inlude [24, 22℄ et.

Works involving Markov swithed regimes and CIR dynamis appears in [9℄ where

the bond valuation problem is onsidered (but not in the form of an Amerian option;

their approah will be relevant to the omputation of the payo� of our Amerian

option although in their model only the mean reverting level is subjet to Markov

jumps) and in [26℄ where the term struture of the interest rates is analyzed.

On the other hand numerial methods are proposed in [12℄ where it is found that a

�xed point poliy iteration oupled with a diret ontrol formulation seems to perform

best.

Finally, we refer to [13℄ for theoretial results onerning the priing of Amerian

options in general.
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2. Perpetual prepayment option with a stohasti intensity CIR model.

We assume throughout the paper that the interest rate r is onstant. Therefore, the

prie of the prepayment option only depends on the intensity evolution over time.

We model the intensity dynamis by a Cox-Ingersoll-Ross proess (see [5, 2, 15℄ for

theoretial and numerial aspets of CIR proesses and the situations where the CIR

proess has been used in �nane):

dλs = γ(θ − λs)ds + σ
√

λsdWs, γ, θ, σ > 0, λ0 = λ0 (2.1)

It is known that if 2γθ ≥ σ2 then CIR proess ensure an intensity stritly positive.

Fortunately, as it will be seen in the following, the PVRP is given by an analyti

formula.

2.1. Analytial formulas for the PVRP. Assuming a loan has a �xed oupon

de�ned by the interest rate r and an initial ontratual margin ρ0. Let ξ(t, T, λ) be,
the present value of the remaining payments at time t of a orporate loan with initial

ontratual margin ρ0 (depending on λ0), intensity at time t, λt, following the risk-

neutral equation (2.1) with λt = λ, has nominal amount K and ontratual maturity

T .
Therefore the loan value LV (t, T, λ) is equal to the present value of the remaining

payments ξ(t, T, λ) minus the prepayment option value P (t, T, λ).

LV (t, T, λ) = ξ(t, T, λ) − P (t, T, λ) (2.2)

The ξ is the present value of the ash �ows disounted at the (instantaneous)

risky rate r+λt,. The ash �ows are K(r+ρ0) and the �nal payment of the prinipal

K. Then:

ξ(t, T, λ) = E

[

K · (r + ρ0)

∫ T

t

e−
R

t̃

t
(r+λu)dudt̃ + Ke−

R

T

t
r+λudu

∣

∣

∣
λt = λ

]

(2.3)

For a perpetual loan the maturity T = +∞. Sine λt is always positive r + λt ≥
r > 0 and thus the last term tend to zero when T → ∞. A seond remark is that

sine µ and σ independent of time, ξ is independent of the starting time t :

ξ(t, λ) = E

[

K · (r + ρ0)

∫ +∞

t

e−
R

t̃

t
r+λududt̃

∣

∣

∣
λt = λ

]

(2.4)

= E

[

K · (r + ρ0)

∫ +∞

0

e−
R

t̃

0
r+λududt̃

∣

∣

∣
λ0 = λ

]

=: ξ(λ), (2.5)

where the last equality is a de�nition. For a CIR stohasti proess, we obtain (see [5,

15℄),

ξ(λ) = K · (r + ρ0)

∫ +∞

0

e−rt̃B(0, t̃, λ)dt̃ (2.6)

where for general t, t̃ we use the notation:

B(t, t̃, λ) = E

[

e−
R

t̃

t
λudu

∣

∣

∣
λt = λ

]

. (2.7)

Note that B(t, t̃, λ) is a familiar quantity: it is formally the same formula as the prie

of a zero-oupon where the interest rates follow a CIR dynamis. Of ourse here the
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interest rate is onstant and the intensity is following a CIR dynamis nevertheless

the same formula applies for general t, t̃:

B(t, t̃, λ) = α(t, t̃)e−β(t,t̃)λ (2.8)

with,

α(t, t̃) =

(

2h e(γ+h) t̃−t
2

2h + (γ + h)(e(t̃−t)h − 1)

)

2γθ

σ2

β(t, t̃) =
2(e(t̃−t)h − 1)

2h + (γ + h)(e(t̃−t)h − 1)
, where h =

√

γ2 + 2σ2. (2.9)

Obviously B(0, t, λ) is monotoni with respet to λ, thus the same holds for ξ.
The margin ρ0 is the solution of the following equilibrium equation:

ξ(λ0) = K (2.10)

whih an be interpreted as the fat that the present value of the ash �ows (aording

to the probability of survival) is equal to the nominal K:

ρ0 =
1

∫ +∞

0
e−rt̃B(0, t̃, λ0)dt̃

− r. (2.11)

Note that we assume no additional ommerial margin.

Remark 1. If an additional ommerial margin µ0 is onsidered then ρ0 is �rst

omputed as above and then replaed by ρ0 = ρ0 + µ0 in Equation (2.6). Equa-

tions (2.10) and (2.11) will not be veri�ed as suh but will still hold with some λ0

instead of λ0; for instane we will have

ρ0 =
1

∫ +∞

0
e−rt̃B(0, t̃, λ0)dt̃

− r. (2.12)

With these hanges all results in the paper are valid, exept that when omputing for

operational purposes one the prie of the prepayment option is omputed for all λ
one will use λ = λ0 as prie relevant to pratie.

From de�nition (2.7) of B(t, t̃, λ) it follows that B(t, t̃, λ) < 1 thus

e−rt̃B(0, t̃, λ0) < e−rt̃

and as onsequene

∫ +∞

0

e−rt̃B(0, t̃, λ0)dt̃ <

∫ +∞

0

e−rt̃dt̃ = 1/r (2.13)

whih implies that ρ0 > 0.

2.2. Valuation of the prepayment option. The valuation problem of the pre-

payment option an be modelled as an Amerian all option on a risky debt owned by

the borrower. Here the prepayment option allows borrower to buy bak and re�nane

his/her debt aording to the urrent ontratual margin at any time during the life

of the option. As the perpetual loan, the option value will be assumed independent

of the time t.
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As disussed above, the prepayment exerise results in a pay-o� (ξ(t, T, λ) −
K)+ for the borrower. The option is therefore an Amerian all option on the risky

asset ξ(t, T, λt) and the prinipal K (the amount to be reimbursed) being the strike.

Otherwise we an see it as an Amerian option on the risky λt with pay-o�,

χ(t, λ) := (ξ(t, λ) − K)+ (2.14)

or, for our perpetual option:

χ(λ) := (ξ(λ) − K)+. (2.15)

We will denote by A the harateristi operator (f. [27, Chapter 7.5℄) of the CIR

proess i.e. the operator that ats on any C2 lass funtion v by

(Av)(λ) = γ(θ − λ)∂λv(λ) +
1

2
σ2λ∂λλv(λ). (2.16)

Denote for a, b ∈ R and x ≥ 0 by U(a, b, x) the solution to the on�uent hyperge-

ometri di�erential (also known as the Kummer) equation [1℄:

Xz′′ + (b − X)z′ − az = 0 (2.17)

that inrease at most polynomially at in�nity and is �nite (not null) at the origin.

Reall also that this funtion is proportional to the the on�uent hypergeometri

funtion of the seond kind U(a, b, x) (also known as the Kummer's funtion of the

seond kind, Triomi funtion, or Gordon funtion); for a, x > 0 the funtion U(a, b, x)
is given by the formula:

U(a, b, x) =
1

Γ(a)

∫ +∞

0

e−xtta−1(1 + t)b−a−1dt. (2.18)

When a ≤ 0 one uses other representations (see the ited referenes; for instane one

an use a diret omputation or the reurrene formula U(a, b, x) = (2a − b + z −
2)U(a + 1, b, x)− (a + 1)(a− b + 2)U(a + 2, b, x)); it is known that U(a, b, x) behaves
as x−a at in�nity. Also introdue for x ≥ 0:

W (x) = ex γ−κ

σ2 x
σ2

−2γθ

σ2 U

(

−
−rσ2 − σ2κ + γ2θ + γκθ

σ2κ
, 2 −

2γθ

σ2
,
2κ

σ2
x

)

, (2.19)

where κ =
√

γ2 + 2σ2.

Theorem 2.

1. Introdue for Λ > 0 the family of funtions: PΛ(λ) suh that:

PΛ(λ) = χ(λ) ∀λ ∈ [0,Λ] (2.20)

(APΛ)(λ) − (r + λ)PΛ(λ) = 0, ∀λ > Λ (2.21)

lim
λ→Λ

PΛ(λ) = χ(Λ), (2.22)

lim
λ→∞

PΛ(λ) = 0. (2.23)

Then

PΛ(λ) =

{

χ(λ) ∀λ ∈ [0,Λ]
χ(Λ)
W (Λ)W (λ) ∀λ ≥ Λ.

(2.24)
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2. Suppose now a Λ∗ ∈]0, ρ0 ∧ λ0[ exists suh that:

dPΛ∗(λ)

dλ

∣

∣

∣

λ=(Λ∗)+
=

dχ(λ)

dλ

∣

∣

∣

λ=(Λ∗)−
. (2.25)

Then the prie of the prepayment option is P (λ) = PΛ∗(λ).
Proof. We start with the �rst item: it is possible to obtain a general solution

of (2.21) in an analyti form. We reall that z(X) = U(a, b,X) is the solution of

the Kummer equation (2.17). A umbersome but straightforward omputation shows

that the general solution vanishing at in�nity of the PDE (2.21) is W (λ) thus

PΛ(λ) = CΛW (λ) ∀λ > Λ (2.26)

with some CΛ > 0 to be determined. Now use the boundary onditions. If λ = Λ by

ontinuity χ(Λ) = PΛ(Λ) = CΛW (Λ). Thus, CΛ = χ(Λ)
W (Λ) . Division by W is legitimate

beause by de�nition, W (x) > 0 for all x > 0.
We now ontinue with the seond part of the theorem. The valuation problem

of an Amerian option goes through several steps: �rst one introdues the admissi-

ble trading and onsumptions strategies f. [18, Chapter 5℄; then one realizes using

results in ited referene (also see [19, 15℄) that the prie P (λ) of the prepayment

option involves omputing a stopping time assoiated to the pay-o�. Denote by T
the ensemble of (positive) stopping times; we onlude that:

P (λ) = sup
τ∈T

E(e−
R

τ

0
r+λuduχ(λτ )|λ0 = λ). (2.27)

Further results derived for the situation of a perpetual (standard) Amerian put

options [13, 3℄ show that the stopping time has a simple struture: a ritial level exists

that split the positive axis into two regions: to the left the exerie region where it is

optimal to exerie and where the prie equals the payo� and a ontinuation region

(to the right) where the prie satis�es a partial di�erential equation similar to Blak-

Sholes equation. We refer to [7℄ for how to adapt the theoretial arguments for the

situation when the dynamis is not Blak-Sholes like but a CIR proess.

The result builds heavily on the fat that the disounted payo� of the standard

situation of an Amerian put e−rt(S−K)−, is a submartingale. For us the disounted

payo� is

e−
R

t

0
r+λuduχ(λt) = e−

R

t

0
r+λudu(ξ(λt) − K)+ (2.28)

and heking this ondition requires here more areful examination whih is the objet

of Lemma 2.1. It is now possible to apply Thm. 10.4.1 [27, Setion 10.4 page 227℄

(see also [7℄ for spei� treatment of the CIR proess) whih will show that P (λ) is

the true option prie if the following onditions are satis�ed:

1. on ]0,Λ∗[ we have P (λ) = χ(λ) = (ξ(λ) − K)+ and the relation (2.34) holds;

2. on ]Λ∗,∞[ the solution andidate P (λ) satis�es the relation

(AP )(λ) − (r + λ)P (λ) = 0, ∀λ > Λ∗. (2.29)

3. the funtion P (λ) is C1 everywhere, ontinuous at the origin and C2 on eah

sub-interval ]0,Λ∗[ and ]Λ∗,∞[.
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The theorem also says that the borrower exerises his option on the exerise region

[0,Λ∗] while on the ontinuation region ]Λ∗,∞[ the borrower keeps the option beause

it is worth more non-exerised.

We now show that PΛ∗ veri�es all onditions above whih will allow to onlude

that P = PΛ∗ . The requirement 1 is treated in Lemma 2.1; the requirement 3 amounts

at asking that the optimal frontier value Λ∗ be hosen suh that:

dPΛ∗(λ)

dλ

∣

∣

∣

λ=(Λ∗)+
=

dχ(λ)

dλ

∣

∣

∣

λ=(Λ∗)−
. (2.30)

The requirement 2 implies that in the ontinuation region the prie is the solution

of the following PDE:

(AP )(λ) − (r + λ)P (λ) = 0, ∀λ > Λ∗. (2.31)

For this PDE we need boundary onditions. The ondition at λ = Λ∗ is

P (λ)
∣

∣

∣

λ=Λ∗

= χ(λ)
∣

∣

∣

λ=Λ∗

. (2.32)

When λ = +∞ the default intensity is in�nite thus the time to failure is zero thus

the borrower has failed ; in this ase the option is worthless i.e.

lim
λ→∞

P (λ) = 0. (2.33)

These onditions give exatly the de�nition of PΛ∗ , q.e.d.

Lemma 2.1. The following inequality holds:

(Aχ)(λ) − (r + λ)χ(λ) < 0, ∀λ < ρ0 ∧ λ0. (2.34)

Proof. Reall that χ(λ) = (ξ(λ) − K)+; the de�nition (2.5) of ξ implies (f. [27,

Setion 8.2 and exerie 9.12 p 203℄) that ξ is solution of the following PDE:

(Aξ)(λ) − (r + λ)ξ(λ) + (r + ρ0)K = 0, ∀λ > 0. (2.35)

For λ < λ0 we have ξ(λ) > K = ξ(λ0) thus

(

A(ξ(·) − K)+
)

(λ) − (r + λ)(ξ(λ) − K)+ (2.36)

=
(

A(ξ(·) − K)
)

(λ) − (r + λ)
(

ξ(λ) − K
)

(2.37)

= (Aξ)(λ) − (r + λ)ξ(λ) + (r + λ)K (2.38)

= −(r + ρ0)K + (r + λ)K = (λ − ρ0)K < 0 ∀λ < ρ0 ∧ λ0. (2.39)

Note that the Theorem 2 is only a su�ient result (a so-alled "veri�ation"

result) ; under the assumption that a Λ∗ ful�lling the hypotheses of the Theorem

exist the question is how to �nd it.

Two approahes an be onsidered; �rst, it is enough to �nd a zero of the following

funtion Λ 7→ Υ(Λ) :=
(

∂PΛ(λ)
∂λ

∣

∣

∣

λ=Λ+
− ∂χ(λ)

∂λ

∣

∣

∣

λ=Λ−

)

(the last equality is a de�nition).

Of ourse
∂χ(λ)

∂λ

∣

∣

∣

λ=λ0+ǫ
= 0 and

∂Pλ0+ǫ(λ)

∂λ

∣

∣

∣

λ=λ0+ǫ
< 0 thus Υ(λ0+ǫ) < 0 for any ǫ > 0
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Fig. 2.1. We illustrate here the dependene of PΛ(λ0) as a funtion of Λ; this allows to �nd
the optimal value Λ∗ that maximize the option prie. For the numerial example desribed here we
obtain Λ∗ = 123 bps.

hene Υ(λ0) ≤ 0. Thus is it natural not to look for Λ∗ outside the interval [0, λ0].
The theorem asks furthermore to restrit the searh to the interval [0, λ0 ∧ ρ0].

A di�erent onvenient proedure to �nd the ritial Λ∗ is to onsider the depen-

dene Λ 7→ PΛ(λ0). Let us onsider the stopping time τΛ that stops upon entering

the domain [0,Λ]. We remark that by a Feynman-Ka formula (f. [27, p 203℄)

PΛ(λ) = E(e−
R τΛ
0 r+λuduχ(λτΛ

)|λ0 = λ). (2.40)

From (2.27) P (λ) ≥ PΛ(λ) for any λ thus Λ∗ is the value that maximizes (with respet

to Λ) the funtion Λ 7→ PΛ(λ0). To omply with the theorem the maximization is

performed in the interval [0, λ0 ∧ ρ0].

2.3. Numerial Appliation. We onsider a perpetual loan (T = +∞) with a

nominal amount K = 1 and the borrower default intensity λt follows a CIR dynamis

with parameters: initial intensity λ0 = 300 bps, volatility σ = 0.05, average intensity
θ = 200 bps, reversion oe�ient γ = 0.5. We assume a onstant interest rate

r = 300bps i.e., r = 3%. Reall that a basis point, denoted "1 bps" equals 10−4.

In order to �nd the initial ontratual margin we use equation (2.11) and �nd

ρ0 = 208 bps.

At ineption, the present value of ash �ows is at par, so ξ(λ0) = 1. The prepay-
ment option prie is P (+∞, λ0) = 0.0232 i.e., P (λ0) = 2.32% ·K. Therefore the loan

value equals ξ(λ0) − P (λ0) = 0, 9768.
The value Λ∗ = 123 bps is obtained by maximizing PΛ(λ0) as indiated in the

Remarks above; the dependene of PΛ(λ0) with respet to Λ is illustrated in Figure 2.1.

The loan value will equal to par if the intensity dereases until the exerise region

(λ < Λ∗) see Figures 2.2. The ontinuation and exerise regions are depited in

Figure 2.3. We postpone to Setion 3.5 the desription of the numerial method to

solve (2.21).

3. Perpetual prepayment option with a swithing regime. In this seond

part, the perpetual prepayment option is still an option on the redit risk, intensity,

but now also the liquidity ost. The liquidity ost is de�ned as the spei� ost of a

bank to aess the ash on the market. This ost will be modelled with a swithing

regime with a Markov hain of �nite states of the eonomy. We assume an interbank

9
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Fig. 2.2. Loan value as a funtion of the intensity. The loan value is dereasing when there is
a degradation of the redit quality (i.e., λ inreases) and onverges to 0.
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Fig. 2.3. Prepayment option prie P (λ) (solid line) and payo� χ(λ) (dashed line) as a funtion
of the intensity λ. Two regions appear : the ontinuation region λ > Λ∗ and the exerise region
λ ≤ Λ∗.

o�ered rate IBOR r to be onstant. Therefore, the assessment of the loan value and

its prepayment option is a N -dimensional problem. The intensity is still de�ned by a

Cox-Ingersoll-Ross proess with 2kθ ≥ σ2:

dλt = γ(θ − λt)dt + σ
√

λtdWt, λ0 = λ0. (3.1)

3.1. Theoretial regime swithing framework. We assume the eonomi

state of the market is desribed by a �nite state Markov hain X = {Xt, t ≥ 0}. The
state spae X an be taken to be, without loss of generality, the set of unit vetors

E = {e1, e2, ..., eN}, ei = (0, ..., 0, 1, 0, ..., 0)T ∈ R
N . Here T is the transposition oper-

ator.

Assuming the proess Xt is homogeneous in time and has a rate matrix A, then

if pt = E[Xt] ∈ R
N ,

dpt

dt
= Apt (3.2)
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and,

Xt = X0 +

∫ t

0

AXudu + Mt, (3.3)

where M = {Mt, t ≥ 0} is a martingale with respet to the �ltration generated by X.

In di�erential form

dXt = AXtdt + dMt, X0 = X0. (3.4)

We assume the instantaneous liquidity ost of the bank depends on the state X of the

eonomy, so that

lt = 〈l,Xt〉 (3.5)

Denote by ak,j the entry on the line k and the olumn j of the N ×N matrix A with

ak,j ≥ 0 for j 6= k and
∑N

j=1 ak,j = 0 for any k.

3.2. Analytial formulas for the PVRP. Assume a loan has a �xed oupon

de�ned by the interest rate r and an initial ontratual margin ρ0 alulated at the

ineption for a par value of the loan. Let ξ(t, T, λt,Xt) be, the present value of the

remaining payments at time t of a orporate loan where: λt is the intensity at time

t; T is the ontratual maturity; K is the nominal amount and Xt is the state of the

eonomy at time t.
The loan value LV (t, T, λ) is still equal to the present value of the remaining

payments ξ(t, T, λ) minus the prepayment option value P (t, T, λ).

LV (t, T, λ) = ξ(t, T, λ) − P (t, T, λ) (3.6)

The PVRP ξ is the present value of the ash �ows disounted at the risky rate,

where the risky rate at time t is the onstant risk-free rate r plus the liquidity ost lt
and the intensity λt. Similar to the disussion in the Subsetion 2.1, ξ is not depending

on time when T = +∞ (perpetual loan). So we denote,

ξ(λ,X) := K (r + ρ0) E

[
∫ +∞

0

e−
R

t̃

0
r+lu+λududt̃

∣

∣

∣
λ0 = λ,X0 = X

]

(3.7)

We onsider that there is no orrelation between the redit risk, i.e., the intensity λt,

of the borrower and the ost to aess the ash on the market, i.e. the liquidity ost

lt, of the lender. Therefore, we have,

ξ(λ,X) = K (r + ρ0)

∫ +∞

0

e−rt̃
E

[

e−
R

t̃

0
λudu

∣

∣

∣
λ0 = λ

]

×E

[

e−
R

t̃

0
ludu

∣

∣

∣
X0 = X

]

dt̃ (3.8)

Remark 3. The ruial information here is that the oe�ients γ, θ, σ of the CIR

proess are not depending on the regime X thus we an separate the CIR dynamis

and the Markov dynamis at this level. A di�erent approah an extend this result by

using the properties of the PVRP as explained in the next setion.

Note that (f. Subsetion 2.1 equation (2.7))
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E

[

e−
R

t

0
λudu

∣

∣

∣
λ0 = λ

]

= B(0, t, λ) (3.9)

and B(0, t, λ) is evaluated using equations (2.8) - (2.11). In order to ompute

E

[

e−
R

t̃

0
ludu

∣

∣

∣
X0 = X

]

let fk(t) be de�ned by:

fk(t) = E

[

e−
R

t

0
ludu

∣

∣

∣
X0 =< X, ek >

]

. (3.10)

Let τ , the time of the �rst jump from X0 =< X, ek > to some other state. We

know (f. Lando [16℄ paragraph 7.7 p 211) that τ is a random variable following an

exponential distribution of parameter αk with,

αk =
∑

j 6=k

ak,j (3.11)

We also know that onditional to the fat that a jump has ourred at time τ the

probability that the jump is from state ek to state ej is pk,j , where

pk,j =
ak,j

αk
(3.12)

Thus,

fk(t) = P(τ > t)e−lkt + P(τ ≤ t)e−lkτ
∑

j 6=k P(lτ = lj)E
[

e−
R

t

τ
ludu

∣

∣

∣
Xτ =< X, ej >

]

= e−(lk+αk)t + αk

∫ t

0
e−(lk+αk)τ

∑

j 6=k pk,jfj(t − τ)dτ

Then,

e(lk+αk)tfk(t) = 1 + αk

∫ t

0
e−(lk+αk)(t−τ)

∑

j 6=k pk,jfj(t − τ)dτ

= 1 + αk

∫ t

0
e−(lk+αk)s

∑

j 6=k pk,jfj(s)ds

By di�erentiation with respet to t:

d

dt

[

e(lk+αk)tfk(t)
]

= αke−(lk+αk)t
∑

j 6=k

pk,jfj(t)

Then

dfk(t)

dt
+ (lk + αk)fk(t) = αk

∑

j 6=k

pk,jfj(t)

Thus,

dfk(t)

dt
=





∑

j 6=k

αkpk,jfj(t)



 − (lk + αk)fk(t) (3.13)
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Denote F (t) = (f1(t), f2(t), ..., fN (t))
T
and introdue the N × N matrix B,

Bi,j =

{

αipi,j if i 6= j
−(αi + li) if i = j

(3.14)

From equation (3.13) we obtain,

dF (t)

dt
= BF (t) thus F (t) = eBtF (0) (3.15)

with the initial ondition,

F (0) =
(

fk(0)
)N

k=1
= (1, 1, ..., 1)T ∈ R

N . (3.16)

We have therefore analytial formulas for the PVRP ξ(λ,X). We refer the reader

to [9℄ for similar onsiderations on a related CIR swithed dynamis.

Remark 4. When all liquidity parameters lk are equal (to some quantity l) then
B = A − l · Id and then we obtain (after some omputations) that fk(t) = e−lt thus

the payo� is equal to that of a one-regime dynamis with interest rate r + l, whih
is onsistent with intuitive image we may have. Another limiting ase is when the

swithing is very fast, see also Remark 7 item 6 for further details.

The margin ρ0 is set to satisfy the equilibrium equation

ξ(λ0,X0) = K. (3.17)

Similar arguments to that in previous setion show that ρ0 > mink lk > 0. See

Remark 1 for the situation when a additional ommerial margin is to be onsidered.

We will also need to introdue for any k = 1, ..., N the value Λ
0

k suh that

ξ(Λ
0

k, ek) = K. (3.18)

Of ourse, Λ
0

X0
= λ0. Reall that ξ(λ, ek) is dereasing with respet to λ; when

ξ(0, ek) < K there is no solution to eqn. (3.17) and we will hose by onvention

Λ
0

k = 0.

3.3. Further properties of the PVRP ξ. It is useful for the following to

introdue a PDE formulation for ξ. To ease the notations we introdue the operator

AR that ats on funtions v(λ,X) as follows:

(ARv)(λ, ek) = (Av)(λ, ek)−(r+lk+λ)v(λ, ek)+
N

∑

j=1

ak,j

(

v(λ, ej)−v(λ, ek)
)

. (3.19)

Having de�ned the dynamis (3.1) and (3.4) one an use an adapted version of

the Feynman-Ka formula in order to onlude that PVRP de�ned by (3.7) satis�es

the equation:

(ARξ)(λ, ek) + (r + ρ0)K = 0. (3.20)

Remark 5. When the dynamis involves di�erent oe�ients of the CIR proess

for di�erent regimes (f. also Remark 3) the Equation (3.20) hanges in that it will

involve, for ξ(·, ek), the operator

Ak(v)(λ) = γk(θk − λ)∂λv(λ) +
1

2
σ2

kλ∂λλv(λ). (3.21)

instead of A.
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3.4. Valuation of the prepayment option. The valuation problem of the

prepayment option an be modelled as an Amerian all option on a risky debt owned

by the borrower with payo�:

χ(λ,X) = (ξ(λ,X) − K)+. (3.22)

Here the prepayment option allows borrower to buy bak and re�nane his/her debt

aording to the urrent ontratual margin at any time during the life of the option.

Theorem 6. For any N-tuple Λ = (Λk)N
k=1 ∈ (R+)N introdue the funtion

PΛ(λ,X) suh that:

PΛ(λ, ek) = χ(λ, ek) ∀λ ∈ [0,Λk] (3.23)

(ARPΛ)(λ, ek) = 0, ∀λ > Λk, k = 1, ..., N (3.24)

lim
λ→Λk

PΛ(λ, ek) = χ(Λk, ek), k = 1, ..., N (3.25)

lim
λ→∞

PΛ(λ, ek) = 0, k = 1, ..., N. (3.26)

Suppose a Λ∗ ∈
∏N

k=1[0, (ρ0 − lk)+ ∧ Λ
0

k] exists suh that for all k = 1, ..., N :

PΛ∗(λ,X) ≥ χ(λ,X) ∀λ,X (3.27)

∂PΛ∗(λ, ek)

∂λ

∣

∣

∣

λ=(Λ∗

k
)+

=
∂χ(λ, ek)

∂λ

∣

∣

∣

λ=(Λ∗

k
)−

if Λ∗
k > 0 (3.28)

N
∑

j=1

ak,j

(

PΛ∗(λ, ej) − χ(λ, ej)
)

+ K(λ + lk − ρ0) ≤ 0 ∀λ ∈]min
j

Λ∗
j ,Λ

∗
k[. (3.29)

Then P = PΛ∗ .

Proof. Similar arguments as in the proof of Thm. 2 lead to onsider the Amerian

option prie in the form

P (λ,X) = sup
τ∈T

E

[

e−
R

τ

0
r+lu+λuduχ(λτ ,Xτ )

∣

∣

∣
λ0 = λ,X0 = X

]

.

We note that for Λ ∈ (R∗
+)N if τΛ is the stopping time that stops upon exiting the

domain λ > Λk when X = ek then

PΛ(λ,X) = E

[

e−
R τΛ
0 r+lu+λuduχ(λτΛ

,XτΛ
)
∣

∣

∣
λ0 = λ,X0 = X

]

.

Remark that for Λ ∈ (R∗
+)N the stopping time τΛ is �nite a.e. Thus for any Λ ∈

(R∗
+)N we have P ≥ PΛ; when Λ has some null oordinates the ontinuity (ensured

among others by the boundary ondition (3.23)) shows that we still have P ≥ PΛ.

In partiular for Λ∗ we obtain P ≥ PΛ∗ ; all that remains to be proved is the reverse

inequality i.e. P ≤ PΛ∗ .

To this end we use a similar tehnique as in Thm. 10.4.1 [27, Setion 10.4 page

227℄ (see also [25℄ for similar onsiderations). First one an invoke the same arguments

as in ited referene (f. Appendix D for tehnialities) and work as if PΛ∗ is C2 (not

only C1 as the hypothesis ensures).

Denote DΛ∗ = {(λ, ek)|λ ∈ [0,Λ∗
k], k = 1, ..., N} (whih will be the exerie region)

and CΛ∗ its omplementary with respet to R+ × E (whih will be the ontinuation

region).
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The Lemma 3.1 shows that ARPΛ∗ is non-positive everywhere (and is null on

CΛ∗). The Îto formula shows that

d
(

e−
R

t

0
r+ls+λsdsPΛ∗(λt,Xt))

)

= e−
R

t

0
r+ls+λsds(ARPΛ∗)(λt,Xt))dt + d(martingale)

(3.30)

Taking averages and integrating from 0 to some stopping time τ it follows from

ARPΛ∗ ≤ 0 that

PΛ∗(λ,X) ≥ E

[

e−
R

τ

0
r+lu+λuduPΛ∗(λτ ,Xτ )

∣

∣

∣
λ0 = λ,X0 = X

]

≥ E

[

e−
R

τ

0
r+lu+λuduχ(λτ ,Xτ )

∣

∣

∣
λ0 = λ,X0 = X

]

.

Sine this is true for any stopping time τ the onlusion follows.

Lemma 3.1. Under the hypothesis of the Thm. 6 the following inequality holds

(strongly exept for the values (λ,X) = (Λ∗
j , ek) and everywhere in a weak sense):

(ARPΛ∗)(λ,X) ≤ 0, ∀λ > 0,∀X. (3.31)

Proof. The non-trivial part of this lemma omes from the fat that if for �xed

k we have for λ in a neighborhood of some λ1: PΛ∗(λ, ek) = χ(λ, ek) this does not

neessarily imply (ARPΛ∗)(λ1, ek) = (ARχ)(λ1, ek) beause AR depends on other

values PΛ∗(λ, ej) with j 6= k.
From (3.24) the onlusion is trivially veri�ed for X = ek for any λ ∈]Λ∗

k,∞[.
We now analyze the situation when λ < minj Λ∗

j ; this means in partiular that

0 ≤ λ < minj Λ∗
j ≤ Λ

0

ℓ for any ℓ thus Λ
0

ℓ > 0. Note that Λ∗
k < Λ

0

k implies ξ(Λ∗
k, ek) ≥

ξ(Λ
0

k, ek) = K for any k = 1, ..., N thus χ(λ, ek) = ξ(λ, ek)−K for any λ ∈ [0,Λ∗
k] and

any k. Furthermore sine λ < minj Λ∗
j we have PΛ∗(λ, ek) = χ(λ, ek) = ξ(λ, ek) − K

for any k. Fix X = ek; then

(ARPΛ∗)(λ, ek) = (ARχ)(λ, ek) = (AR(ξ − K))(λ, ek) = (ARξ)(λ, ek) −AR(K)

= −(r + ρ0)K − (r + lk + λ)K = K(lk + λ − ρ0) ≤ K(lk + Λ∗
k − ρ0) ≤ 0 (3.32)

the last inequality being true by hypothesis.

A last situation is when λ ∈]minj Λ∗
j ,Λ

∗
k[; there PΛ∗(λ, ek) = χ(λ, ek) but some

terms PΛ∗(λ, ej) for j 6= k may di�er from χ(λ, ej). The omputation is more subtle

is this ase. This point is spei� to the fat that the payo� χ itself has a omplex

struture and as suh was not emphasized in previous works (e.g., [25℄, et.).

Realling the properties of ξ one obtains (and sine PΛ∗(λ, ek) = χ(λ, ek)):

(ARPΛ∗)(λ, ek) = (Aχ)(λ, ek) − (r + lk + λ)χ(λ, ek) +

N
∑

j=1

ak,j

(

PΛ∗(λ, ej) − χ(λ, ek)
)

= (ARχ)(λ, ek) +

N
∑

j=1

ak,j

(

PΛ∗(λ, ej) − χ(λ, ej)
)

= (ARξ)(λ, ek) −AR(K) +

N
∑

j=1

ak,j

(

PΛ∗(λ, ej) − χ(λ, ej)
)

= −K(r + ρ0) + (r + lk + λ)K +

N
∑

j=1

ak,j

(

PΛ∗(λ, ej) − χ(λ, ej)
)

≤ 0, (3.33)
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where for the last inequality we use hypothesis (3.29). Finally, sine we proved that

(ARPΛ∗)(λ,X) ≤ 0 strongly exept for the values (λ,X) = (Λ∗
j , ek) and sine PΛ∗ is of

C1 lass we obtain the onlusion (the weak formulation only uses the �rst derivative

of PΛ∗).

Remark 7. Several remarks are in order at this point:

1. when only one regime is present i.e., N = 1 the hypothesis of the Theorem

are idential to that of Thm. 2 sine (3.29) is automatially satis�ed.

2. when N > 1 heking (3.29) does not involve any omputation of derivatives

and is straightforward.

3. as mentioned in the previous setion, the Theorem is a veri�ation result

i.e., only gives su�ient onditions for a andidate to be the option prie.

Two possible partial onverse results are possible: a �rst one to prove that

the optimal prie is indeed an element of the family PΛ. A seond onverse

result is to prove that supposing P = PΛ∗ then Λ∗ ∈
∏N

k=1[0, (ρ0 − lk)+ ∧Λ
0

k]
and (3.27)-(3.29) are satis�ed.

4. a more general veri�ation result for di�erent payo� funtion χ an be proven,

f [20℄ for details.

5. the searh for the andidate Λ∗ an be done either by looking for a zero of

the funtion Λ 7→ Υ(Λ) :=
(

∂PΛ∗ (λ,ek)
∂λ

∣

∣

∣

λ=(Λ∗

k
)+

− ∂χ(λ,ek)
∂λ

∣

∣

∣

λ=(Λ∗

k
)−

)N

k=1
or by

maximizing on
∏N

k=1]0, (ρ0 − lk) ∧ Λ
0

k[ the funtion Λ 7→ PΛ(λ0,X0).
6. if the optimization of PΛ(λ0,X0) is di�ult to perform, one an use a on-

tinuation argument with respet to the oupling matrix A. Denote by Λ∗(A)
the optimal value of Λ∗ as funtion of A. When A = 0 eah Λ∗

k is found

as in Setion 2 (the problem separates into N independent i.e., no oupled,

valuation problems, eah of whih requiring to solve a one dimensional opti-

mization) and we onstrut thus Λ∗(0). When onsidering µA with µ → ∞
at the limit the optimal Λ∗(∞A) has all entries equal to Λ∗

mean where Λ∗
mean

is the optimal value for a one-regime (N = 1) dynamis with riskless interest

rate r being replaed by r +
PN

k=1
lk/αk

P

N
k=1

1/αk
. Having established the two extremal

points the andidate Λ∗(A) is searhed within the N -dimensional segment

[Λ∗(0),Λ∗(∞A)].
7. note that this ontinuation proedure above works even when the CIR param-

eters depend on k (f. [20℄ for details).

3.5. Numerial Appliation. The numerial solution of the partial di�erential

equation (3.24) is required. We use a �nite di�erene method. The �rst derivative is

approximated by the �nite di�erene formula:

∂

∂λ
PΛ(λ,X) =

PΛ(λ + δλ,X) − PΛ(λ − δλ,X)

2δλ
+ O(δλ2) (3.34)

while the seond derivative is approximated by:

∂2

∂λ2
PΛ(λ,X) =

PΛ(λ + δλ,X) − 2PΛ(λ + δλ,X) + PΛ(λ − δλ,X)

δλ2
+ O(δλ2) (3.35)

To avoid working with an in�nite domain a well-known approah is to de�ne an

arti�ial boundary λmax. Then a boundary ondition is imposed on λmax whih leads

to a numerial problem in the �nite domain ∪N
k=1[Λ

∗
k, λmax]. In this numerial appli-

ation, λmax = 400 bps. We disretize [Λ∗, λmax] with a grid suh that δλ = 1bps.
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Fig. 3.1. We illustrate here the dependene of PΛ(λ0, X0) as a funtion of Λ; this allows to
�nd the optimal (Λ∗

1
= 122bps, Λ∗

2
= 64bps) that maximizes the option prie.

Two approahes have been onsidered for imposing a boundary value at λmax: either

onsider that PΛ(λmax, ek) = 0, ∀k = 1, ..., N (homogenous Dirihlet boundary on-

dition) or that ∂
∂λPΛ(λmax, ek) = 0, ∀k = 1, ..., N (homogeneous Neuman boundary

ondition). Both are orret in the limit λmax → ∞. We tested the preision of

the results by omparing with numerial results obtained on a muh larger grid (10
times larger) while using same δλ. The Neumann boundary ondition gives muh

better results for the situations we onsidered and as suh was always hosen (see also

Figure 3.3).

We onsider a perpetual loan with a nominal amount K = 1 and the borrower

default intensity λt follows a CIR dynamis with parameters: initial intensity λ0 =
300bps, volatility σ = 0.05, average intensity θ = 200bps, reversion oe�ient γ = 0.5.
We assume a onstant interest rate r = 1% and a liquidity ost de�ned by a Markov

hain of two states l1 = 150bps and l2 = 200bps. For N = 2 the rate A matrix is

ompletely de�ned by α1 = 1/3, α2 = 1.
In order to �nd the initial ontratual margin we use equation (2.11) and �nd

ρ0 = 331 bps in the state 1. The ontratual margin takes into aount the redit

risk (default intensity) and the liquidity ost. We have thus Λ
0

1 = λ0; we obtain then

Λ
0

2 = 260bps.
The optimal value Λ∗ is obtained by maximizing PΛ(λ0,X0) and turns out to be

(Λ∗
1,Λ

∗
2) = (122bps, 64bps), see Figure 3.1. To be aepted, this numerial solution

has to verify all onditions of the Theorem 6. The hypothesis (3.27) and (3.29)

are satis�ed (see Figure 3.3) and the hypothesis (3.29) is aepted after alulation.

Moreover Λ∗
1 ≤ (ρ0 − l1) ∧ Λ

0

1 and the analogous holds for Λ∗
2.

In the state X0 = 1, the present value of ash �ows is at par, so ξ(λ0,X0) = 1.
The prepayment option prie is P (λ0,X0) = 0.0240. Therefore the loan value equals

ξ(λ0,X0) − P (λ0,X0) = 0.9760.
The loan value will equal to the nominal if the intensity dereases until the exerise

region λ ≤ Λ∗ see Figure 3.2. The ontinuation and exerise regions are depited in

Figure 3.3.

3.6. Regimes when is never optimal to exerise. When the liquidity pa-

rameters orresponding to given regimes are very di�erent it may happen that the

optimization of PΛ(λ0,X0) over Λ gives an optimum value Λ∗ with some null oordi-
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Fig. 3.2. Loan value as a funtion of the intensity. Top: regime X = 1; bottom: regime X = 2.
The loan value is dereasing when there is a degradation of the redit quality (i.e. when λ inreases)
and onverges to 0.
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Fig. 3.3. The prie of the prepayment option PΛ∗ (λ) (solid line) and the payo� χ(λ) (dashed
line) as funtion of the intensity λ. Top: regime X = 1; bottom: regime X = 2. For eah regime
two regions appear : the ontinuation region λ > Λ∗

i
and the exerise region λ ≤ Λ∗

i
.

nates Λki
, i = 1, .... This may hint to the fat that in this situation it is never optimal

to exerise during the regimes eki
, i = 1, .... This is not surprising in itself (remember

that this is the ase of an Amerian all option) but needs more are when dealing

with. Of ourse when in addition Λ
0

ki
= 0 the payo� being null it is intuitive that the

option should not be exerised.

Remark 8. Further examination of the Theorem 2 alls for the following remarks:

1. the boundary value set in eqn. (3.23) for some regime ek with Λ∗
k = 0 deserves

an interpretation. The boundary value does not serve to enfore ontinuity of

λ 7→ PΛ(λ) beause there is no exerise region in this regime thus any value

will do. Moreover when 2γθ ≥ σ2 the intensity λu does not touh 0 thus

the stopping time τΛ∗ is in�nite in the regime ek (thus the boundary value

in 0 an be set to any arbitrary number sine it is never used). The real

meaning of the value PΛ∗(0, ek) omes from arbitrage onsiderations: when

one proves in the demonstration of the Theorem that P ≥ PΛ∗ one uses

ontinuity of PΛ with respet to the parameter Λ; in order to still have this
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Fig. 3.4. We illustrate here the dependene of PΛ(λ0, X0) as a funtion of the exerise boundary
Λ; this allows to �nd the optimal (Λ∗

1
= 121bps, Λ∗

2
= 0) that maximizes the option prie.

onlusion one has to set PΛ∗(0, ek) ≤ limΛ∈(R∗

+
)N→Λ∗ PΛ(0, ek) = χ(0, ek).

On the ontrary, in order to have P ≤ PΛ∗ , sine P ≥ χ is it required that

PΛ∗(0, ek) ≥ P (0, ek) ≥ χ(0, ek). Thus only PΛ∗(0, ek) = χ(0, ek) an prevent

arbitrage.

2. it is interesting to know when suh a situation an our and how an one

interpret it. Let us take a two-regime ase (N = 2): l1 a �normal� regime and

l2 the �risis� regime (l2 ≥ l1); when the agent ontemplates prepayment the

more severe the risis (i.e. larger l2−l1 ) less he/she is likely to prepay during

the risis the ash is expensive (high liquidity ost). We will most likely see

that for l1 = l2 some exerise region exists while starting from some large l2
the exerise region will disappear in regime e2. This is ompletely onsistent

with the numerial results reported in this paper.

3.7. Numerial Appliation. We onsider the same situation as in Setion 3.7

exept that l1 = 50bps and l2 = 250 bps. In order to �nd the initial ontratual margin

we use equation (2.11) and �nd ρ0 = 305 bps in the state 1. The ontratual margin

takes into aount the redit risk (default intensity) and the liquidity ost. As before

Λ
0

1 = λ0 but here we obtain Λ
0

2 = 221bps.

The ouple (Λ∗
1 = 121bps,Λ∗

2 = 0) (see Figure 3.4) maximizes PΛ(λ0,X0). There
does not exist a exerise boundary in the state 2. The loan value will equal the

par if the intensity dereases until the exerise region λ ≤ Λ∗ see Figure 3.5. The

ontinuation and exerise regions are depited in Figure 3.6.

To be aepted as true prie the numerial solution PΛ∗ has to verify all hypoth-

esis and onditions of the Theorem 6. In the regime X = 1, the hypothesis (3.27)

and (3.28) are veri�ed numerially (see also Figure 3.6) and the hypothesis (3.29) is

aepted after alulation. Moreover Λ∗
k ≤ (ρ0 − lk) ∧ Λ

0

k for k = 1, 2.

In the state X = 1, the present value of ash �ows is at par, so ξ(λ0,X0) = K = 1.
The prepayment option prie is P (λ0) = 0.0245. Therefore the loan value LV equals

ξ(λ0) − P (λ0) = 0.9755.
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