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VALUATION OF THE PREPAYMENT OPTION OF A PERPETUAL

CORPORATE LOAN

TIMOTHEE PAPIN∗ AND GABRIEL TURINICI†

Abstra
t. We investigate in this paper a perpetual prepayment option related to a 
orporate
loan. The default intensity of the �rm is supposed to follow a CIR pro
ess. Two frameworks are
dis
ussed: �rst a 
onstant interest rate and a se
ondly a multi-regime framework where the interest
rate is augmented by a liquidity fa
tor dependent on the regime. The prepayment option needs
spe
i�
 attention as the payo� itself is an impli
it fun
tion of the parameters of the problem and of
the dynami
s. We establish in the unique regime 
ase analyti
 formulas for the payo� of the option;
in both 
ases we give a veri�
ation result that allows to 
ompute the pri
e of the option. Numeri
al
results that implement the �ndings are also presented and are 
ompletely 
onsistent with the theory;
it is seen that when liquidity parameters are very di�erent (i.e., when a liquidity 
risis o

ur) in the
high liquidity 
ost regime the exer
ise domain may entirely disappear meaning that it is not optimal
for the borrower to prepay during su
h a liquidity 
risis. The method allows to quantify and interpret
these �ndings.

Key words. liquidity regime, loan prepayment, mortgage option, Ameri
an option, perpetual
option, option pri
ing, Snell envelope, prepayment option, CIR pro
ess, swit
hing regimes, Markov
modulated dynami
s.

AMS subje
t 
lassi�
ations. 91G20, 91G30, 91G40, 91G50, 91G60, 91G80, 93E20

1. Introdu
tion. When a �rm needs money it 
an turn to its bank whi
h lends

it against e.g., periodi
 payments in a form of a loan. A loan 
ontra
t issued by a bank

for its 
orporate 
lients is a �nan
ial agreement that often 
omes with more �exibility

than a retail loan 
ontra
t. These options are designed to meet 
lients' expe
tations

and 
an in
lude e.g., a prepayment option (whi
h entitles the 
lient, if he desires

so, to pay all or a fra
tion of its loan earlier than the maturity), a multi-
urren
y

option, a multi-index option, et
. On the other hand, there are also some me
hanisms

to prote
t the lender from the deterioration of the borrower's 
redit quality e.g., a

pri
ing grid based on the borrower rating or prote
ting guaranties.

The main option remains however the prepayment option and it will be the subje
t

of this entire paper. In almost every loan 
ontra
t, the borrower has the free option

to prepay a portion or all the nominal. Even if the te
hni
alities are, as it will be seen

in the following, di�erent, the 
on
ept of this option is very 
lose to the embedded

option of a 
allable bond. When market interest rates have gone down the issuer of

the bond 
an buy ba
k his debt at a de�ned 
all pri
e before the bond rea
hes its

maturity date. It allows the issuer to re�nan
e its debt at a 
heaper rate.

In order to de
ide whether the exer
ise of the option is worthwhile the borrower


ompares the remaining payments (a
tualized by the interest rate he 
an obtain at

that time) with the nominal value. If the remaining payments ex
eed the nominal

value then it is optimal for the borrower to re�nan
e his debt at a lower rate.

When the interest rates are not 
onstant or borrower is subje
t to default the


omputation of the a
tualization is less straightforward. It starts with 
onsidering all

possible s
enarios of evolution for interest rate and default intensity in a risk-neutral

framework and 
ompute the average value of remaining payments (in
luding the �nal

payment of the prin
ipal if appli
able); this quantity will be 
alled �PV RP �(denoted

ξ) and is the present value of the remaining payments i.e., the 
ash amount equivalent,
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both for borrower and lender in this model of the set of remaining payments. The

PV RP is 
ompared with the nominal : if the PV RP value is larger than the nominal

then the borrower should prepay, otherwise not. Re
all that at the initial time the

payments 
orrespond to a rate, the sum of the interest rate and a 
ontra
tual margin

ρ0, whi
h is pre
isely making the two quantities equal. Note that in order to 
ompute

the pri
e of the embedded prepayment option the lender also uses the PV RP as it

will be seen below.

For a bank, the prepayment option is essentially a reinvestment risk i.e., the risk

that the borrower de
ides to repay earlier his/her loan and that the bank 
an not

reinvest his/her ex
ess of 
ash in a new loan. So the longest the maturity of the loan,

the riskier the prepayment option. Therefore, it is interesting to study long-term

loans that are set for more than three years and 
an run for more than twenty years.

The valuation problem of the prepayment option 
an be modelled as an Ameri
an

embedded option on a risky debt owned by the borrower. As Monte-Carlo simulations

are slow to 
onverge to assess a

urately the 
ontinuation value of the option during

the life of the loan and that the binomial tree te
hniques are time-
onsuming for long-

term loans (
f. works by D. Cossin et al. [8℄), we de
ided to fo
us, in this paper, on

the prepayment option for perpetual loan.

When valuing �nan
ial produ
ts with long maturity the robustness with respe
t

to sho
ks and other exogenous variabilities is important. Among problems that have

to be treated is the liquidity and its variability. Liquidity is the key of the stability of

the entire �nan
ial system and 
an 
ause banks' failures if systemi
 liquidity squeezes

appear in the �nan
ial industry. Histori
al events like the Asian 
risis of 1997; the

Russian �nan
ial 
risis of 1998; the defaults of hedge funds and investment �rms like

LTCM, Enron, World
om and Lehman Brothers defaults, sovereign debts 
risis of

2010-11 and so on prove that banks hold signi�
ant liquidity risk in their balan
e

sheets. Even if liquidity problems have a very low probability to o

ur, a liquidity


risis 
an have a severe impa
t on a bank's funding 
osts, its market a

ess (reputation

risk) and short-term funding 
apabilities.

Following the state of the e
onomi
 environment, the liquidity 
an be de�ned by

distin
t states. Between two 
risis, investors are 
on�dent and banks �nd it easier to

laun
h their long term re�nan
ing programs through regular bonds issuan
es. Thus

the liquidity market is stable. Unfortunately, during 
risis, liquidity be
ome s
ar
e,

pushing the liquidity 
urve to very high levels whi
h 
an only de
rease if 
on�den
e

returns to the market. The transition is between these two distin
t behaviors is rarely

smooth but rather sudden.

In order to model the presen
e of distin
t liquidity behaviors we will simulate

the liquidity 
ost by a 
ontinuous time Markov 
hain that 
an have a dis
rete set of

possible values, one for ea
h regime that is en
ountered in the liquidity evolution.

From a te
hni
al point of view this paper fa
es several non-standard 
onditions:

although the goal is to value a perpetual Ameri
an option the payo� of the option is

highly non-standard (is dependent on the PV RP ). As a 
onsequen
e the 
hara
teri-

zation of the exer
i
e region is not standard and te
hni
al 
onditions have to be met.

Furthermore our fo
us here is on a spe
i�
 type of dynami
s (of CIR type) with even

more spe
i�
 interest on the situation when several regimes are present.

The balan
e of the paper is as follows: in the remainder of this se
tion (Sub-

Se
tion 1.1) we review the related existing literature; in Se
tion 2, we 
onsider that

the liquidity 
ost is negligible and the borrower 
redit risk de�ned by his/her default

intensity (
alled in the following simply �intensity�) whi
h follows a CIR sto
hasti
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pro
ess. We are able to obtain in this situation quasi-analyti
 formulas for the pre-

payment option pri
e. In Se
tion 3 we explore the situation when the liquidity 
ost,

de�ned as the 
ost of the lender to a

ess the 
ash on the market, has several distin
t

regimes that we model by a Markov 
hain. We write the pri
ing formulas and theo-

reti
ally support an algorithm to identify the boundary of the exer
i
e region; �nal

numeri
al examples 
lose the paper.

1.1. Related literature. There exist few arti
les (e.g., works by D. Cossin et

al. [8℄) on the loan prepayment option but a 
lose subje
t, the prepayment option in

�xed-rate mortgage loan, has been widely 
overed in several papers by J.E. Hilliard

and J.B. Kau [11℄ and more re
ent works by Chen et al. [6℄. To approximate the PDE

satis�ed by the prepayment option, they de�ne two state variables (interest rate and

house pri
e). Their approa
h is based on a bivariate binomial option pri
ing te
hnique

with a sto
hasti
 interest rate and a sto
hasti
 house value.

Another 
ontribution by D. Cossin et al. [8℄ applies the binomial tree te
hnique

(but of 
ourse it is time-
onsuming for long-term loans due to the nature of binomial

trees) to 
orporate loans. They 
onsider a prepayment option with a 1 year loan with

a quarterly step but it is di�
ult to have an a

urate assessment of the option pri
e

for a 10 years loan.

There also exist mortgage prepayment de
ision models based on Poisson re-

gression approa
h for mortgage loans. See, for example, E.S. S
hwartz and W.N.

Torous [21℄. Unfortunately, the volume and history of data are very weak in the


orporate loan market.

Due to the form of their approa
h, these papers did not have to 
onsider the ge-

ometry of the exer
i
e region be
ause it is expli
itly given by the numeri
al algorithm.

This is not the 
ase for us and requires that parti
ular 
are be taken when stating the

optimality of the solution. Furthermore, to the best of our knowledge, none of these

approa
hes explored the 
ir
umstan
e when several regimes exist.

The analysis of Markov-modulated regimes has been investigated in the literature

when the underlying(s) follow the Bla
k& S
holes dynami
s with drift and volatility

having Markov jumps; several works are of interest in this area: Guo and Zhang [25℄

have derived the 
losed-form solutions for vanilla Ameri
an put; Guo analyses in [10℄

Russian (i.e., perpetual look-ba
k) options and is able to derive expli
it solutions

for the optimal stopping time; in [23℄ Y. Xu and Y. Wu analyse the situation of a

two-asset perpetual Ameri
an option where the pay-o� fun
tion is a homogeneous

fun
tion of degree one; Mamon and Rodrigo [17℄ �nd expli
it solutions to vanilla

European options. Bu�ngton and Elliott [4℄ study European and Ameri
an options

and obtain equations for the pri
e. A distin
t approa
h (Hopf fa
torization) is used

by Jobert and Rogers [14℄ to derive very good approximations of the option pri
es

for, among others, Ameri
an puts. Other 
ontributions in
lude [24, 22℄ et
.

Works involving Markov swit
hed regimes and CIR dynami
s appears in [9℄ where

the bond valuation problem is 
onsidered (but not in the form of an Ameri
an option;

their approa
h will be relevant to the 
omputation of the payo� of our Ameri
an

option although in their model only the mean reverting level is subje
t to Markov

jumps) and in [26℄ where the term stru
ture of the interest rates is analyzed.

On the other hand numeri
al methods are proposed in [12℄ where it is found that a

�xed point poli
y iteration 
oupled with a dire
t 
ontrol formulation seems to perform

best.

Finally, we refer to [13℄ for theoreti
al results 
on
erning the pri
ing of Ameri
an

options in general.
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2. Perpetual prepayment option with a sto
hasti
 intensity CIR model.

We assume throughout the paper that the interest rate r is 
onstant. Therefore, the

pri
e of the prepayment option only depends on the intensity evolution over time.

We model the intensity dynami
s by a Cox-Ingersoll-Ross pro
ess (see [5, 2, 15℄ for

theoreti
al and numeri
al aspe
ts of CIR pro
esses and the situations where the CIR

pro
ess has been used in �nan
e):

dλs = γ(θ − λs)ds + σ
√

λsdWs, γ, θ, σ > 0, λ0 = λ0 (2.1)

It is known that if 2γθ ≥ σ2 then CIR pro
ess ensure an intensity stri
tly positive.

Fortunately, as it will be seen in the following, the PVRP is given by an analyti


formula.

2.1. Analyti
al formulas for the PVRP. Assuming a loan has a �xed 
oupon

de�ned by the interest rate r and an initial 
ontra
tual margin ρ0. Let ξ(t, T, λ) be,
the present value of the remaining payments at time t of a 
orporate loan with initial


ontra
tual margin ρ0 (depending on λ0), intensity at time t, λt, following the risk-

neutral equation (2.1) with λt = λ, has nominal amount K and 
ontra
tual maturity

T .
Therefore the loan value LV (t, T, λ) is equal to the present value of the remaining

payments ξ(t, T, λ) minus the prepayment option value P (t, T, λ).

LV (t, T, λ) = ξ(t, T, λ) − P (t, T, λ) (2.2)

The ξ is the present value of the 
ash �ows dis
ounted at the (instantaneous)

risky rate r+λt,. The 
ash �ows are K(r+ρ0) and the �nal payment of the prin
ipal

K. Then:

ξ(t, T, λ) = E

[

K · (r + ρ0)

∫ T

t

e−
R

t̃

t
(r+λu)dudt̃ + Ke−

R

T

t
r+λudu

∣

∣

∣
λt = λ

]

(2.3)

For a perpetual loan the maturity T = +∞. Sin
e λt is always positive r + λt ≥
r > 0 and thus the last term tend to zero when T → ∞. A se
ond remark is that

sin
e µ and σ independent of time, ξ is independent of the starting time t :

ξ(t, λ) = E

[

K · (r + ρ0)

∫ +∞

t

e−
R

t̃

t
r+λududt̃

∣

∣

∣
λt = λ

]

(2.4)

= E

[

K · (r + ρ0)

∫ +∞

0

e−
R

t̃

0
r+λududt̃

∣

∣

∣
λ0 = λ

]

=: ξ(λ), (2.5)

where the last equality is a de�nition. For a CIR sto
hasti
 pro
ess, we obtain (see [5,

15℄),

ξ(λ) = K · (r + ρ0)

∫ +∞

0

e−rt̃B(0, t̃, λ)dt̃ (2.6)

where for general t, t̃ we use the notation:

B(t, t̃, λ) = E

[

e−
R

t̃

t
λudu

∣

∣

∣
λt = λ

]

. (2.7)

Note that B(t, t̃, λ) is a familiar quantity: it is formally the same formula as the pri
e

of a zero-
oupon where the interest rates follow a CIR dynami
s. Of 
ourse here the
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interest rate is 
onstant and the intensity is following a CIR dynami
s nevertheless

the same formula applies for general t, t̃:

B(t, t̃, λ) = α(t, t̃)e−β(t,t̃)λ (2.8)

with,

α(t, t̃) =

(

2h e(γ+h) t̃−t
2

2h + (γ + h)(e(t̃−t)h − 1)

)

2γθ

σ2

β(t, t̃) =
2(e(t̃−t)h − 1)

2h + (γ + h)(e(t̃−t)h − 1)
, where h =

√

γ2 + 2σ2. (2.9)

Obviously B(0, t, λ) is monotoni
 with respe
t to λ, thus the same holds for ξ.
The margin ρ0 is the solution of the following equilibrium equation:

ξ(λ0) = K (2.10)

whi
h 
an be interpreted as the fa
t that the present value of the 
ash �ows (a

ording

to the probability of survival) is equal to the nominal K:

ρ0 =
1

∫ +∞

0
e−rt̃B(0, t̃, λ0)dt̃

− r. (2.11)

Note that we assume no additional 
ommer
ial margin.

Remark 1. If an additional 
ommer
ial margin µ0 is 
onsidered then ρ0 is �rst


omputed as above and then repla
ed by ρ0 = ρ0 + µ0 in Equation (2.6). Equa-

tions (2.10) and (2.11) will not be veri�ed as su
h but will still hold with some λ0

instead of λ0; for instan
e we will have

ρ0 =
1

∫ +∞

0
e−rt̃B(0, t̃, λ0)dt̃

− r. (2.12)

With these 
hanges all results in the paper are valid, ex
ept that when 
omputing for

operational purposes on
e the pri
e of the prepayment option is 
omputed for all λ
one will use λ = λ0 as pri
e relevant to pra
ti
e.

From de�nition (2.7) of B(t, t̃, λ) it follows that B(t, t̃, λ) < 1 thus

e−rt̃B(0, t̃, λ0) < e−rt̃

and as 
onsequen
e

∫ +∞

0

e−rt̃B(0, t̃, λ0)dt̃ <

∫ +∞

0

e−rt̃dt̃ = 1/r (2.13)

whi
h implies that ρ0 > 0.

2.2. Valuation of the prepayment option. The valuation problem of the pre-

payment option 
an be modelled as an Ameri
an 
all option on a risky debt owned by

the borrower. Here the prepayment option allows borrower to buy ba
k and re�nan
e

his/her debt a

ording to the 
urrent 
ontra
tual margin at any time during the life

of the option. As the perpetual loan, the option value will be assumed independent

of the time t.
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As dis
ussed above, the prepayment exer
ise results in a pay-o� (ξ(t, T, λ) −
K)+ for the borrower. The option is therefore an Ameri
an 
all option on the risky

asset ξ(t, T, λt) and the prin
ipal K (the amount to be reimbursed) being the strike.

Otherwise we 
an see it as an Ameri
an option on the risky λt with pay-o�,

χ(t, λ) := (ξ(t, λ) − K)+ (2.14)

or, for our perpetual option:

χ(λ) := (ξ(λ) − K)+. (2.15)

We will denote by A the 
hara
teristi
 operator (
f. [27, Chapter 7.5℄) of the CIR

pro
ess i.e. the operator that a
ts on any C2 
lass fun
tion v by

(Av)(λ) = γ(θ − λ)∂λv(λ) +
1

2
σ2λ∂λλv(λ). (2.16)

Denote for a, b ∈ R and x ≥ 0 by U(a, b, x) the solution to the 
on�uent hyperge-

ometri
 di�erential (also known as the Kummer) equation [1℄:

Xz′′ + (b − X)z′ − az = 0 (2.17)

that in
rease at most polynomially at in�nity and is �nite (not null) at the origin.

Re
all also that this fun
tion is proportional to the the 
on�uent hypergeometri


fun
tion of the se
ond kind U(a, b, x) (also known as the Kummer's fun
tion of the

se
ond kind, Tri
omi fun
tion, or Gordon fun
tion); for a, x > 0 the fun
tion U(a, b, x)
is given by the formula:

U(a, b, x) =
1

Γ(a)

∫ +∞

0

e−xtta−1(1 + t)b−a−1dt. (2.18)

When a ≤ 0 one uses other representations (see the 
ited referen
es; for instan
e one


an use a dire
t 
omputation or the re
urren
e formula U(a, b, x) = (2a − b + z −
2)U(a + 1, b, x)− (a + 1)(a− b + 2)U(a + 2, b, x)); it is known that U(a, b, x) behaves
as x−a at in�nity. Also introdu
e for x ≥ 0:

W (x) = ex γ−κ

σ2 x
σ2

−2γθ

σ2 U

(

−
−rσ2 − σ2κ + γ2θ + γκθ

σ2κ
, 2 −

2γθ

σ2
,
2κ

σ2
x

)

, (2.19)

where κ =
√

γ2 + 2σ2.

Theorem 2.

1. Introdu
e for Λ > 0 the family of fun
tions: PΛ(λ) su
h that:

PΛ(λ) = χ(λ) ∀λ ∈ [0,Λ] (2.20)

(APΛ)(λ) − (r + λ)PΛ(λ) = 0, ∀λ > Λ (2.21)

lim
λ→Λ

PΛ(λ) = χ(Λ), (2.22)

lim
λ→∞

PΛ(λ) = 0. (2.23)

Then

PΛ(λ) =

{

χ(λ) ∀λ ∈ [0,Λ]
χ(Λ)
W (Λ)W (λ) ∀λ ≥ Λ.

(2.24)
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2. Suppose now a Λ∗ ∈]0, ρ0 ∧ λ0[ exists su
h that:

dPΛ∗(λ)

dλ

∣

∣

∣

λ=(Λ∗)+
=

dχ(λ)

dλ

∣

∣

∣

λ=(Λ∗)−
. (2.25)

Then the pri
e of the prepayment option is P (λ) = PΛ∗(λ).
Proof. We start with the �rst item: it is possible to obtain a general solution

of (2.21) in an analyti
 form. We re
all that z(X) = U(a, b,X) is the solution of

the Kummer equation (2.17). A 
umbersome but straightforward 
omputation shows

that the general solution vanishing at in�nity of the PDE (2.21) is W (λ) thus

PΛ(λ) = CΛW (λ) ∀λ > Λ (2.26)

with some CΛ > 0 to be determined. Now use the boundary 
onditions. If λ = Λ by


ontinuity χ(Λ) = PΛ(Λ) = CΛW (Λ). Thus, CΛ = χ(Λ)
W (Λ) . Division by W is legitimate

be
ause by de�nition, W (x) > 0 for all x > 0.
We now 
ontinue with the se
ond part of the theorem. The valuation problem

of an Ameri
an option goes through several steps: �rst one introdu
es the admissi-

ble trading and 
onsumptions strategies 
f. [18, Chapter 5℄; then one realizes using

results in 
ited referen
e (also see [19, 15℄) that the pri
e P (λ) of the prepayment

option involves 
omputing a stopping time asso
iated to the pay-o�. Denote by T
the ensemble of (positive) stopping times; we 
on
lude that:

P (λ) = sup
τ∈T

E(e−
R

τ

0
r+λuduχ(λτ )|λ0 = λ). (2.27)

Further results derived for the situation of a perpetual (standard) Ameri
an put

options [13, 3℄ show that the stopping time has a simple stru
ture: a 
riti
al level exists

that split the positive axis into two regions: to the left the exer
i
e region where it is

optimal to exer
i
e and where the pri
e equals the payo� and a 
ontinuation region

(to the right) where the pri
e satis�es a partial di�erential equation similar to Bla
k-

S
holes equation. We refer to [7℄ for how to adapt the theoreti
al arguments for the

situation when the dynami
s is not Bla
k-S
holes like but a CIR pro
ess.

The result builds heavily on the fa
t that the dis
ounted payo� of the standard

situation of an Ameri
an put e−rt(S−K)−, is a submartingale. For us the dis
ounted

payo� is

e−
R

t

0
r+λuduχ(λt) = e−

R

t

0
r+λudu(ξ(λt) − K)+ (2.28)

and 
he
king this 
ondition requires here more 
areful examination whi
h is the obje
t

of Lemma 2.1. It is now possible to apply Thm. 10.4.1 [27, Se
tion 10.4 page 227℄

(see also [7℄ for spe
i�
 treatment of the CIR pro
ess) whi
h will show that P (λ) is

the true option pri
e if the following 
onditions are satis�ed:

1. on ]0,Λ∗[ we have P (λ) = χ(λ) = (ξ(λ) − K)+ and the relation (2.34) holds;

2. on ]Λ∗,∞[ the solution 
andidate P (λ) satis�es the relation

(AP )(λ) − (r + λ)P (λ) = 0, ∀λ > Λ∗. (2.29)

3. the fun
tion P (λ) is C1 everywhere, 
ontinuous at the origin and C2 on ea
h

sub-interval ]0,Λ∗[ and ]Λ∗,∞[.
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The theorem also says that the borrower exer
ises his option on the exer
ise region

[0,Λ∗] while on the 
ontinuation region ]Λ∗,∞[ the borrower keeps the option be
ause

it is worth more non-exer
ised.

We now show that PΛ∗ veri�es all 
onditions above whi
h will allow to 
on
lude

that P = PΛ∗ . The requirement 1 is treated in Lemma 2.1; the requirement 3 amounts

at asking that the optimal frontier value Λ∗ be 
hosen su
h that:

dPΛ∗(λ)

dλ

∣

∣

∣

λ=(Λ∗)+
=

dχ(λ)

dλ

∣

∣

∣

λ=(Λ∗)−
. (2.30)

The requirement 2 implies that in the 
ontinuation region the pri
e is the solution

of the following PDE:

(AP )(λ) − (r + λ)P (λ) = 0, ∀λ > Λ∗. (2.31)

For this PDE we need boundary 
onditions. The 
ondition at λ = Λ∗ is

P (λ)
∣

∣

∣

λ=Λ∗

= χ(λ)
∣

∣

∣

λ=Λ∗

. (2.32)

When λ = +∞ the default intensity is in�nite thus the time to failure is zero thus

the borrower has failed ; in this 
ase the option is worthless i.e.

lim
λ→∞

P (λ) = 0. (2.33)

These 
onditions give exa
tly the de�nition of PΛ∗ , q.e.d.

Lemma 2.1. The following inequality holds:

(Aχ)(λ) − (r + λ)χ(λ) < 0, ∀λ < ρ0 ∧ λ0. (2.34)

Proof. Re
all that χ(λ) = (ξ(λ) − K)+; the de�nition (2.5) of ξ implies (
f. [27,

Se
tion 8.2 and exer
i
e 9.12 p 203℄) that ξ is solution of the following PDE:

(Aξ)(λ) − (r + λ)ξ(λ) + (r + ρ0)K = 0, ∀λ > 0. (2.35)

For λ < λ0 we have ξ(λ) > K = ξ(λ0) thus

(

A(ξ(·) − K)+
)

(λ) − (r + λ)(ξ(λ) − K)+ (2.36)

=
(

A(ξ(·) − K)
)

(λ) − (r + λ)
(

ξ(λ) − K
)

(2.37)

= (Aξ)(λ) − (r + λ)ξ(λ) + (r + λ)K (2.38)

= −(r + ρ0)K + (r + λ)K = (λ − ρ0)K < 0 ∀λ < ρ0 ∧ λ0. (2.39)

Note that the Theorem 2 is only a su�
ient result (a so-
alled "veri�
ation"

result) ; under the assumption that a Λ∗ ful�lling the hypotheses of the Theorem

exist the question is how to �nd it.

Two approa
hes 
an be 
onsidered; �rst, it is enough to �nd a zero of the following

fun
tion Λ 7→ Υ(Λ) :=
(

∂PΛ(λ)
∂λ

∣

∣

∣

λ=Λ+
− ∂χ(λ)

∂λ

∣

∣

∣

λ=Λ−

)

(the last equality is a de�nition).

Of 
ourse
∂χ(λ)

∂λ

∣

∣

∣

λ=λ0+ǫ
= 0 and

∂Pλ0+ǫ(λ)

∂λ

∣

∣

∣

λ=λ0+ǫ
< 0 thus Υ(λ0+ǫ) < 0 for any ǫ > 0
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Fig. 2.1. We illustrate here the dependen
e of PΛ(λ0) as a fun
tion of Λ; this allows to �nd
the optimal value Λ∗ that maximize the option pri
e. For the numeri
al example des
ribed here we
obtain Λ∗ = 123 bps.

hen
e Υ(λ0) ≤ 0. Thus is it natural not to look for Λ∗ outside the interval [0, λ0].
The theorem asks furthermore to restri
t the sear
h to the interval [0, λ0 ∧ ρ0].

A di�erent 
onvenient pro
edure to �nd the 
riti
al Λ∗ is to 
onsider the depen-

den
e Λ 7→ PΛ(λ0). Let us 
onsider the stopping time τΛ that stops upon entering

the domain [0,Λ]. We remark that by a Feynman-Ka
 formula (
f. [27, p 203℄)

PΛ(λ) = E(e−
R τΛ
0 r+λuduχ(λτΛ

)|λ0 = λ). (2.40)

From (2.27) P (λ) ≥ PΛ(λ) for any λ thus Λ∗ is the value that maximizes (with respe
t

to Λ) the fun
tion Λ 7→ PΛ(λ0). To 
omply with the theorem the maximization is

performed in the interval [0, λ0 ∧ ρ0].

2.3. Numeri
al Appli
ation. We 
onsider a perpetual loan (T = +∞) with a

nominal amount K = 1 and the borrower default intensity λt follows a CIR dynami
s

with parameters: initial intensity λ0 = 300 bps, volatility σ = 0.05, average intensity
θ = 200 bps, reversion 
oe�
ient γ = 0.5. We assume a 
onstant interest rate

r = 300bps i.e., r = 3%. Re
all that a basis point, denoted "1 bps" equals 10−4.

In order to �nd the initial 
ontra
tual margin we use equation (2.11) and �nd

ρ0 = 208 bps.

At in
eption, the present value of 
ash �ows is at par, so ξ(λ0) = 1. The prepay-
ment option pri
e is P (+∞, λ0) = 0.0232 i.e., P (λ0) = 2.32% ·K. Therefore the loan

value equals ξ(λ0) − P (λ0) = 0, 9768.
The value Λ∗ = 123 bps is obtained by maximizing PΛ(λ0) as indi
ated in the

Remarks above; the dependen
e of PΛ(λ0) with respe
t to Λ is illustrated in Figure 2.1.

The loan value will equal to par if the intensity de
reases until the exer
ise region

(λ < Λ∗) see Figures 2.2. The 
ontinuation and exer
ise regions are depi
ted in

Figure 2.3. We postpone to Se
tion 3.5 the des
ription of the numeri
al method to

solve (2.21).

3. Perpetual prepayment option with a swit
hing regime. In this se
ond

part, the perpetual prepayment option is still an option on the 
redit risk, intensity,

but now also the liquidity 
ost. The liquidity 
ost is de�ned as the spe
i�
 
ost of a

bank to a

ess the 
ash on the market. This 
ost will be modelled with a swit
hing

regime with a Markov 
hain of �nite states of the e
onomy. We assume an interbank
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Fig. 2.2. Loan value as a fun
tion of the intensity. The loan value is de
reasing when there is
a degradation of the 
redit quality (i.e., λ in
reases) and 
onverges to 0.
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Price
Payoff

Fig. 2.3. Prepayment option pri
e P (λ) (solid line) and payo� χ(λ) (dashed line) as a fun
tion
of the intensity λ. Two regions appear : the 
ontinuation region λ > Λ∗ and the exer
ise region
λ ≤ Λ∗.

o�ered rate IBOR r to be 
onstant. Therefore, the assessment of the loan value and

its prepayment option is a N -dimensional problem. The intensity is still de�ned by a

Cox-Ingersoll-Ross pro
ess with 2kθ ≥ σ2:

dλt = γ(θ − λt)dt + σ
√

λtdWt, λ0 = λ0. (3.1)

3.1. Theoreti
al regime swit
hing framework. We assume the e
onomi


state of the market is des
ribed by a �nite state Markov 
hain X = {Xt, t ≥ 0}. The
state spa
e X 
an be taken to be, without loss of generality, the set of unit ve
tors

E = {e1, e2, ..., eN}, ei = (0, ..., 0, 1, 0, ..., 0)T ∈ R
N . Here T is the transposition oper-

ator.

Assuming the pro
ess Xt is homogeneous in time and has a rate matrix A, then

if pt = E[Xt] ∈ R
N ,

dpt

dt
= Apt (3.2)
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and,

Xt = X0 +

∫ t

0

AXudu + Mt, (3.3)

where M = {Mt, t ≥ 0} is a martingale with respe
t to the �ltration generated by X.

In di�erential form

dXt = AXtdt + dMt, X0 = X0. (3.4)

We assume the instantaneous liquidity 
ost of the bank depends on the state X of the

e
onomy, so that

lt = 〈l,Xt〉 (3.5)

Denote by ak,j the entry on the line k and the 
olumn j of the N ×N matrix A with

ak,j ≥ 0 for j 6= k and
∑N

j=1 ak,j = 0 for any k.

3.2. Analyti
al formulas for the PVRP. Assume a loan has a �xed 
oupon

de�ned by the interest rate r and an initial 
ontra
tual margin ρ0 
al
ulated at the

in
eption for a par value of the loan. Let ξ(t, T, λt,Xt) be, the present value of the

remaining payments at time t of a 
orporate loan where: λt is the intensity at time

t; T is the 
ontra
tual maturity; K is the nominal amount and Xt is the state of the

e
onomy at time t.
The loan value LV (t, T, λ) is still equal to the present value of the remaining

payments ξ(t, T, λ) minus the prepayment option value P (t, T, λ).

LV (t, T, λ) = ξ(t, T, λ) − P (t, T, λ) (3.6)

The PVRP ξ is the present value of the 
ash �ows dis
ounted at the risky rate,

where the risky rate at time t is the 
onstant risk-free rate r plus the liquidity 
ost lt
and the intensity λt. Similar to the dis
ussion in the Subse
tion 2.1, ξ is not depending

on time when T = +∞ (perpetual loan). So we denote,

ξ(λ,X) := K (r + ρ0) E

[
∫ +∞

0

e−
R

t̃

0
r+lu+λududt̃

∣

∣

∣
λ0 = λ,X0 = X

]

(3.7)

We 
onsider that there is no 
orrelation between the 
redit risk, i.e., the intensity λt,

of the borrower and the 
ost to a

ess the 
ash on the market, i.e. the liquidity 
ost

lt, of the lender. Therefore, we have,

ξ(λ,X) = K (r + ρ0)

∫ +∞

0

e−rt̃
E

[

e−
R

t̃

0
λudu

∣

∣

∣
λ0 = λ

]

×E

[

e−
R

t̃

0
ludu

∣

∣

∣
X0 = X

]

dt̃ (3.8)

Remark 3. The 
ru
ial information here is that the 
oe�
ients γ, θ, σ of the CIR

pro
ess are not depending on the regime X thus we 
an separate the CIR dynami
s

and the Markov dynami
s at this level. A di�erent approa
h 
an extend this result by

using the properties of the PVRP as explained in the next se
tion.

Note that (
f. Subse
tion 2.1 equation (2.7))
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E

[

e−
R

t

0
λudu

∣

∣

∣
λ0 = λ

]

= B(0, t, λ) (3.9)

and B(0, t, λ) is evaluated using equations (2.8) - (2.11). In order to 
ompute

E

[

e−
R

t̃

0
ludu

∣

∣

∣
X0 = X

]

let fk(t) be de�ned by:

fk(t) = E

[

e−
R

t

0
ludu

∣

∣

∣
X0 =< X, ek >

]

. (3.10)

Let τ , the time of the �rst jump from X0 =< X, ek > to some other state. We

know (
f. Lando [16℄ paragraph 7.7 p 211) that τ is a random variable following an

exponential distribution of parameter αk with,

αk =
∑

j 6=k

ak,j (3.11)

We also know that 
onditional to the fa
t that a jump has o

urred at time τ the

probability that the jump is from state ek to state ej is pk,j , where

pk,j =
ak,j

αk
(3.12)

Thus,

fk(t) = P(τ > t)e−lkt + P(τ ≤ t)e−lkτ
∑

j 6=k P(lτ = lj)E
[

e−
R

t

τ
ludu

∣

∣

∣
Xτ =< X, ej >

]

= e−(lk+αk)t + αk

∫ t

0
e−(lk+αk)τ

∑

j 6=k pk,jfj(t − τ)dτ

Then,

e(lk+αk)tfk(t) = 1 + αk

∫ t

0
e−(lk+αk)(t−τ)

∑

j 6=k pk,jfj(t − τ)dτ

= 1 + αk

∫ t

0
e−(lk+αk)s

∑

j 6=k pk,jfj(s)ds

By di�erentiation with respe
t to t:

d

dt

[

e(lk+αk)tfk(t)
]

= αke−(lk+αk)t
∑

j 6=k

pk,jfj(t)

Then

dfk(t)

dt
+ (lk + αk)fk(t) = αk

∑

j 6=k

pk,jfj(t)

Thus,

dfk(t)

dt
=





∑

j 6=k

αkpk,jfj(t)



 − (lk + αk)fk(t) (3.13)

12



Denote F (t) = (f1(t), f2(t), ..., fN (t))
T
and introdu
e the N × N matrix B,

Bi,j =

{

αipi,j if i 6= j
−(αi + li) if i = j

(3.14)

From equation (3.13) we obtain,

dF (t)

dt
= BF (t) thus F (t) = eBtF (0) (3.15)

with the initial 
ondition,

F (0) =
(

fk(0)
)N

k=1
= (1, 1, ..., 1)T ∈ R

N . (3.16)

We have therefore analyti
al formulas for the PVRP ξ(λ,X). We refer the reader

to [9℄ for similar 
onsiderations on a related CIR swit
hed dynami
s.

Remark 4. When all liquidity parameters lk are equal (to some quantity l) then
B = A − l · Id and then we obtain (after some 
omputations) that fk(t) = e−lt thus

the payo� is equal to that of a one-regime dynami
s with interest rate r + l, whi
h
is 
onsistent with intuitive image we may have. Another limiting 
ase is when the

swit
hing is very fast, see also Remark 7 item 6 for further details.

The margin ρ0 is set to satisfy the equilibrium equation

ξ(λ0,X0) = K. (3.17)

Similar arguments to that in previous se
tion show that ρ0 > mink lk > 0. See

Remark 1 for the situation when a additional 
ommer
ial margin is to be 
onsidered.

We will also need to introdu
e for any k = 1, ..., N the value Λ
0

k su
h that

ξ(Λ
0

k, ek) = K. (3.18)

Of 
ourse, Λ
0

X0
= λ0. Re
all that ξ(λ, ek) is de
reasing with respe
t to λ; when

ξ(0, ek) < K there is no solution to eqn. (3.17) and we will 
hose by 
onvention

Λ
0

k = 0.

3.3. Further properties of the PVRP ξ. It is useful for the following to

introdu
e a PDE formulation for ξ. To ease the notations we introdu
e the operator

AR that a
ts on fun
tions v(λ,X) as follows:

(ARv)(λ, ek) = (Av)(λ, ek)−(r+lk+λ)v(λ, ek)+
N

∑

j=1

ak,j

(

v(λ, ej)−v(λ, ek)
)

. (3.19)

Having de�ned the dynami
s (3.1) and (3.4) one 
an use an adapted version of

the Feynman-Ka
 formula in order to 
on
lude that PVRP de�ned by (3.7) satis�es

the equation:

(ARξ)(λ, ek) + (r + ρ0)K = 0. (3.20)

Remark 5. When the dynami
s involves di�erent 
oe�
ients of the CIR pro
ess

for di�erent regimes (
f. also Remark 3) the Equation (3.20) 
hanges in that it will

involve, for ξ(·, ek), the operator

Ak(v)(λ) = γk(θk − λ)∂λv(λ) +
1

2
σ2

kλ∂λλv(λ). (3.21)

instead of A.
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3.4. Valuation of the prepayment option. The valuation problem of the

prepayment option 
an be modelled as an Ameri
an 
all option on a risky debt owned

by the borrower with payo�:

χ(λ,X) = (ξ(λ,X) − K)+. (3.22)

Here the prepayment option allows borrower to buy ba
k and re�nan
e his/her debt

a

ording to the 
urrent 
ontra
tual margin at any time during the life of the option.

Theorem 6. For any N-tuple Λ = (Λk)N
k=1 ∈ (R+)N introdu
e the fun
tion

PΛ(λ,X) su
h that:

PΛ(λ, ek) = χ(λ, ek) ∀λ ∈ [0,Λk] (3.23)

(ARPΛ)(λ, ek) = 0, ∀λ > Λk, k = 1, ..., N (3.24)

lim
λ→Λk

PΛ(λ, ek) = χ(Λk, ek), k = 1, ..., N (3.25)

lim
λ→∞

PΛ(λ, ek) = 0, k = 1, ..., N. (3.26)

Suppose a Λ∗ ∈
∏N

k=1[0, (ρ0 − lk)+ ∧ Λ
0

k] exists su
h that for all k = 1, ..., N :

PΛ∗(λ,X) ≥ χ(λ,X) ∀λ,X (3.27)

∂PΛ∗(λ, ek)

∂λ

∣

∣

∣

λ=(Λ∗

k
)+

=
∂χ(λ, ek)

∂λ

∣

∣

∣

λ=(Λ∗

k
)−

if Λ∗
k > 0 (3.28)

N
∑

j=1

ak,j

(

PΛ∗(λ, ej) − χ(λ, ej)
)

+ K(λ + lk − ρ0) ≤ 0 ∀λ ∈]min
j

Λ∗
j ,Λ

∗
k[. (3.29)

Then P = PΛ∗ .

Proof. Similar arguments as in the proof of Thm. 2 lead to 
onsider the Ameri
an

option pri
e in the form

P (λ,X) = sup
τ∈T

E

[

e−
R

τ

0
r+lu+λuduχ(λτ ,Xτ )

∣

∣

∣
λ0 = λ,X0 = X

]

.

We note that for Λ ∈ (R∗
+)N if τΛ is the stopping time that stops upon exiting the

domain λ > Λk when X = ek then

PΛ(λ,X) = E

[

e−
R τΛ
0 r+lu+λuduχ(λτΛ

,XτΛ
)
∣

∣

∣
λ0 = λ,X0 = X

]

.

Remark that for Λ ∈ (R∗
+)N the stopping time τΛ is �nite a.e. Thus for any Λ ∈

(R∗
+)N we have P ≥ PΛ; when Λ has some null 
oordinates the 
ontinuity (ensured

among others by the boundary 
ondition (3.23)) shows that we still have P ≥ PΛ.

In parti
ular for Λ∗ we obtain P ≥ PΛ∗ ; all that remains to be proved is the reverse

inequality i.e. P ≤ PΛ∗ .

To this end we use a similar te
hnique as in Thm. 10.4.1 [27, Se
tion 10.4 page

227℄ (see also [25℄ for similar 
onsiderations). First one 
an invoke the same arguments

as in 
ited referen
e (
f. Appendix D for te
hni
alities) and work as if PΛ∗ is C2 (not

only C1 as the hypothesis ensures).

Denote DΛ∗ = {(λ, ek)|λ ∈ [0,Λ∗
k], k = 1, ..., N} (whi
h will be the exer
i
e region)

and CΛ∗ its 
omplementary with respe
t to R+ × E (whi
h will be the 
ontinuation

region).

14



The Lemma 3.1 shows that ARPΛ∗ is non-positive everywhere (and is null on

CΛ∗). The Îto formula shows that

d
(

e−
R

t

0
r+ls+λsdsPΛ∗(λt,Xt))

)

= e−
R

t

0
r+ls+λsds(ARPΛ∗)(λt,Xt))dt + d(martingale)

(3.30)

Taking averages and integrating from 0 to some stopping time τ it follows from

ARPΛ∗ ≤ 0 that

PΛ∗(λ,X) ≥ E

[

e−
R

τ

0
r+lu+λuduPΛ∗(λτ ,Xτ )

∣

∣

∣
λ0 = λ,X0 = X

]

≥ E

[

e−
R

τ

0
r+lu+λuduχ(λτ ,Xτ )

∣

∣

∣
λ0 = λ,X0 = X

]

.

Sin
e this is true for any stopping time τ the 
on
lusion follows.

Lemma 3.1. Under the hypothesis of the Thm. 6 the following inequality holds

(strongly ex
ept for the values (λ,X) = (Λ∗
j , ek) and everywhere in a weak sense):

(ARPΛ∗)(λ,X) ≤ 0, ∀λ > 0,∀X. (3.31)

Proof. The non-trivial part of this lemma 
omes from the fa
t that if for �xed

k we have for λ in a neighborhood of some λ1: PΛ∗(λ, ek) = χ(λ, ek) this does not

ne
essarily imply (ARPΛ∗)(λ1, ek) = (ARχ)(λ1, ek) be
ause AR depends on other

values PΛ∗(λ, ej) with j 6= k.
From (3.24) the 
on
lusion is trivially veri�ed for X = ek for any λ ∈]Λ∗

k,∞[.
We now analyze the situation when λ < minj Λ∗

j ; this means in parti
ular that

0 ≤ λ < minj Λ∗
j ≤ Λ

0

ℓ for any ℓ thus Λ
0

ℓ > 0. Note that Λ∗
k < Λ

0

k implies ξ(Λ∗
k, ek) ≥

ξ(Λ
0

k, ek) = K for any k = 1, ..., N thus χ(λ, ek) = ξ(λ, ek)−K for any λ ∈ [0,Λ∗
k] and

any k. Furthermore sin
e λ < minj Λ∗
j we have PΛ∗(λ, ek) = χ(λ, ek) = ξ(λ, ek) − K

for any k. Fix X = ek; then

(ARPΛ∗)(λ, ek) = (ARχ)(λ, ek) = (AR(ξ − K))(λ, ek) = (ARξ)(λ, ek) −AR(K)

= −(r + ρ0)K − (r + lk + λ)K = K(lk + λ − ρ0) ≤ K(lk + Λ∗
k − ρ0) ≤ 0 (3.32)

the last inequality being true by hypothesis.

A last situation is when λ ∈]minj Λ∗
j ,Λ

∗
k[; there PΛ∗(λ, ek) = χ(λ, ek) but some

terms PΛ∗(λ, ej) for j 6= k may di�er from χ(λ, ej). The 
omputation is more subtle

is this 
ase. This point is spe
i�
 to the fa
t that the payo� χ itself has a 
omplex

stru
ture and as su
h was not emphasized in previous works (e.g., [25℄, et
.).

Re
alling the properties of ξ one obtains (and sin
e PΛ∗(λ, ek) = χ(λ, ek)):

(ARPΛ∗)(λ, ek) = (Aχ)(λ, ek) − (r + lk + λ)χ(λ, ek) +

N
∑

j=1

ak,j

(

PΛ∗(λ, ej) − χ(λ, ek)
)

= (ARχ)(λ, ek) +

N
∑

j=1

ak,j

(

PΛ∗(λ, ej) − χ(λ, ej)
)

= (ARξ)(λ, ek) −AR(K) +

N
∑

j=1

ak,j

(

PΛ∗(λ, ej) − χ(λ, ej)
)

= −K(r + ρ0) + (r + lk + λ)K +

N
∑

j=1

ak,j

(

PΛ∗(λ, ej) − χ(λ, ej)
)

≤ 0, (3.33)
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where for the last inequality we use hypothesis (3.29). Finally, sin
e we proved that

(ARPΛ∗)(λ,X) ≤ 0 strongly ex
ept for the values (λ,X) = (Λ∗
j , ek) and sin
e PΛ∗ is of

C1 
lass we obtain the 
on
lusion (the weak formulation only uses the �rst derivative

of PΛ∗).

Remark 7. Several remarks are in order at this point:

1. when only one regime is present i.e., N = 1 the hypothesis of the Theorem

are identi
al to that of Thm. 2 sin
e (3.29) is automati
ally satis�ed.

2. when N > 1 
he
king (3.29) does not involve any 
omputation of derivatives

and is straightforward.

3. as mentioned in the previous se
tion, the Theorem is a veri�
ation result

i.e., only gives su�
ient 
onditions for a 
andidate to be the option pri
e.

Two possible partial 
onverse results are possible: a �rst one to prove that

the optimal pri
e is indeed an element of the family PΛ. A se
ond 
onverse

result is to prove that supposing P = PΛ∗ then Λ∗ ∈
∏N

k=1[0, (ρ0 − lk)+ ∧Λ
0

k]
and (3.27)-(3.29) are satis�ed.

4. a more general veri�
ation result for di�erent payo� fun
tion χ 
an be proven,


f [20℄ for details.

5. the sear
h for the 
andidate Λ∗ 
an be done either by looking for a zero of

the fun
tion Λ 7→ Υ(Λ) :=
(

∂PΛ∗ (λ,ek)
∂λ

∣

∣

∣

λ=(Λ∗

k
)+

− ∂χ(λ,ek)
∂λ

∣

∣

∣

λ=(Λ∗

k
)−

)N

k=1
or by

maximizing on
∏N

k=1]0, (ρ0 − lk) ∧ Λ
0

k[ the fun
tion Λ 7→ PΛ(λ0,X0).
6. if the optimization of PΛ(λ0,X0) is di�
ult to perform, one 
an use a 
on-

tinuation argument with respe
t to the 
oupling matrix A. Denote by Λ∗(A)
the optimal value of Λ∗ as fun
tion of A. When A = 0 ea
h Λ∗

k is found

as in Se
tion 2 (the problem separates into N independent i.e., no 
oupled,

valuation problems, ea
h of whi
h requiring to solve a one dimensional opti-

mization) and we 
onstru
t thus Λ∗(0). When 
onsidering µA with µ → ∞
at the limit the optimal Λ∗(∞A) has all entries equal to Λ∗

mean where Λ∗
mean

is the optimal value for a one-regime (N = 1) dynami
s with riskless interest

rate r being repla
ed by r +
PN

k=1
lk/αk

P

N
k=1

1/αk
. Having established the two extremal

points the 
andidate Λ∗(A) is sear
hed within the N -dimensional segment

[Λ∗(0),Λ∗(∞A)].
7. note that this 
ontinuation pro
edure above works even when the CIR param-

eters depend on k (
f. [20℄ for details).

3.5. Numeri
al Appli
ation. The numeri
al solution of the partial di�erential

equation (3.24) is required. We use a �nite di�eren
e method. The �rst derivative is

approximated by the �nite di�eren
e formula:

∂

∂λ
PΛ(λ,X) =

PΛ(λ + δλ,X) − PΛ(λ − δλ,X)

2δλ
+ O(δλ2) (3.34)

while the se
ond derivative is approximated by:

∂2

∂λ2
PΛ(λ,X) =

PΛ(λ + δλ,X) − 2PΛ(λ + δλ,X) + PΛ(λ − δλ,X)

δλ2
+ O(δλ2) (3.35)

To avoid working with an in�nite domain a well-known approa
h is to de�ne an

arti�
ial boundary λmax. Then a boundary 
ondition is imposed on λmax whi
h leads

to a numeri
al problem in the �nite domain ∪N
k=1[Λ

∗
k, λmax]. In this numeri
al appli-


ation, λmax = 400 bps. We dis
retize [Λ∗, λmax] with a grid su
h that δλ = 1bps.
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Fig. 3.1. We illustrate here the dependen
e of PΛ(λ0, X0) as a fun
tion of Λ; this allows to
�nd the optimal (Λ∗

1
= 122bps, Λ∗

2
= 64bps) that maximizes the option pri
e.

Two approa
hes have been 
onsidered for imposing a boundary value at λmax: either


onsider that PΛ(λmax, ek) = 0, ∀k = 1, ..., N (homogenous Diri
hlet boundary 
on-

dition) or that ∂
∂λPΛ(λmax, ek) = 0, ∀k = 1, ..., N (homogeneous Neuman boundary


ondition). Both are 
orre
t in the limit λmax → ∞. We tested the pre
ision of

the results by 
omparing with numeri
al results obtained on a mu
h larger grid (10
times larger) while using same δλ. The Neumann boundary 
ondition gives mu
h

better results for the situations we 
onsidered and as su
h was always 
hosen (see also

Figure 3.3).

We 
onsider a perpetual loan with a nominal amount K = 1 and the borrower

default intensity λt follows a CIR dynami
s with parameters: initial intensity λ0 =
300bps, volatility σ = 0.05, average intensity θ = 200bps, reversion 
oe�
ient γ = 0.5.
We assume a 
onstant interest rate r = 1% and a liquidity 
ost de�ned by a Markov


hain of two states l1 = 150bps and l2 = 200bps. For N = 2 the rate A matrix is


ompletely de�ned by α1 = 1/3, α2 = 1.
In order to �nd the initial 
ontra
tual margin we use equation (2.11) and �nd

ρ0 = 331 bps in the state 1. The 
ontra
tual margin takes into a

ount the 
redit

risk (default intensity) and the liquidity 
ost. We have thus Λ
0

1 = λ0; we obtain then

Λ
0

2 = 260bps.
The optimal value Λ∗ is obtained by maximizing PΛ(λ0,X0) and turns out to be

(Λ∗
1,Λ

∗
2) = (122bps, 64bps), see Figure 3.1. To be a

epted, this numeri
al solution

has to verify all 
onditions of the Theorem 6. The hypothesis (3.27) and (3.29)

are satis�ed (see Figure 3.3) and the hypothesis (3.29) is a

epted after 
al
ulation.

Moreover Λ∗
1 ≤ (ρ0 − l1) ∧ Λ

0

1 and the analogous holds for Λ∗
2.

In the state X0 = 1, the present value of 
ash �ows is at par, so ξ(λ0,X0) = 1.
The prepayment option pri
e is P (λ0,X0) = 0.0240. Therefore the loan value equals

ξ(λ0,X0) − P (λ0,X0) = 0.9760.
The loan value will equal to the nominal if the intensity de
reases until the exer
ise

region λ ≤ Λ∗ see Figure 3.2. The 
ontinuation and exer
ise regions are depi
ted in

Figure 3.3.

3.6. Regimes when is never optimal to exer
ise. When the liquidity pa-

rameters 
orresponding to given regimes are very di�erent it may happen that the

optimization of PΛ(λ0,X0) over Λ gives an optimum value Λ∗ with some null 
oordi-
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Fig. 3.2. Loan value as a fun
tion of the intensity. Top: regime X = 1; bottom: regime X = 2.
The loan value is de
reasing when there is a degradation of the 
redit quality (i.e. when λ in
reases)
and 
onverges to 0.

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1
0

0.02

0.04

0.06

λ

 

 
Price
Payoff

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1
0

0.01

0.02

0.03

0.04

0.05

λ

 

 
Price
Payoff

Fig. 3.3. The pri
e of the prepayment option PΛ∗ (λ) (solid line) and the payo� χ(λ) (dashed
line) as fun
tion of the intensity λ. Top: regime X = 1; bottom: regime X = 2. For ea
h regime
two regions appear : the 
ontinuation region λ > Λ∗

i
and the exer
ise region λ ≤ Λ∗

i
.

nates Λki
, i = 1, .... This may hint to the fa
t that in this situation it is never optimal

to exer
ise during the regimes eki
, i = 1, .... This is not surprising in itself (remember

that this is the 
ase of an Ameri
an 
all option) but needs more 
are when dealing

with. Of 
ourse when in addition Λ
0

ki
= 0 the payo� being null it is intuitive that the

option should not be exer
ised.

Remark 8. Further examination of the Theorem 2 
alls for the following remarks:

1. the boundary value set in eqn. (3.23) for some regime ek with Λ∗
k = 0 deserves

an interpretation. The boundary value does not serve to enfor
e 
ontinuity of

λ 7→ PΛ(λ) be
ause there is no exer
ise region in this regime thus any value

will do. Moreover when 2γθ ≥ σ2 the intensity λu does not tou
h 0 thus

the stopping time τΛ∗ is in�nite in the regime ek (thus the boundary value

in 0 
an be set to any arbitrary number sin
e it is never used). The real

meaning of the value PΛ∗(0, ek) 
omes from arbitrage 
onsiderations: when

one proves in the demonstration of the Theorem that P ≥ PΛ∗ one uses


ontinuity of PΛ with respe
t to the parameter Λ; in order to still have this
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Fig. 3.4. We illustrate here the dependen
e of PΛ(λ0, X0) as a fun
tion of the exer
ise boundary
Λ; this allows to �nd the optimal (Λ∗

1
= 121bps, Λ∗

2
= 0) that maximizes the option pri
e.


on
lusion one has to set PΛ∗(0, ek) ≤ limΛ∈(R∗

+
)N→Λ∗ PΛ(0, ek) = χ(0, ek).

On the 
ontrary, in order to have P ≤ PΛ∗ , sin
e P ≥ χ is it required that

PΛ∗(0, ek) ≥ P (0, ek) ≥ χ(0, ek). Thus only PΛ∗(0, ek) = χ(0, ek) 
an prevent

arbitrage.

2. it is interesting to know when su
h a situation 
an o

ur and how 
an one

interpret it. Let us take a two-regime 
ase (N = 2): l1 a �normal� regime and

l2 the �
risis� regime (l2 ≥ l1); when the agent 
ontemplates prepayment the

more severe the 
risis (i.e. larger l2−l1 ) less he/she is likely to prepay during

the 
risis the 
ash is expensive (high liquidity 
ost). We will most likely see

that for l1 = l2 some exer
ise region exists while starting from some large l2
the exer
ise region will disappear in regime e2. This is 
ompletely 
onsistent

with the numeri
al results reported in this paper.

3.7. Numeri
al Appli
ation. We 
onsider the same situation as in Se
tion 3.7

ex
ept that l1 = 50bps and l2 = 250 bps. In order to �nd the initial 
ontra
tual margin

we use equation (2.11) and �nd ρ0 = 305 bps in the state 1. The 
ontra
tual margin

takes into a

ount the 
redit risk (default intensity) and the liquidity 
ost. As before

Λ
0

1 = λ0 but here we obtain Λ
0

2 = 221bps.

The 
ouple (Λ∗
1 = 121bps,Λ∗

2 = 0) (see Figure 3.4) maximizes PΛ(λ0,X0). There
does not exist a exer
ise boundary in the state 2. The loan value will equal the

par if the intensity de
reases until the exer
ise region λ ≤ Λ∗ see Figure 3.5. The


ontinuation and exer
ise regions are depi
ted in Figure 3.6.

To be a

epted as true pri
e the numeri
al solution PΛ∗ has to verify all hypoth-

esis and 
onditions of the Theorem 6. In the regime X = 1, the hypothesis (3.27)

and (3.28) are veri�ed numeri
ally (see also Figure 3.6) and the hypothesis (3.29) is

a

epted after 
al
ulation. Moreover Λ∗
k ≤ (ρ0 − lk) ∧ Λ

0

k for k = 1, 2.

In the state X = 1, the present value of 
ash �ows is at par, so ξ(λ0,X0) = K = 1.
The prepayment option pri
e is P (λ0) = 0.0245. Therefore the loan value LV equals

ξ(λ0) − P (λ0) = 0.9755.
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