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We illustrate our approach with a prototype and an example.

 [START_REF] Barringer | Formal analysis of log les[END_REF]Introduction uml marte is one of the common used approaches to implement MDE for real-time and embedded systems. Functional and extra-functional aspects are expressed in models which undergo a set of transformations that nally results in executable code.

Since the code may be deployed over heterogeneous, communicating computational units, the order of incoming events and their frequency are often unpredictable. Academia and industry are aware of that, while they are interested on using MDE to obtain a high-abstraction of a system, they also investigate how to verify/debug, at model level, its behavior and functioning as simulations or executions of such a system happen. A low-impact verication technique consists of collecting traces (i.e., logs) of program segments as the software runs on target, and then analyzing oine such traces by means of scripts. Scripts are time consuming to produce and result in dicult-to-read specications [START_REF] Barringer | Formal analysis of log les[END_REF].

Instead of intricate specications, we focus on the use of uml interaction diagrams (in particular sequence and timing diagrams) to leverage the comprehension of system simulations or executions. Sequence and timing diagrams have dierent purposes: whereas the former concentrates upon the interchange of messages between lifelines, the latter allows reasoning about time and the conditions that change lifelines.

We propose mappings that allow us to go toward these two kinds of diagrams from static and dynamic specications and partial orderings 1 . uml class and composite structure diagrams act as a static specication and ccsl (Clock Constraint Specication Language) [START_REF] André | Syntax and semantics of the Clock Constraint Specication Language[END_REF] as a dynamic specication. Partial orderings are traces plus the temporal and causal relations between them. It worth mentioning that the output of our process are interaction diagrams that describe one of the possible scenarios (either valid or invalid) of simulation or execution of a system. Therefore, this output varies from classical interaction diagrams dened at design level which are intended to cover the set of valid scenarios.

We implement the mappings between partial orderings and uml interaction diagrams as transformations and we illustrate their applicability by means of an example. Our proof of concept demonstrates that: 1) partial orderings (along with static and dynamic specications) are expressive enough to derive most of interaction diagram semantics and 2) resulting diagrams can be visualized in open-source tool editors.

Because the proposed transformations can take as input traces coming from simulations or executions, our approach supports verication and debugging, at model level, in early (i.e., specication) or advanced (i.e., implementation, deployment) stages of software development. In addition, the use of partial orderings give us a global vision of the system execution independently of whether the traces are isolated or not 2 . Finally, when the selection of only one kind of interaction diagram is essential, we use clock trees as visual artifacts that suggest the most appropriate diagram with regarding to the system nature, i.e., synchronous or asynchronous.

The report is structured as follows: Section 2 and Section 4 recall the basic semantics of uml sequence and timing diagrams and the ccsl language. Section 3 compares our approach to related work. Section 5 presents an example that is used to illustrate our approach described in Section 6. Section 7 concludes the report. [START_REF] André | Syntax and semantics of the Clock Constraint Specication Language[END_REF] Background

In this section, we briey describe the semantics for those aspects of uml interaction diagrams that we use in this report. We will assume that the reader is broadly familiar with uml sequence and timing diagrams.

Let us introduce the graphical notation of sequence diagrams by using Figure 1. Each vertical line describes a lifeline for an individual participant where time increases down the page. Messages dene one specic kind of communication between lifelines. A communication can be, invoking an operation, creating or destroying a participant. Besides the kind of communication, messages specify the sender and the receiver. Messages are depicted by arrows whose style reects particular properties, for example, open-head arrows represent asynchronous messages, lled-head arrows symbolize synchronous messages, dashed arrows describe reply messages. When a message invokes an operation, the execution of such an operation is represented as a thin white rectangle (referred to as execution specication in [START_REF]OMG: Unied Modeling Language, Superstructure[END_REF]). An execution specication has a starting point and a nishing point.

Events on the same lifeline are ordered linearly down the page (i.e., they are totally ordered), except within a coregion or a parallel combined fragment where the order of event occurrences is insignicant. Whereas a coregion can only occur in a single lifeline, a parallel combined fragment merges the behavior of at least two lifelines. A coregion is depicted by short horizontal lines and a parallel combined fragment is delineated by a box labeled with the keyword PAR. Besides PAR, the OMG has dened other operators which enable the combination of fragments, for instance, ALT represents two possible choices or alternatives of behavior. Finally, destruction events, depicted by a cross in the form of an X, indicate that no other occurrence may appear below of it on a given lifeline. Now we elaborate on the graphical notation of timing diagrams (see Figure 2). In a timing diagram, lifelines are shown in separated compartments arranged vertically. The horizontal axis indicates that time increases in ticks from left to right. The vertical axis can be labeled with a list of states or values. The state lifeline shows the change of state of an participant over time, whereas a value lifeline shows the change of value of an element over time [START_REF]Visual paradigm UML tool: UML case tool for software development[END_REF]. Timing diagrams come with messages (raising signals) and destruction events.

From this description one concludes that sequence and timing diagrams mostly share concepts however they have slightly dierent capabilities that make them more appropriate for certain situations. Sequence diagrams focus on message exchange and timing diagrams are useful when the primary purpose of the diagram is to reason about time. From our bibliographical study, we have identied two directions in the matter of verication/debugging based on uml interaction diagrams. Former work [START_REF] Hausmann | Dynamic meta modeling with time: Specifying the semantics of multimedia sequence diagrams[END_REF][7] [START_REF] Michelon | Formal specication and verication of realtime systems using Graph Grammars[END_REF] goes from interaction diagrams to more formal notations (such as timed automata or timed graphs) where one can take advantage of model-checking techniques to perform verication. A second direction, recently presented by Iyenghar et al. [START_REF] Iyenghar | A model based approach for debugging embedded systems in real-time[END_REF][10] and Apvrille et al. [START_REF] Apvrille | Fast and multi-platform prototyping of embedded systems from uml/sysml models[END_REF], is to go from traces to interaction diagrams which may be animated. This report is aligned with the second direction, let us compare our approach with Iyenghar and Apvrille works, which are the closest related works: In Iyenghar's work, each event happening in the target platform is immediately communicated to the host side which animates a sequence or timing diagram, it is referred to as animation at runtime. In our case, the diagrams are produced only after the whole trace data has been collected, that is, oine rendering.
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A consequence of animation at runtime is overhead. Although the delay introduced by Iyenghar's monitor routine is pointed out as negligible for the MIDI (Musical Instrumental Digital Interface) system case study, it might not be the case for other real-time systems where even small overhead can lead to faulty executions because of the tight synchronization constraints. Our approach, in turn, allows debugging while still minimizing the overhead.

In Apvrille et al., software components are rst modeled and formally veried using, respectively, a uml prole and UPPAAL [START_REF]UPPAAL: UPPAAL Home[END_REF]. Then code is generated from the resulting models and its execution on a target platform is simulated. The simulation output is a set of traces which can be displayed in the form of sequence diagrams during code execution or after.

A disadvantage in Apvrille's work is the use of an ad-hoc uml prole so-called AVATAR. We, in turn, use uml marte which is widely supported by most commercial and opensource tool editors. Unlike Apvrille, which animates resulting sequence diagrams, we provide just a visualization of them. As a part of future work, we plan to animate sequence diagrams as we do with timing diagrams.

Whilst Iyenghar et al. and Apvrille et al. assume that trace data is totally ordered, we use a partial order which gives us a global vision of the system behavior independently of whether traces come from isolated parts of the system. Therefore, our approach covers a more general case where the system may be built up from a number of heterogeneous and distributed pieces which are likely to be unsynchronized, or based on dierent forms of time references.
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Finally, our approach moves a step further than Iyenghar and Apvrille work since it derives interaction diagrams from both simulation and execution traces.

ccsl in a nutshell

The Clock Constraint Specication Language (ccsl) was initially dened as a companion language for the Time Model of the uml Prole for Modeling and Analysis of Real-Time and Embedded systems (marte) [START_REF]OMG: UML Prole for MARTE, v1.0. Object Management Group[END_REF]. The central concept on marte Time model is the notion of clock, which represents a (possibly innite) totally ordered set of instants [START_REF] André | Modeling time(s)[END_REF]. In this model, clocks extend the Unied Modeling Language (uml) [START_REF]OMG: UML Superstructure, v2.2. Object Management Group[END_REF] events and instants stand for the event occurrences. These clocks can be logical or physical, dense or discrete. In the remainder of this paper we only consider discrete clocks, whether logical or physical.

The marte time model also provides Clock Constraints that refer to at least two clocks and constrain the respective evolution of their instants. ccsl has a formal semantics [START_REF] André | Syntax and semantics of the Clock Constraint Specication Language[END_REF] that can be exploited to detect invalid specications (e.g., deadlocks) or compute a correct execution (by simulation), if any, in the timesquare tool [START_REF] Deantoni | TimeSquare: on the formal execution of UML and DSL models[END_REF]. Foundational ccsl constraints are dened in a kernel library. ccsl allows building new libraries and the denition of user-dened constraints by composing existing relations (from the kernel library or from other libraries) in order to build specic constraints adequate for a given domain.

ccsl is a means for specifying constraints on the evolution of clocks. A constraint can be either a relation or an expression. A ccsl expression denes a new clock based on existing ones. In this paper, we do not give all the details about the semantics of ccsl but a full description is available as a research report [START_REF] André | Syntax and semantics of the Clock Constraint Specication Language[END_REF]. However, we informally describe the relations and expressions used in this document.

We consider all the instants for a given system, I, and we build a time structure I, ≺, ≡ on it. ≺ is an irreexive and transitive partial relation called precedence. ≡ is a partial equivalence relation, i.e., reexive, transitive and symmetric, called coincidence. From these two relations, we build two more: causality (denoted ) and exclusion (denoted (#). Let a and b be logical clocks, when a causes b, then either a ≺ b or a ≡ b. When a and b are exclusive, then either a ≺ b or b ≺ a.

A clock c = I c , ≺ c is such that I c ⊂ I and ≺ c is a projection of ≺ over I c and is a total order relation.

If I c is discrete (c is called a discrete clock), we denote c[k] the k th instant of c where k ∈ N \ {0}.
Clock relations are a practical way to create innitely many instant relations at once. For instance, the clock relation Precedes (denoted ≺ ) denes innitely many instant relations of the kind precedence. a ≺ b means that for all natural numbers k, the k th instant of a occurs before the Expressions are directly dened on clocks. The clock expression FilteredBy (denoted ) builds a subclock, i.e., a clock such that all its instants coincide with exactly one instant of the super clock. We use innite binary words to select those instants of the super clock with which the subclock is coincident. For instance, a 00(01

k th instant of b: ∀k ∈ N \ {0}, a[k] ≺ b[k].
) ω builds a subclock b of a, such that ∀k ∈ N \ {0}, b[k] ≡ a[2 * k + 2].
In this simple example, there is only one 1 in the periodic part of the lter (i.e., (01)), therefore we have a periodic pattern: b is periodic on a with a period of 2 and an oset of 3. When the periodic part only contains 1, then it becomes equivalent to the operator delayedFor (denoted $ a ). a $ a 2 is equivalent to a 00(1) ω .

A ccsl specication is the conjunction of constraints. This language is central to our approach and is used in Section 6.2, which describes how to express uml interaction semantics with ccsl.

Motivating example

This example has been taken from [START_REF] Bennett | Experimental evaluation of the uml prole for schedulability, performance, and time[END_REF] and slightly adapted to our work. We have removed probabilities since they cannot be expressed with ccsl. The example describes a factory with three machines that assemble widgets, and a robot that moves the widgets on demand. Widgets are assembled from two parts, an A part and a B part. Machine 1 processes A parts while machine 2 processes B parts. Machine 3, in turn, assemblies one A part and one B part to make one widget. The robot transports parts from a conveyor belt to the appropriate machine. It is also in charge of moving completed A parts from machine 1 to machine 3, and completed B parts from machine 2 to machine 3. There are always A and B parts available from the conveyor belt. Loading of A parts or B parts can be executed in any order. There are always A and B parts available from the conveyor belt. Loading parts from the conveyor belt, or moving them to machine 3 takes negligible time. The Worst-Case Execution Time (WCET) of processing A parts at machine 1 is 125 seconds, while the WCET of processing B parts at machine 2 is 200 seconds. dened in two chapters of the marte specication [START_REF]OMG: UML Prole for MARTE, v1.0. Object Management Group[END_REF]. The Hardware Resource Modeling (HRM) chapter to describe the resources (i.e., processing units) and their properties, and the Time chapter to identify the clocks and apply the constraints.

CCSL as a dynamic specication

To build the ccsl specication that describes the dynamic behavior of a system, the rst step is to declare a clock for each event involved in a system, that is, M essageSend, M essageReceive, InternalEventStart, InternalEventF inish, ReplySend, ReplyReceive.

The second step is to dene relationships between the clocks following the patterns summarized in Table . 1. Below we illustrate the two steps using the motivating example.

Because our example is provided with class and composite structure diagrams, declared clocks should be associated to class operations and ports. In addition, depending on the RR n°7842 For instance, clock recvRqLoadA is associated with port rLoad of the robot component and tagged with the keyword receive. The ticks of this clock indicate that the request of loading an A part from the conveyor belt has been received by the robot. Clock sendRpLoadA is also associated with port rLoad but tagged with the keyword send. The ticks of this clock suggest that a reply signal has been sent to Machine 1 to inform it about the loading of an A part. Composite structure diagrams mainly specify how components are interconnected to each other to achieve some common objectives [START_REF]OMG: Unied Modeling Language, Superstructure[END_REF]. Information about what happens inside a particular component is out of the scope of this kind of diagram. To overcome this limitation, we associate internal clocks (such as startP rocP artA, f inP rocP artA) with operation procPartA.

Once declared, clocks are related each other by means of time constraints. Some constraints relevant for the motivating example follow 3 : Eq. 1 and Eq. 2 are the classical precedence relations induced by a request/reply communication. The reception (recvRqLoadA) always occurs if an emission (sendRqLoadA) has occurred.

1. sendRqLoadA ≺ recvRqLoadA 2. sendRpLoadA ≺ recvRpLoadA
Eq. 3 is a precedence relation established between the starting and ending point of the internal event procP artA.

Next six equations are coincidence relations. Each of them indicates that every time a clock operates, this signal is transferred to its correlated clock and this is done instantaneously. The duration of the sensing action is neglected. Below we explain their functionality with regarding to the example:

As soon as a message invoking the go operation is received by Machine 1, the operation go starts, Eq. 4.

As soon as the internal event go starts up in Machine 1, a message is sent to the Robot in order to load an A part, Eq. 5.

When Machine 1 is notied about the end of the loading, it starts the process of the available A part, Eq. 6.

At the moment that Machine 3 stops the execution of both behaviors, partAReady and partBReady, it sends a request to itself in order to assemble A and B parts, Eq. 7.

In addition, when Machine 3 stops the behavior partAReady, a reply message is sent to Machine 1, Eq. 8.

At the moment that Machine 1 receives the reply of partAReady, the execution of go is over, Eq. 9.
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Eq. 10 and Eq. 11 are alternance relations that help us to control the dispatch of requests or replays. For instance, Eq. 10 makes it possible: a message i+1 invoking the load operation can be sent only if the reply corresponding to the message i of the load operation has been already received.

Eq. 12 declares an exclusion relation between sendRqLoadA and sendRqLoadB, i.e., none of their ticks are coincident. The constraint avoids sending, to the robot, two simultaneous orders of loading parts from the conveyor belt.

As a nal point, Eq. 13 models the WCET of processing A parts: the time to produce an A part is higher than 0 and lower than 125 ticks.

Partial order

In our approach, a partial order is represented by (at least) a trace model along with an event occurrence relation model. While a trace model reports the occurrence of clocks (i.e., events), an event occurrence relation model denes temporal and causal relationships between the occurrences of trace models. The relationships indicate that, for some event occurrences, there exist other occurrences that precede (happen before) or coincide with (are simultaneous) the former occurrences.

In our approach, trace models come from timesquare [START_REF] Aoste | TimeSquare Home[END_REF] simulations or have been extracted from OTF execution traces which, in turn, are obtained by instrumenting the code of a system. We have built bridges that allows the derivation of uml interaction diagrams from such simulation or execution traces. Thus, one can perform verication and debugging at model level in early (i.e., specication) or advanced (i.e., implementation, deployment) stages of software development. Below, we present the models of what a partial order consists of.

Trace metamodel

A trace model conforms to the metamodel depicted in Figure 6. The principal concepts are as follows. A Trace is a sequence of LogicalSteps. Each step contains several (simultaneous) EventOccurrences. An event occurrence has an attribute that indicates its state. Among the possible values of this attribute one nds tick and noTick. Event occurrences can be also marked with the boolean isClockDead. A Reference associates an event occurrence with a clock or clock expression/relation established in the uml model. When all logical steps refer to a unique PhysicalBase of time (e.g., milliseconds), the trace is totally ordered.

Event occurrence relation model

This model denes temporal and causal relationships between occurrences of trace models. The relationships indicate that, for some event occurrences in a specic trace model, there exist other occurrences (in another trace model), that precede (happen before) or coincide with (are simultaneous) the former occurrences. Unlike a reconciliation specication, that RR n°7842 The root of the metamodel presented in Figure 7 is the entity OccurrenceRelationModel. It contains a set of CCSLConstraintRef. This kind of elements references the clock constraints of a ccsl specication. It is just a way of sorting the OccurrenceRelations with respect to the clock constraints that enforce them. An OccurrenceRelation is an abstract concept that represents the possible relationships between occurrences. It is materialized by two kinds of relations, the Precedence occurrence relation, which loosely synchronizes two event occurrences and the Coincidence event occurrence relation, which forces two event occurrences to be simultaneous. Note that when a Precedence is said to be non strict (isStrict boolean to false), it covers the union of the Precedence and Coincidence.

When software components are allocated in dierent computational units (with their own clock domains which are likely to be unsynchronized), the isolation of execution traces could be desirable to reduce overhead. As a consequence, it is necessary to perform a reconciliation process [START_REF] Garcés | A model-based approach for reconciliation of polychronous execution traces[END_REF] whose output is a partial order that give us a global vision of the system execution independently of the number of traces. This case is illustrated in Figure 8 where it is assumed that Machine 1 and Robot produce separated traces. As indicated by the legend, the dierent shapes represent event occurrences of traces of Machine 1 and Robot. In particular, the triangles and squares represent occurrences of the emission and reception of The dotted arrows, in turn, describe precedence relations between the event occurrences. The two traces plus the occurrences relations constitute the partial order. Remark on our proof of concept uses only one trace obtained from a simulation. The previous paragraph evokes two execution traces since it worth mentioning that our approach covers dierent cases.
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Mappings between concepts

This section describes what semantics of uml interaction diagrams can be inferred from our three inputs, that is, static and dynamic specications and partial order. 3: Mappings between partial orderings (along with static and dynamic specications) and timing diagrams trace and event occurrence relation models. Mappings for messages and parallel combined fragments work under certain conditions (as explained below).

Message

Messages can be classied in two groups complete and incomplete. The semantics of a complete message is that both sender and receiver are known. Synchronous, asynchronous
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and reply messages have such complete semantics. The semantics of an incomplete message is that either sender or receiver is known. This is the case for lost and found messages.

In this work, we focus on complete messages which can be straightforwardly derived from precedence relationships. To distinguish reply messages from the other kinds of complete messages, we use the following conditions:

A precedence relationship, M essageSend ≺ M essageReceive, represents a reply if M essageReceive appears as the rst parameter of a coincidence relationship that, in addition, has as a second parameter an event InternalEventF inish.

A precedence relationship, M essageSend ≺ M essageReceive, represents either a synchronous or asynchronous message if M essageReceive appears as the rst parameter of a coincidence relationship that, in addition, has as a second parameter an event

InternalEventStart.

Now a message invoking the operation

o 2 is classied as synchronous if ReplyReceive(o 2 ) = M essageSend(o 2 ) $ 1 InternalEventF inish(o 1 )
where o 1 is the last operation executed in l1. The lifeline l1 is the one invoking the operation o 2 provided by other participant. If the message does not satisfy this constraint is categorized as asynchronous.

Parallel combined fragment

Parallel combined fragment is used when creating a sequence diagram that shows concurrent threads. Fig. 9 gives an example, the bounding box tagged with the keyword PAR delineates the scope of the parallel combined fragment. Horizontal dotted lines delineate the dierent threads, in this case, two threads. Events within a particular thread are ordered in the usual way. For example, the order of events of lifeline l1 with respect to the rst thread should be M essageSend(o 1 ), ReplyReceive(o 1 ), M essageReceive(o 2 ), InternalEventStart(o 2 ), InternalEventF inish(o 2 ), ReplaySend(o 2 ). Note that these events follow a pre-established order:

A message send (e.g., M essageSend(o 1 )) is ordered immediately before a reply receive (e.g., ReplyReceive(o 1 )).

An event start (e.g., InternalEventStart(o 2 )) is ordered immediately before an event nish (e.g., InternalEventF inish(o 2 )).

The events

InternalEventStart(o 2 ), InternalEventF inish(o 2 ) are in between M e- ssageReceive(o 2 ), ReplaySend(o 2 ).
Since the rst and second threads are working in parallel, events from the rst thread are not causally ordered with respect to events from the second thread. As a result, the order of events of lifeline l1 varies from the above mentioned order, that is, the events M essageSend(o 3 ) and ReplayReceive(o 3 ) would appear in between. 
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We have designed an algorithm (see Algorithm 1) that detects variations in the order of event occurrences reported in a trace. The assumption is that variations in the preestablished order describe a parallel combined fragment. The algorithm traverses the trace of a given lifeline. It evaluates the type of each event logged in the trace. An event whose type is M essageSend, InternalEventStart or M essageReceive is further evaluated in order to see if the event being immediately (or three steps) after it has the proper type. If it is not the case, the event is appended to a list which is, later on, used to graphically represent parallel combined fragments in a sequence diagram. This algorithm targets parallel combined fragments whose messages are synchronous since this kind of message implies events ordered in a deterministic way. Further investigation is needed for covering the inclusion of asynchronous messages in parallel combined fragments. [START_REF]Metamill: Product features[END_REF]. We have chosen the open-source tools Papyrus [START_REF]route des Lucioles -BP 93 -06902[END_REF] and timesquare [START_REF] Aoste | TimeSquare Home[END_REF] to visualize, respectively, the sequence and timing diagrams resulting from our mappings. Whereas Papyrus graphical representation is mostly aligned with the uml sequence diagram specication, timesquare slightly diers from the original uml timing diagram notation. We nd the following dierences between notations: the compartments of timesquare timing diagrams are devoted to events (i.e., clocks) but not to lifelines as it is done in uml. Clocks are represented by pulse trains. Labels for the dierent states of an event are missing, however one can easily infer them from the graphical representation: when the pulse train has an amplitude equal to one the described state is tick, in turn, the state is noTick when the amplitude is zero. The arrow styles for messages vary in timesquare, dashed arrows represent precedences and lled vertical arrows coincidences. Precedence arrows may represent the semantics of synchronous and replay messages. Although there are variants between the notations, timesquare remains nonetheless useful to provide a proof of concept for our approach (see Section 6.6).

Clock trees

Selection of a kind-of interaction diagram highly depends on the purpose that an embedded software engineer has within. In some cases, both sequence and timing diagrams are required. However, if there is a matter of choosing one of them, we believe that sequence diagrams appear to be a more straightforward representation than timing diagrams when the system has a synchronous nature. It is the other way around for a system whose nature is asynchronous.

Whereas some people would choose the more suitable interaction diagram by reading the system requirements, we use clock trees as an automatic means for that. A clock tree is derived from a ccsl specication. Nodes and links of a clock tree correspond, respectively, to clocks and relations declared in such a ccsl specication. By clock, we mean a terminal clock, an expression, or a list of coincident clocks. In turn, a link labeled with sub, , ≺ , # describes relations of sub-clocking, precedence, causality, or exclusion. A ccsl specication including several bases of time corresponds to a forest, i.e., a disjoint union of clock trees where the root of each tree is a particular base of time. Now to know what is the system nature, we look at the clock tree: if the tree mostly contains precedence or causality links, then the system has a synchronous nature. Otherwise, if the tree consists of sub-clocking links, then the system is asynchronous.

Figure 10 illustrates an excerpt of the clock tree derived from the ccsl specication of our motivating example. Except by IC113 and IC112, which represents a time response expression, all the nodes are terminal clocks. In addition, the number of precedence links shows that the system has a synchronous nature, therefore, a sequence diagram appears to be the most suitable to understand the system behavior at runtime. Our proof of concept uses a partial order (one trace and its corresponding event occurrence relation model) obtained from the simulation of the ccsl widget factory specication on the timesquare environment. Below we describe in practice how to go from such a partial order toward sequence and timing diagrams.
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Derivation of sequence diagrams

It has been implemented in two steps: rstly, the execution of an ATL transformation that takes as input three elements (i.e., a uml model, a ccsl specication and a partial ordering) and gives as output a uml model. This uml model is a copy of the initial uml model plus a new sequence diagram that represents the system at runtime. Secondly, the use of Papyrus tool [START_REF]route des Lucioles -BP 93 -06902[END_REF] in order to obtain a graphical visualization for the new sequence diagram. So far, it has been done in a manual fashion, one has to drag and drop the new sequence diagram elements from the Papyrus model explorer view to the editor view. This is a tedious and error-prone task which could be replaced by an automatic process in the future, as it has been already done by Papyrus contributors for class and composite structure diagrams.

Figure 11 shows an excerpt of the sequence diagram derived from a partial ordering which is produced by timesquare at executing the widget factory ccsl specication. The screenshot depicts that message exchange happens as expected: machine 1 instructs the robot to give it an A part from the conveyor belt using the load operation. Next machine 1 informs machine 3 the fact that an A part is ready. A reaction to this is to request the robot to move the completed part to machine 3. Remark that the diagram lacks a message indicating the execution of procP artA on Machine 1. The reason behind that is a technical problem when the procP artA message is dragged from the Papyrus model explorer.

Derivation of timing diagrams

We take benets from the VCD editor available in timesquare to display the timing diagram resulting from the simulation (see Figure 12). One nds the time ruler at the top and the clocks at the left side. The dashed arrows are occurrences of the precedence relation sendRqLoadA ≺ recvRqLoadA and the alternance relation recvRqLoadA ∼ sendRpLoadA. The red small arrows, in turn, are occurrences of the coincidence relation recvRqLoadA = startLoadA. Looking at the whole timing diagram shows that the frequency of dispatching load messages from Machine 1 is higher that the frequency of Machine 2. This impacts performance of the system. A way of improvement is to add a buer between Machine 1 and Machine 3.

Results

Hereby a non exhaustive list of results obtained from our proof of concept: RR n°7842 We have spelled out technical problems at obtaining sequence diagram visualization in Papyrus editor. Although such a technical limitation exists, we demonstrates the feasibility of our approach which opens new perspectives for engineering work. One can imagine the improvement of the prototype and its integration to timesquare as a feature that allows animation of uml interaction diagrams derived from traces.

Although our proof of concept only uses one trace obtained from a simulation, our approach does support the case of multi-traces obtained from executions on a target platform as it is illustrated in [START_REF] Garcés | A model-based approach for reconciliation of polychronous execution traces[END_REF]. As explained there, the key is the use of a partial order as a pivot and a reconciliation process.

Conclusion

The adoption of MDE practices in embedded software community has opened new challenges, among them, the option of verifying and debugging systems at model level. This report is a contribution to this purpose: it proposes partial order as a pivot from which one goes toward uml interaction diagrams (i.e., sequence and/or timing diagrams) in a straightforward way.

A partial order consists of (at least one) traces that report the occurrences of events of a system plus the temporal and causal relations between such occurrences. A partial order unfolds the relations dened in ccsl which acts as a dynamic specication of the system behavior. Clocks dened in the ccsl specication point to elements of class and composite structure diagrams (which act as a static specication). Traces come from simulations or executions of the system in a target platform and its number can vary (from 1 to n). Even if the selection of a kind-of interaction diagram highly depends on the user, this report suggests clock trees as a means to select the most appropriate interaction diagram taking into account the system nature. Sequence diagrams appear to be a more suitable representation than timing diagrams when the system has a synchronous nature. It is the other way around for a system whose nature is asynchronous.

A proof of concept demonstrates the applicability of our approach. It shows that ccsl is expressive enough to represent most of the semantics of uml sequence and timing diagrams. Some guidelines for future work are: 1) Solving the technical issues due to the use of Papyrus as editor for displaying the derived sequence diagrams, 2) Animation of derived sequence diagrams, 3) Extension of the approach to support activity diagram derivation and 4) Representation of uml interaction diagram semantics (e.g., loop combined fragment) to which ccsl is currently not expressive enough.
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 12 Figure 1: An example of uml sequence diagram

  Another example is the coincidence relation (denoted = ) imposes a strong synchronous dependency: a = b means that the k th instant of a must be coincident with the k th instant of b: ∀k ∈ N \ {0}, a[k] ≡ b[k]. The same mechanism applies for all relations. Informally, the exclusion relation (denoted # ) RR n°7842 between two clocks a and b species that no instants of the clock a coincide with one of the clock b. The alternatesWith relation (denoted ∼ ) between two clocks a and b species that instants of the clock b are interleaving instants of the clock a.

6

  Going from ccsl partially-ordered traces to uml interaction diagrams As indicated in Figure3the scope of our work is to derive uml sequence and timing diagrams from static and dynamic specications and partial orderings by means of mappings. Below we describe the elements of our approach being illustrated with the widget factory example.

Figure 3 :

 3 Figure 3: Overview of approach that derives uml interaction diagrams from ccsl partiallyordered traces

Figure 4 and

 4 Figure 5 show, respectively, the class and composite structure diagram for the widget factory. The class diagram basically contains a class for each participant of our system. In the same fashion, the composite structure diagram has four components: the tree machines and the robot. Ports have been annotated with the ClientServerPort stereotype which supports a request/reply communication paradigm. To build up the composite diagram, we mainly use the constructs

Figure 4 :

 4 Figure 4: Class diagram for the widget factory

Figure 5 :

 5 Figure 5: Composite diagram for the widget factory

3 .

 3 startP rocP artA ≺ f inP rocP artA 4. recvRqGoA = startGoA 5. startGoA = sendRqLoadA 3 So far our example illustrates most of kinds of relations except by the coincidence relationships in lines 2 and 7 of Table.

6 .

 6 recvRpLoadA = startP rocP artA 7. f inP artAReady * f inP artBReady = sendRqP rocP artAB 8. f inP artAReady = sendRpP artAReady 9. recvRpP artAReady = f inGoA 10. sendRqLoadA ∼ recvRpLoadA 11. recvRqLoadA ∼ sendRpLoadA 12. recvRqLoadA # recvRqLoadB 13. ResponseT ime (startP rocP artA, f inP rocP artA, basetime, 0, 125)
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 67 Figure 6: Simplied trace metamodel

Figure 8 :

 8 Figure 8: Partial order for the widget factory when traces are isolated

Figure 9 :

 9 Figure 9: An example of parallel combined fragment

Figure 10 : 6 . 6

 1066 Figure 10: Excerpt of the clock tree derived from the ccsl specication of the widget factory

Figure 11 :Figure 12 :

 1112 Figure 11: Sequence diagram for the widget factory derived from traces

  

  The animation allows embedded software engineers to debug the system behavior as it is deployed in a target platform. Whereas Iyenghar et al. work with execution traces, Apvrille et al. use simulation traces.

Table 1 :

 1 Time relations needed for representation of uml interaction diagram semantics kind of event, the clocks are tagged with one of the following ccsl keywords: send, receive, start or nish.

Table 2 :

 2 Table. 2 and Table. 3 show mappings between sequence/timing diagram concepts and concepts of INRIA Mappings between partial orderings (along with static and dynamic specications) and sequence diagrams

	Sequence diagram concept	Partial order concept
	Lifeline		Class owner of the Operation or Port pointed by a set of EventOccurrences
			Precedence relationships with the form:
	Message		M essageSend ≺ M essageReceive
			ReplySend ≺ ReplyReceive
	Execution specication		Precedence relationships with the form: InternalEventStart ≺ InternalEventF inish
	Destruction		EventOccurrence with the ag isClockDead equals true
	Parallel combined fragment	EventOccurrence scheduling
	Coregion		X
	Other combined fragments (ALT, LOOP, etc.)	X
	Timing diagram concept		Partial order concept
	Lifeline	Class owner of the Operation or Port pointed by a set of EventOccurrences
		Precedence relationships with the form:
	Message	M essageSend ≺ M essageReceive
		ReplySend ≺ ReplyReceive
		InternalEventStart ≺ InternalEventF inish
		timesquare timing diagrams also require the
		coincidence relationships
	Destruction	EventOccurrences with the ag isClockDead equals true
	State or value lifeline	states (i.e., noTick, tick) or values (i.e., 0, 1) indicated by EventOccurrences
	Table	

  Dierences between timesquare and uml timing diagram notationWhereas there are several commercial and open-source tools that allows working with uml sequence diagrams, we only nd a few commercial tools supporting uml timing diagrams[START_REF]ALTOVA: UML Timing diagrams[END_REF]

	6.4.3
	Algorithm 1 Parallel combined fragment detection 1: DetectParallelCombinedFragment(lifelineTrace) 2: f ragment ← ∅ 3: for all event ∈ lif elineT race do 4: if event.type ≡ M essageSend then 5: event ← lif elineT race.at(lif elineT race.indexOf (event) + 1) 6: if event .type ≡ ReplyReceive then 7:

Partial ordering and partial order are used as interchangeable terms in this report.

There is a need for isolation in oine debugging where trace storage produces overhead on the communications and then faulty executions. For these cases, we have proposed a reconciliation approach whose output is a global trace in the form of a partial order[START_REF] Garcés | A model-based approach for reconciliation of polychronous execution traces[END_REF].RR n°7842
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