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Introduction

Trie (abbreviation of retrieval) is a natural data structure, efficient for searching words in a given set and used in many algorithms as data compression, spell checking or IP addresses lookup. A trie is a digital tree in which words are inserted in external nodes. The trie process grows up by successively inserting words according to their prefixes. A precise definition will be given in Section 4.1. As soon as a set of words is given, the way they are inserted in the trie is deterministic. Nevertheless, a trie becomes random when the words are randomly drawn: each word is produced by a probabilistic source and n words are chosen (usually independently) to be inserted in a trie. A suffix trie is a trie built on the suffixes of one infinite word. The randomness then comes from the source producing such an infinite word and the successive words inserted in the tree are far from being independent, they are strongly correlated. As a principal application of suffix tries one can cite the lossless compression algorithm Lempel-Ziv 77 (LZ77). The first results on the average size of suffix tries when the infinite word is given by a symmetrical memoryless source are due to Blumer et al. [START_REF] Blumer | Average sizes of suffix trees and dawgs[END_REF] and those on the height of the tree to Devroye [START_REF] Devroye | A note on the height of suffix trees[END_REF]. Using analytic combinatorics, Fayolle [START_REF] Fayolle | Compression de données sans perte et combinatoire analytique[END_REF] has obtained the average size and total path length of the tree for a binary word issued from a memoryless source (with some restriction on the probability of each letter).

Here we are interested in the height H n and the saturation level ℓ n of a suffix trie T n containing the first n suffixes of an infinite word produced by a source associated with a so-called Variable Length Markov Chain (VLMC) (see Rissanen [START_REF] Rissanen | A universal data compression system[END_REF] for the seminal work, Galves-Löcherbach [START_REF] Galves | Stochastic chains with memory of variable length[END_REF] for an overview, and [START_REF] Cénac | Context trees, variable length Markov chains and dynamical sources[END_REF] for a probabilistic frame). One deals with a particular VLMC source associated with an infinite comb, described hereafter. This particular model has the double advantage to go beyond the cases of memoryless or Markov sources and to provide concrete computable properties. The analysis of the height and the saturation level is usually motivated by optimization of the memory cost. Height is clearly relevant to this point; saturation level is algorithmically relevant as well because internal nodes below the saturation level are often replaced by a less expansive table .  All the tries or suffix tries considered so far in the literature have a height and a saturation level both growing logarithmically with the number of words inserted, to the best of our knowledge. For plain tries, when the inserted words are independent, the results due to Pittel [START_REF] Pittel | Asymptotic growth of a class of random trees[END_REF] rely on two assumptions on the source producing the words: first, the source is uniformly mixing, second, the probability of any word decays exponentially with its length. Let us also mention the general analysis of tries by Clément-Flajolet-Vallée [START_REF] Clément | Dynamical sources in information theory: a general analysis of trie structures[END_REF] for dynamical sources. For suffix tries, Szpankowski [START_REF] Szpankowski | Asymptotic properties of data compression and suffix trees[END_REF] obtains the same result, with a weaker mixing assumption (still uniform though) and the same hypothesis on the measure of the words. Our aim is to exhibit two cases when these behaviours are no longer the same. The first example is the "logarithmic comb", for which we show that the mixing is slow in some sense, namely non uniformly polynomial (see Section 3.2 for a precise statement) and the measure of some increasing sequence of words decays polynomially. We prove in Theorem 4.8 that the height of this trie is larger than a power of n (when n is the number of inserted suffixes in the tree). The second example is the "factorial comb", which has a uniformly exponential mixing, thus fulfilling the mixing hypothesis of Szpankowski [START_REF] Szpankowski | Asymptotic properties of data compression and suffix trees[END_REF], but the measure of some increasing sequence of words decays faster than any exponential. In this case we prove in Theorem 4.9 that the saturation level is negligible with respect to log n. We prove more precisely that, almost surely,

ℓ n ∈ o log n (log log n) δ , for any δ > 1.
The paper is organised as follows. In Section 2, we define a VLMC source associated with an infinite comb. In Section, 3 we give results on the mixing properties of these sources by explicitely computing the suitable generating functions in terms of the source data. In Section 4, the associated suffix tries are built, and the two uncommon behaviours are stated and shown. The methods are based on two key tools concerning pattern return time: a duality property and the computation of generating functions. The relation between the mixing of the source and the asymptotic behaviour of the trie is highlighted by the proof of Proposition 4.7.

Infinite combs as sources

In this section, a VLMC probabilistic source associated with an infinite comb is defined. Moreover, we introduce the two examples given in introduction: the logarithmic and the factorial combs. We begin with the definition of a general variable length Markov Chain associated with a probabilized infinite comb. The following presentation comes from [START_REF] Cénac | Context trees, variable length Markov chains and dynamical sources[END_REF]. Let A be the alphabet {0, 1} and L = A -N be the set of left-infinite words. Consider the binary tree (represented in Figure 1) whose finite leaves are the words 1, 01, . . . , 0 k 1, . . . and with an infinite leaf 0 ∞ as well. Each leaf is labelled with a Bernoulli distribution, respectively denoted by q 0 k 1 , k 0 and q 0 ∞ . This probabilized tree is called the infinite comb. The VLMC (Variable Length Markov Chain) associated with an infinite comb is the L-valued Markov chain (V n ) n 0 defined by the transitions

P(V n+1 = V n α|V n ) = q ←- pref (Vn) (α)
where α ∈ A is any letter and ←pref (V n ) denotes the first suffix of V n (reading from right to left) appearing as a leaf of the infinite comb. For instance, if V n = . . . 1000, then ←pref (V n ) = 0001. Notice that the VLMC is entirely determined by the data Figure 1: An infinite comb q 0 ∞ , q 0 k 1 , k 0. From now on, denote c 0 = 1 and for n 1,

c n := n-1 k=0 q 0 k 1 (0).
It is proved in [START_REF] Cénac | Context trees, variable length Markov chains and dynamical sources[END_REF] that in the irreducible case i.e. when q 0 ∞ (0) = 1, there exists a unique stationary probability measure π on L for (V n ) n if and only if the series c n converges. From now on, we assume that this condition is fulfilled and we call S(x) :=

n 0 c n x n (1) 
its generating function so that S(1) = n 0 c n . For any finite word w, we denote π(w) := π(Lw). Computations performed in [START_REF] Cénac | Context trees, variable length Markov chains and dynamical sources[END_REF] show that for any n 0,

π(10 n ) = c n S(1)
and π(0

n ) = k n c k S(1) . (2) 
Notice that, by stationarity π(0 n ) = π(0 n+1 ) + π(10 n ) and by disjointness of events, π(0 n ) = π(0 n+1 ) + π(0 n 1) for all n 1 so that π(10 n ) = π(0 n 1).

(
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If U n denotes the final letter of V n , the random sequence W = U 0 U 1 U 2 . . . is a right-infinite random word. We define in this way a probabilistic source in the sense of information theory i.e. a mechanism that produces random words. This VLMC probabilistic source is characterized by: p w := P(W has w as a prefix ) = π(w),

for every finite word w. Both particular suffix tries the article deals with are built from such sources, defined by the following data.

Example 1: the logarithmic comb

The logarithmic comb is defined by c 0 = 1 and for n 1,

c n = 1 n(n + 1)(n + 2)(n + 3)
.

The corresponding conditional probabilities on the leaves of the tree are

q 1 (0) = 1 24 and for n 1, q 0 n 1 (0) = 1 - 4 n + 4
.

The expression of c n was chosen to make the computations as simple as possible and also because the square-integrability of the waiting time of some pattern will be needed (see end of Section 4.3), guaranteed by

n 0 n 2 c n < +∞.
Example 2: the factorial comb

The conditional probabilities on the leaves are defined by

q 0 n 1 (0) = 1 n + 2
for n 0, so that c n = 1 (n + 1)! .

Mixing properties of infinite combs

In this section, we first precise what we mean by mixing properties of a random sequence. We refer to Doukhan [START_REF] Doukhan | Mixing : properties and examples[END_REF], especially for the notion of ψ-mixing defined in that book. We state in Proposition 3.2 a general result that provides the mixing coefficient for an infinite comb defined by (c n ) n 0 or equivalently by its generating function S. This result is then applied to our two examples. The mixing of the logarithmic comb is polynomial but not uniform, it is a very weak mixing; the mixing of the factorial comb is uniform and exponential, it is a very strong mixing. Notice that mixing properties of some infinite combs have already been investigated by Isola [START_REF] Isola | Renewal sequences and intermittency[END_REF], although with a slight different language.

Mixing properties of general infinite combs

For a stationary sequence (U n ) n 0 with stationary measure π, we want to measure by means of a suitable coefficient the independence between two words A and B separated by n letters. The sequence is said to be "mixing" when this coefficient vanishes when n goes to +∞. Among all types of mixing, we focus on one of the strongest type: ψ-mixing. More precisely, for 0 m +∞, denote by F m 0 the σ-algebra generated by {U k , 0 k m} and introduce for A ∈ F m 0 and B ∈ F ∞ 0 the mixing coefficient

ψ(n, A, B) := π(A ∩ T -(m+1)-n B) -π(A)π(B) π(A)π(B) = |w|=n π(AwB) -π(A)π(B) π(A)π(B) , ( 4 
)
where T is the shift map and where the sum runs over the finite words w with length |w| = n.

A sequence (U n ) n 0 is called ψ-mixing whenever lim n→∞ sup m 0,A∈F m 0 ,B∈F ∞ 0 |ψ(n, A, B)| = 0.
In this definition, the convergence to zero is uniform over all words A and B. This is not going to be the case in our first example. As in Isola [START_REF] Isola | Renewal sequences and intermittency[END_REF], we widely use the renewal properties of infinite combs (see Lemma 3.1) but more detailed results are needed, in particular we investigate the lack of uniformity for the logarithmic comb.

Notations and Generating functions

• For a comb, recall that S is the generating function of the nonincreasing sequence (c n ) n 0 defined by (1).

• Set ρ 0 = 0 and for n 1,

ρ n := c n-1 -c n ,
with generating function

P (x) := n 1 ρ n x n .
• Define the sequence (u n ) n 0 by u 0 = 1 and for n 1,

u n := π(U 0 = 1, U n = 1) π(1) = 1 π(1) |w|=n-1 π(1w1), (5) 
and let

U(x) := n 0 u n x n
denote its generating function. Hereunder is stated a key lemma that will be widely used in Proposition 3.2. In some sense, this kind of relation (sometimes called Renewal Equation) reflects the renewal properties of the infinite comb.

Lemma 3.1 The sequences (u n ) n 0 and (ρ n ) n 0 are connected by the relations:

∀n 1, u n = ρ n + u 1 ρ n-1 + . . . + u n-1 ρ 1
and (consequently)

U(x) = ∞ n=0 u n x n = 1 1 -P (x) = 1 (1 -x)S(x) .
Proof. For a finite word w = α 1 . . . α m such that w = 0 m , let l(w) denote the position of the last 1 in w, that is l(w) := max{1 ≤ i ≤ m, α i = 1}. Then, the sum in the expression (5) of u n can be decomposed as follows:

|w|=n-1 π(1w1) = π(10 n-1 1) + n-1 i=1 |w|=n-1 l(w)=i π(1w1).
Now, by disjoint union π(10 n-1 ) = π(10 n-1 1) + π(10 n ), so that

π(10 n-1 1) = π(1)(c n-1 -c n ) = π(1)ρ n .
In the same way, for w

= α 1 . . . α n-1 , if l(w) = i then π(1w1) = π(1α 1 . . . α i-1 1)ρ n-i , so that u n = ρ n + n-1 i=1 ρ n-i 1 π(1) |w|=i-1 π(1w1) = ρ n + n-1 i=1 ρ n-i u i , which leads to U(x) = (1 -P (x)) -1 by summation.
⊓ ⊔

Mixing coefficients

The mixing coefficients ψ(n, A, B) are expressed as the n-th coefficient in the series expansion of an analytic function M A,B which is given in terms of S and U.

The notation [x n ]A(x) means the coefficient of x n in the power expansion of A(x) at the origin. Denote the remainders associated with the series S(x) by

r n := k n c k , R n (x) := k n c k x k
and for a 0, define the "shifted" generating function

P a (x) := 1 c a n 1 ρ a+n x n = x + x -1 c a x a R a+1 (x). ( 6 
)
Proposition 3.2 For any finite word A and any word B, the identity

ψ(n, A, B) = [x n+1 ]M A,B (x)
holds for the generating functions M A,B respectively defined by:

i) if A = A ′ 1 and B = 1B ′
where A ′ and B ′ are any finite words, then 

M A,B (x) = M(x) := S(x) -S(1) (x -1)S(x) ; ii) if A = A ′
M A,B (x) := S(1) c a+b c a c b P a+b (x) + U(x) [S(1)P a (x)P b (x) -S(x)] ; iii) if A = 0 a and B = 0 b with a, b 1, then M A,B (x) := S(1) 1 r a r b n 1 r a+b+n-1 x n + U(x) S(1)R a (x)R b (x) r a r b x a+b-2 -S(x) ; iv) if A = A ′
M A,B (x) := S(1) 1 c a r b x a+b-1 R a+b (x) + U(x) S(1)P a (x)R b (x) c a r b x b-1 -S(x) ; v) if A = 0 a and B = 0 b 1B ′
where B ′ is any finite words and a, b 0, then

M A,B (x) := S(1) 1 r a c b x a+b-1 R a+b (x) + U(x) S(1)R a (x)P b (x) r a c b x a-1 -S(x) .
Remark 3.3 It is worth noticing that the asymptotics of ψ(n, A, B) may not be uniform in all words A and B. We call this kind of system non-uniformly ψmixing. It may happen that ψ(n, A, B) goes to zero for any fixed A and B, but (for example, in case iii)) the larger a or b, the slower the convergence, preventing it from being uniform.

Proof. The following identity has been established in [START_REF] Cénac | Context trees, variable length Markov chains and dynamical sources[END_REF] (see formula (17) in that paper) and will be used many times in the sequel. For any two finite words w and w ′ , π(w1w ′ )π(1) = π(w1)π(1w ′ ). ( 7)

i) If A = A ′ 1 and B = 1B ′ , then (7) yields π(AwB) = π(A ′ 1w1B ′ ) = π(A ′ 1) π(1) π(1w1B ′ ) = S(1)π(A)π(B) π(1w1) π(1) . So ψ(n, A, B) = S(1)u n+1 -1
and by Lemma 3.1, the result follows.

ii) Let A = A ′ 10 a and B = 0 b 1B ′ with a, b 0 and a + b = 0. To begin with,

π(AwB) = 1 π(1) π(A ′ 1)π(10 a w0 b 1B ′ ) = 1 π(1) 2 π(A ′ 1)π(10 a w0 b 1)π(1B ′ ).
Furthermore, π(A) = c a π(A ′ 1) and by (3), π(0 b 1) = π(10 b ), so it comes

π(B) = 1 π(1) π(0 b 1)π(1B ′ ) = π(10 b ) π(1) π(1B ′ ) = c b π(1B ′ ).
Therefore,

π(AwB) = π(A)π(B) c a c b π(1) 2 π(10 a w0 b 1). Using π(1)S(1) = 1, this proves ψ(n, A, B) = S(1) v a,b n c a c b -1 where v a,b n := 1 π(1) |w|=n-1 π(10 a w0 b 1).
As in the proof of the previous lemma, if w = α 1 . . . α m is any finite word different from 0 m , we call f (w) := min{1 ≤ i ≤ m, α i = 1} the first place where 1 can be seen in w and recall that l(w) denotes the last place where 1 can be seen in w. One has If i = j then w is the word 0 i-1 10 n-i-1 , else w is of the form 0 i-1 1w ′ 10 n-1-j , with |w ′ | = ji -1. Hence, the previous sum can be rewritten as

|w|=n-1 π(10 a w0 b 1) = π(1)ρ a+b+n + π(1) n-1 i=1 ρ a+i ρ n-i+b + 1 i<j n-1 w |w|=j-i-1 π(10 a+i-1 1w10 n-1-j+b 1).
Equation [START_REF] Flajolet | Analytic Combinatorics[END_REF] shows

π(10 a+i-1 1w10 n-1-j+b 1) = π(10 a+i-1 1) π(1) π(1w1) π(1) π(10 n-1-j+b 1) = ρ a+i ρ n-j+b π(1w1).
This implies:

v a,b n = ρ a+b+n + n-1 i=1 ρ a+i ρ n-i+b + 1≤i<j≤n-1 ρ a+i ρ n-j+b w,|w|=j-i+1 π(1w1) π (1) 
.

Recalling that u 0 = 1, one gets

v a,b n = ρ a+b+n + 1≤i≤j≤n-1 ρ a+i ρ n-j+b u j-i
which gives the result ii) with Lemma 3.1.

iii)

Let A = 0 a and B = 0 b with a, b 1. Set v a,b n := 1 π(1) |w|=n-1 π(0 a w0 b ). First, recall that, due to (2), π(A) = π(1)r a and π(B) = π(1)r b . Conse- quently, ψ(n, A, B) = π(1)v a,b n+1 -π(A)π(B) π(A)π(B) = S(1) v a,b n+1 r a r b -1.
Let w be a finite word with

|w| = n -1. If w = 0 n-1 , then π(AwB) = π(0 a+n-1+b ) = π(1)r a+b+n-1 .
If not, let f (w) denote as before the first position of 1 in w and l(w) the last one in w. If f (w) = l(w), then

π(AwB) = π(0 a+f (w)-1 10 n-1-f (w)+b ) = 1 π(1) π(0 a+f (w)-1 1)π(10 n-1-f (w)+b ) = π(1)c a+f (w)-1 c n-1-f (w)+b . If f (w) < l(w), then writing w = w 1 . . . w n-1 , π(AwB) = π(0 a+f (w)-1 1w f (w)+1 . . . w l(w)-1 10 n-1-l(w) ) = 1 π(1) 2 π(0 a+f (w)-1 1)π(1w f (w)+1 . . . w l(w)-1 1)π(10 n-1-l(w)+b ). Summing yields v a,b n = r a+b+n-1 + n-1 i=1 c a+i-1 c n-1+b-i + n-1 i,j=1 i<j w, |w|=j-i-1 c a+i-1 π(1w1) π(1) c n-1+b-j = r a+b+n-1 + 1≤i≤j≤n-1 c a+i-1 c n-1+b-j u j-i ,
which gives the desired result. The last two items, left to the reader, follow the same guidelines. ⊓ ⊔

Mixing of the logarithmic infinite comb

Consider the first example in Section 2, that is the probabilized infinite comb defined by c 0 = 1 and for any n 1 by

c n = 1 n(n + 1)(n + 2)(n + 3)
.

When |x| < 1, the series S(x) writes as follows 

S(x) = 47 36 - 5 12x + 1 6x 2 + (1 -x) 3 log(1 -x) 6x 3 (8) 

Remark 3.5

The C A,B cannot be bounded above by some constant that does not depend on A and B, as can be seen hereunder in the proof. Indeed, we show that if a and b are positive integers,

ψ(n, 0 a , 0 b ) ∼ 1 3 S(1) r a r b - 1 r a - 1 r b + 1 S(1) 1 n 3
as n goes to infinity. In particular, ψ(n, 0, 0 n ) tends to the positive constant 13 6 .

Proof of Proposition 3.4.

For any finite words A and B in case i) of Proposition 3.2, one deals with U(x) = ((1x)S(x)) -1 which has 1 as a unique dominant singularity. Indeed, 1 is the unique dominant singularity of S, so that the dominant singularities of U are 1 or zeroes of S contained in the closed unit disc. But S does not vanish on the closed unit disc, because for any z such that |z| 1,

|S(z)| 1 - n 1 1 n(n + 1)(n + 2)(n + 3) = 1 -(S(1) -1) = 17 18 . Since M(x) = S(x) -S(1) (x -1)S(x) = S(1)U(x) - 1 1 -x ,
the unique dominant singularity of M is 1, and when x tends to 1 in the unit disc, (8) leads to

M(x) = A(x) - 1 6S(1) (1 -x) 2 log(1 -x) + O (1 -x) 3 log(1 -x)
where A(x) is a polynomial of degree 2. Using the classical transfer theorem (see Flajolet and Sedgewick [7, section VI]) based on the analysis of the singularities of M, we get

ψ(n -1, w1, 1w ′ ) = [x n ]M(x) = 1 3S(1) 1 n 3 + o 1 n 3 .
The cases ii), iii), iv) and v) of Proposition 3.2 are of the same kind, and we completely deal with case iii).

Case iii): words of the form A = 0 a and B = 0 b , a, b 1. As shown in Proposition 3.2, one has to compute the asymptotics of the n-th coefficient of the Taylor series of the function

M a,b (x) := S(1) 1 r a r b n 1 r a+b+n-1 x n + U(x) S(1)R a (x)R b (x) r a r b x a+b-2 -S(x) . ( 9 
)
The contribution of the left-hand term of this sum is directly given by the asymptotics of the remainder

r n = k n c k = 1 3n(n + 1)(n + 2) = 1 3n 3 + O 1 n 4 .
By means of singularity analysis, we deal with the right-hand term

N a,b (x) := U(x) S(1)R a (x)R b (x) r a r b x a+b-2 -S(x) .
Since 1 is the only dominant singularity of S and U and consequently of any R a , it suffices to compute an expansion of N a,b (x) at x = 1. It follows from ( 8) that U, S and R a admit expansions near 1 of the forms

U(x) = 1 S(1)(1 -x) + polynomial + 1 6S(1) 2 (1 -x) 2 log(1 -x) + O(1 -x) 2 , S(x) = polynomial + 1 6 (1 -x) 3 log(1 -x) + O(1 -x) 3 ,
and

R a (x) = polynomial + 1 6 (1 -x) 3 log(1 -x) + O(1 -x) 3 .
Consequently,

N a,b (x) = 1 6 1 r a + 1 r b - 1 S(1) (1 -x) 2 log(1 -x) + O(1 -x) 2
in a neighbourhood of 1 in the unit disc so that, by singularity analysis,

[x n ]N a,b (x) = - 1 3 1 r a + 1 r b - 1 S(1) 1 n 3 + o 1 n 3 . Consequently (9) leads to ψ(n -1, 0 a , 0 b ) = [x n ]M a,b (x) ∼ 1 3 S(1) r a r b - 1 r a - 1 r b + 1 S(1) 1 n 3
as n tends to infinity, showing the mixing inequality and the non uniformity. The remaining cases ii), iv) and v) are of the same flavour. ⊓ ⊔

Mixing of the factorial infinite comb

Consider now the second Example in Section 2, that is the probabilized infinite comb defined by ∀n ∈ N, c n = 1 (n + 1)! .

With previous notations, one gets

S(x) = e x -1 x and U(x) = x (1 -x)(e x -1)
.

Proposition 3.6

The VLMC defined by the factorial infinite comb has a uniform exponential mixing of the following form: there exists a positive constant C such that for any n 1 and for any finite words A and B,

|ψ(n, A, B)| C (2π) n .

Proof.

i) First case of mixing in Proposition 3.2: A = A ′ 1 and B = 1B ′ .

Because of Proposition 3.2, the proof consists in computing the asymptotics of [x n ]M(x). We make use of singularity analysis. The dominant singularities of M(x) = S(x) -S(1) (x -1)S(x) are readily seen to be 2iπ and -2iπ, and

M(x) ∼ 2iπ 1 -e 1 -2iπ • 1 1 -z 2iπ .
The behaviour of M in a neighbourhood of -2iπ is obtained by complex conjugacy. Singularity analysis via transfer theorem provides thus that where P a+b is an entire function. In this last formula, the brackets contain an entire function that vanishes at 1 so that the dominant singularities of M a,b are again those of S -1 , namely ±2iπ. The expansion of M a,b (x) at 2iπ writes thus

[x n ]M(x) ∼ n→+∞ 2(e -1) 1 + 4π 2 1 2π n ǫ n where ǫ n = 1 if n is even 2π if n is odd.
M a,b (x) ∼ 2iπ -S(1)P a (2iπ)P b (2iπ) 1 -2iπ • 1 1 -x 2iπ
which implies, by singularity analysis, that

[x n ]M a,b (x) ∼ n→+∞ 2ℜ 1 -e 1 -2iπ • P a (2iπ)P b (2iπ) (2iπ) n .
Besides, the remainder of the exponential series satisfies n a

x n n! = x a a! 1 + x a + O( 1 a ) ( 10 
)
when a tends to infinity. Consequently, by Formula (6), P a (2iπ) tends to 2iπ as a tends to infinity so that one gets a positive constant C 1 that does not depend on a and b such that for any n 1,

|ψ(n, A, B)| C 1 (2π) n .
iii) Third case of mixing: A = 0 a and B = 0 b . This time, one has to compute

[x n ]M a,b (x) with M a,b (x) := S(1) 1 r a r b n 1 r a+b+n-1 x n + U(x) S(1)R a (x)R b (x) r a r b x a+b-2 -S(x)
the first term being an entire function. Here again, the dominant singularities of M a,b are located at ±2iπ and

M a,b (x) ∼ 2iπ -S(1)R a (2iπ)R b (2iπ) (1 -2iπ)r a r b (2iπ) a+b-2 • 1 1 -x 2iπ
which implies, by singularity analysis, that

ψ(n -1, A, B) ∼ n→+∞ 2ℜ 1 -e 1 -2iπ • R a (2iπ)R b (2iπ) r a r b (2iπ) a+b-2 1 (2iπ) n .
Once more, because of [START_REF] Pittel | Asymptotic growth of a class of random trees[END_REF], this implies that there is a positive constant C 2 independent of a and b and such that for any n 1,

|ψ(n, A, B)| C 2 (2π) n .
iv) and v): both remaining cases of mixing that respectively correspond to words of the form A = A ′ 10 a , B = 0 b and A = 0 a , B = 0 b 1B ′ are of the same vein and lead to similar results. ⊓ ⊔

Height and saturation level of suffix tries

In this section, we consider a suffix trie process (T n ) n associated with an infinite random word generated by an infinite comb. A precise definition of tries and suffix tries is given in section 4.1. We are interested in the height and the saturation level of such a suffix trie.

Our method to study these two parameters uses a duality property à la Pittel developed in Section 4.2, together with a careful and explicit calculation of the generating function of the second occurrence of a word (in Section 4.3) which can be achieved for any infinite comb. These calculations are not so intricate because they are strongly related to the mixing coefficient and the mixing properties detailed in Section 3.

More specifically, we look at our two favourite examples, the logarithmic comb and the factorial comb. We prove in Section 4.5 that the height of the first one is not logarithmic but polynomial and in Section 4.6 that the saturation level of the second one is not logarithmic either but negligibly smaller. Remark that despite the very particular form of the comb in the wide family of variable length Markov models, the comb sources provide a spectrum of asymptotic behaviours for the suffix tries.

Suffix tries

Let (Y n ) n≥1 be an increasing sequence of sets. Each set Y n contains exactly n infinite words. A trie process (T n ) n≥1 is a planar tree increasing process associated with (Y n ) n 1 . The trie T n contains the words of Y n in its leaves. It is obtained by a sequential construction, inserting the words of Y n successively. At the beginning, T 1 is the tree containing the root and the leaf 0 . . . (resp. the leaf 1 . . . ) if the word in Y 1 begins with 0 (resp. with 1). For n ≥ 2, knowing the tree T n-1 , the n-th word m is inserted as follows. We go through the tree along the branch whose nodes are encoded by the successive prefixes of m; when the branch ends, if an internal node is reached, then the word is inserted at the free leaf, else we make the branch grow comparing the next letters of both words until they can be inserted in two different leaves. As one can clearly see on Figure 2 a trie is not a complete tree and the insertion of a word can make a branch grow by more than one level. Notice that an internal node exists within the trie if there are at least two words in the set starting by the prefix associated to this node. This indicates why the second occurrence of a word is prominent.

Let m := a 1 a 2 a 3 . . . be an infinite word on A = {0, 1}. The suffix trie T n (with n leaves) associated with m, is the trie built from the set of the n-th first suffixes of m, that is Y n = {m, a 2 a 3 . . . , a 3 a 4 . . . , . . . , a n a n+1 . . .}.

For a given trie T n , we are mainly interested in the height H n which is the maximal depth of an internal node of T n and the saturation level ℓ n which is the maximal depth up to which all the internal nodes are present in T n . Formally, if ∂T n -→ denotes the set of leaves of T n ,

H n = max u∈Tn\∂Tn |u| ℓ n = max j ∈ N| #{u ∈ T n \ ∂T n , |u| = j} = 2 j .
See Figure 3 for an example.

Duality

Let (U n ) n 1 be an infinite random word generated by some infinite comb and (T n ) n 1 be the associated suffix trie process. We denote by R the set of rightinfinite words. Besides, we define hereunder two random variables having a key role in the proof of Theorem 4.8 and Theorem 4.9. This method goes back to Pittel [START_REF] Pittel | Asymptotic growth of a class of random trees[END_REF].

Let s ∈ R be a deterministic infinite sequence and s (k) its prefix of length k. For n ≥ 1, where "s (k) is in T n \ ∂T n " stands for: there exists an internal node v in T n such that s (k) encodes v. For any k 1, T k (s) denotes the number of leaves of the first tree "containing" s (k) . See Figure 4 for an example. Thus, the saturation level ℓ n and the height H n can be described using X n (s):

X n (s) := 0 if s (1) is not in T n max{k 1 | the word s (k) is already in T n \ ∂T n }, T k (s) := min{n 1 | X n (s) = k},
ℓ n = min s∈R X n (s) and H n = max s∈R X n (s). (11) 
Moreover, X n (s) and T k (s) are in duality in the following sense: for all positive integers k and n, one has the equality of the events

{X n (s) k} = {T k (s) n}. (12) 
The random variable T k (s) (if k 2) also represents the waiting time of the second occurrence of the deterministic word s (k) in the random sequence (U n ) n≥1 , i.e. one has to wait T k (s) for the source to create a prefix containing exactly two occurrences of s (k) . More precisely, for k 2, T k (s) can be rewritten as Notice that T k (s) denotes the beginning of the second occurrence of s (k) whereas in [START_REF] Cénac | Context trees, variable length Markov chains and dynamical sources[END_REF], τ (2) s (k) denotes the end of the second occurrence of s (k) , so that

T k (s) = min n 1 U n U n+1 . . . U n+k-1 = s (k) and ∃!j < n such that U j U j+1 . . . U j+k-1 = s (k) .
τ (2) s (k) = T k (s) + k. (13) 
More generally, in [START_REF] Cénac | Context trees, variable length Markov chains and dynamical sources[END_REF] , for any r 1, the random return times τ (r) (w) is defined as the end of the r-th occurrence of w in the sequence (U n ) n 1 and the generating function of the τ (r) is calculated. We go over these calculations in the sequel.

Return time generating functions

Proposition 4.7 Let k 1. Let also w = 10 k-1 and τ (2) (w) be the end of the second occurrence of w in a sequence generated by a comb defined by (c n ) n 0 . Let S and U be the ordinary generating functions defined in Section 3.1. The probability generating function of τ (2) (w) is

Φ (2) w (x) = c 2 k-1 x 2k-1 U(x) -1 S(1)(1 -x) 1 + c k-1 x k-1 (U(x) -1) 2 .
Furthermore, as soon as n 1 n 2 c n < ∞, the random variable τ (2) (w) is squareintegrable and

E(τ (2) (w)) = 2S(1) c k-1 + o 1 c k-1 , Var(τ (2) (w)) = 2S(1) 2 c 2 k-1 + o 1 c 2 k-1 . (14)
Proof. For any r 1, let τ (r) (w) denote the end of the r-th occurrence of w in a random sequence generated by a comb and Φ (r) w its probability generating function. The reversed word of c = α 1 . . . α N will be denoted by the overline c := α N . . . α 1 We use a result of [START_REF] Cénac | Context trees, variable length Markov chains and dynamical sources[END_REF] that computes these generating functions in terms of stationary probabilities q (n) c . These probabilities measure the occurrence of a finite word after n steps, conditioned to start from the word c. More precisely, for any finite words u and c and for any n 0, let

q (n) c (u) := π U n-|u|+|c|+1 . . . U n+|c| = u U 1 . . . U |c| = c .
It is shown in [START_REF] Cénac | Context trees, variable length Markov chains and dynamical sources[END_REF] that, for |x| < 1, Φ (1) w (x) =

x k π(w) (1x)S w (x) and for r ≥ 1, Φ (r) w (x) = Φ (1) w (x) 1 -

1 S w (x) r-1 where S w (x) := C w (x) + ∞ n=k q (n) ←- pref (w) (w)x n , C w (x) := 1 + k-1 j=1 1 {w j+1 ...w k =w 1 ...w k-j } q (j) ←- pref (w) (w k-j+1 . . . w k ) x j .
In the particular case when w = 10 k-1 , then

←- pref (w) = w = 0 k-1 1 and π(w) = c k-1
S(1) . Moreover, Definition (4) of the mixing coefficient and Proposition 3.2 i) imply successively that

q (n) ←- pref (w) (w) = π U n-k-|w|+1 . . . U n+k = w U 1 . . . U k = ←- pref (w) = π(w) ψ n -k, ←- pref (w), w + 1 = π(w)S(1)u n-k+1 = c k-1 u n-k+1 ,
This relation makes more explicit the link between return times and mixing. This leads to

n k q (n) ←- pref (w) (w)x n = c k-1 x k-1 n 1 u n x n = c k-1 x k-1 U(x) -1 .
Furthermore, there is no auto-correlation structure inside w so that C w (x) = 1 and

S w (x) = 1 + c k-1 x k-1 U(x) -1 .
This entails

Φ (1) w (x) = c k-1 x k S(1)(1 -x) 1 + c k-1 x k-1 U(x) -1
and Φ (2) w (x) = Φ (1) w (x) 1 -

1 S w (x) = c 2 k-1 x 2k-1 U(x) -1 S(1)(1 -x) 1 + c k-1 x k-1 U(x) -1 2
which is the announced result. The assumption n 1 n 2 c n < ∞ makes U twice differentiable and elementary calculations lead to (Φ (1) w ) ′ (1) =

S(1) c k-1 -S(1) + 1 + S ′ (1) S(1) , (Φ (2) w ) ′ (1) = (Φ (1) w ) ′ (1) + S(1) c k-1 , (Φ (1) w ) ′′ (1) = 2S(1) 2 c 2 k-1 + o 1 c 2 k-1
and (Φ (2) w )

′′ (1) = 6S(1) 2 c 2 k-1 + o 1 c 2 k-1
, and finally to (14).

⊓ ⊔

Logarithmic comb and factorial comb

Let h + and h -be the constants in [0, +∞] defined by

h + := lim n→+∞ 1 n max ln 1 π (w) and h -:= lim n→+∞ 1 n min ln 1 π (w) , (15) 
where the maximum and the minimum range over the words w of length n with π (w) > 0. In their papers, Pittel [START_REF] Pittel | Asymptotic growth of a class of random trees[END_REF] and Szpankowski [START_REF] Szpankowski | Asymptotic properties of data compression and suffix trees[END_REF] only deal with the cases h + < +∞ and h -> 0, which amounts to saying that the probability of any word is exponentially decreasing with its length. Here, we focus on our two examples for which these assumptions are not fulfilled. More precisely, for the logarithmic infinite comb, (2) implies that π(10 n ) is of order n -4 , so that

h - lim n→+∞ 1 n ln 1 π (10 n-1 ) = 4 lim n→+∞ ln n n = 0.
Besides, for the factorial infinite comb, π(10 n ) is of order 1 (n+1)! so that

h + lim n→+∞ 1 n ln 1 π (10 n-1 ) = lim n→+∞ n! n = +∞.
For these two models, the asymptotic behaviour of the lengths of the branches is not always logarithmic, as can be seen in the two following theorems, shown in Sections 4.5 and 4.6. Theorem 4.9 (Saturation level of the factorial infinite comb) Let T n be the suffix trie built from the n first suffixes of the sequence generated by a factorial infinite comb. Then, the saturation level ℓ n of T n satisfies: for any δ > 1, almost surely, when n tends to infinity,

ℓ n ∈ o log n (log log n) δ .
The dynamic asymptotics of the height and of the saturation level can be visualized on Figure 5. The number n of leaves of the suffix trie is put on the x-axis while heights or saturation levels of tries are put on the y-axis. Plain lines represent a logarithmic comb while long dashed lines are those of a factorial comb (mean values of 25 simulations). Short dashed lines represent a third infinite comb defined by the data c n =

1 3 n-1 k=1 1 3 + 1 (1+k) 2
for n 1. Such a process has a uniform exponential mixing, a finite h + and a positive h -as can be elementarily checked. As a matter of consequence, it satisfies all assumptions of Pittel [START_REF] Pittel | Asymptotic growth of a class of random trees[END_REF] and Szpankowski [START_REF] Szpankowski | Asymptotic properties of data compression and suffix trees[END_REF] implying that the height and the saturation level are both of order log n. Such assumptions will always be fulfilled as soon as the data (c n ) n satisfy lim n c 1/n n < 1; the proof of this result is left to the reader. One can notice the height of the logarithmic comb that grows as a power of n. The saturation level of the factorial comb, negligible with respect to log n is more difficult to highlight because of the very slow growth of logarithms.

These asymptotic behaviours, all coming from the same model, the infinite comb, stress its surprising richness.

Height for the logarithmic comb

In this subsection, we prove Theorem 4.8. Consider the right-infinite sequence s = 10 ∞ . Then, T k (s) is the second occurrence time of w = 10 k-1 . It is a nondecreasing (random) function of k. Moreover, X n (s) is the maximum of all k such that s (k) ∈ T n . It is nondecreasing in n. So, by definition of X n (s) and T k (s), the duality can be written ∀n, ∀ω, ∃k n , k n X n (s) < k n + 1 and T kn (s) n < T kn+1 (s).

(16)

Claim: lim n→+∞ X n (s) = +∞ a.s. (17) 
Indeed, if X n (s) were bounded above, by K say, then take w = 10 K and consider T K+1 (s) which is the time of the second occurrence of 10 K . The choice of the c n in the definition of the logarithmic comb implies the convergence of the series n n 2 c n . Thus (14) holds and E[T K+1 (s)] < ∞ so that T K+1 (s) is almost surely finite. This means that for n > T K+1 (s), the word 10 K has been seen twice, leading to X n (s) K + 1 which is a contradiction. We make use of the following lemma that is proven hereunder. 

With notations (16), because of (17), the sequence (k n ) tends to infinity, so that (T kn (s)) is a subsequence of (T k (s)). Thus, (18) implies that 

For all η > 0, write

T k (s) k 4+η = T k (s) -E(T k (s)) k 4+η + E(T k (s)) k 4+η
. The deterministic part in the second-hand right term goes to 0 with k thanks to (19), so that we focus on the term T k (s) -E(T k (s)) k 4+η

. For any ε > 0, because of Bienaymé-Tchebychev inequality,

P |T k (s) -E[T k (s)]| k 4+η > ε V ar(T k (s)) ε 2 k 8+2η = O 1 k 2η .
This shows the convergence in probability in Lemma 4.10. Moreover, Borel-Cantelli Lemma ensures the almost sure convergence as soon as η > 1 2 . ⊓ ⊔ Remark 4.11 Notice that our proof shows actually that the convergence to +∞ in Theorem 4.8 is valid a.s. (and not only in probability) as soon as δ > 1 36 .

Saturation level for the factorial comb

In this subsection, we prove Theorem 4.9.

Consider the probabilized infinite factorial comb defined in Section 2 by ∀n ∈ N, c n = 1 (n + 1)! .

The proof hereunder shows actually that ℓn log log n log n n is an almost surely bounded sequence, which implies the result. Recall that R denotes the set of all rightinfinite sequences. By characterization of the saturation level as a function of X n (see [START_REF] Rissanen | A universal data compression system[END_REF]), P (ℓ n k) = P (∃s ∈ R, X n (s) k) for all positive integers n, k. Duality formula ( 12) then provides P (ℓ n k) = P (∃s ∈ R, T k (s) n)

P (T k ( s) n)
where s denotes any infinite word having 10 k-1 as a prefix. Markov inequality implies ∀x ∈]0, 1[, P (ℓ n k + 1) P τ (2) (10 k-1 ) < n + k Φ

(2)

10 k-1 (x) x n+k (21) 
where Φ

(2) 10 k-1 (x) denotes as above the generating function of the rank of the final letter of the second occurrence of 10 k-1 in the infinite random word (U n ) n≥1 . The simple form of the factorial comb leads to the explicit expression U(x) = x (1-x)(e x -1) and, after computation, Φ

(2)

10 k-1 (x) = e x -1 e -1 • x 2k-1 1 -e x (1 -x) k! (e x -1) (1 -x) + x k-1 1 -e x (1 -x) 2 . (22) 
In particular, applying Formula (22) with n = (k -1)! and x = 1 -1 (k-1)! implies that for any k 1, 

P(ℓ

  10 a and B = 0 b 1B ′ where A ′ and B ′ are any finite words and a + b 1, then

  10 a and B = 0 b where A ′ is any finite words and a, b 0, then

|w|=n- 1 π

 1 (10 a w0 b 1) = π(10 a+n-1+b 1) + 1≤i≤j≤n-1 |w|=n-1 f (w)=i,l(w)=j π(10 a w0 b 1).

  With Proposition 3.2, the asymptotics of the mixing coefficient comes from singularity analysis of the generating functions M A,B . Proposition 3.4 The VLMC defined by the logarithmic infinite comb has a nonuniform polynomial mixing of the following form: for any finite words A and B, there exists a positive constant C A,B such that for any n 1, |ψ(n, A, B)| C A,B n 3 .

ii)

  Second case of mixing: A = A ′ 10 a and B = 0 b 1B ′ . Because of Proposition 3.2, one has to compute [x n ]M a,b (x) with M a,b (x) := S(1) c a+b c a c b P a+b (xP a (x)P b (x) -S(x) ,

Figure 2 :

 2 Figure 2: Last steps of the construction of a trie built from the set (000 . . . , 10 . . . , 1101 . . . , 001, . . . , 01110 . . . , 1100 . . . , 01111 . . .).

Figure 3 :

 3 Figure 3: Suffix trie T 10 associated with the word 1001011001110 . . .. Here, H 10 = 4 and ℓ 10 = 2.

Figure 4 :

 4 Figure 4: Example of suffix trie with n = 20 words. The saturation level is reached for any sequence having 1000 as prefix (in red); ℓ 20 = X 20 (s) = 3 and thus T 3 (s) 20. The height (related to the maximum of X 20 ) is realized for any sequence of the form 110101 . . . (in blue) and H 20 = 6. Remark that the shortest branch has length 4 whereas the saturation level ℓ n is equal to 3.

Theorem 4 . 8 (n n 1 4

 481 Height of the logarithmic infinite comb) Let T n be the suffix trie built from the n first suffixes of a sequence generated by a logarithmic infinite comb. Then, the height H n of T n satisfies ∀δ > 0, H -δ -→ n→∞ +∞ in probability.

Lemma 4 . 10

 410 For s = 10 ∞ ,

  since the height of the suffix trie is larger than X n (s), Proof of Lemma 4.10. Combining (13) and (14) shows thatE(T k (s)) = E(τ (2) (w))k = 19 9 k 4 + o(k 4 )(19)and Var(T k (s)) = Var(τ(2) (w)) = 361 162 k 8 + o(k 8 ).

1 .x log x-x 1 + O 1 x

 11 1)!+k . Consequently, P ℓ (k-1)! k + 1 = O(k -2 ) is the general term of a convergent series. Thanks to Borel-Cantelli Lemma, one gets almost surely lim n→+∞ ℓ n! n Let Γ -1 denote the inverse of Euler's Gamma function, defined and increasing on the real interval [2, +∞[. If n and k are integers such that (k + 1)! n (k + 2when x goes to infinity, leads to the equivalent Γ -1 (x) ∼ +∞ log x log log x , which implies the result. ⊓ ⊔
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