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Abstract

Common assumptions on the source producing the words inserted in a suffix trie with n

leaves lead to a log n height and saturation level. We provide an example of a suffix trie
whose height increases faster than a power of n and another one whose saturation level
is negligible with respect to log n. Both are built from VLMC (Variable Length Markov
Chain) probabilistic sources and are easily extended to families of tries having the same
properties. The first example corresponds to a “logarithmic infinite comb” and enjoys
a non uniform polynomial mixing. The second one corresponds to a “factorial infinite
comb” for which mixing is uniform and exponential.
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1 Introduction

Trie (abbreviation of retrieval) is a natural data structure, efficient for searching
words in a given set and used in many algorithms as data compression, spell
checking or IP addresses lookup. A trie is a digital tree in which words are
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inserted in external nodes. The trie process grows up by successively inserting
words according to their prefixes. A precise definition will be given in Section 4.1.
As soon as a set of words is given, the way they are inserted in the trie is de-
terministic. Nevertheless, a trie becomes random when the words are randomly
drawn: each word is produced by a probabilistic source and n words are chosen
(usually independently) to be inserted in a trie. A suffix trie is a trie built on
the suffixes of one infinite word. The randomness then comes from the source
producing such an infinite word and the successive words inserted in the tree are
far from being independent, they are strongly correlated.
As a principal application of suffix tries one can cite the lossless compression
algorithm Lempel-Ziv 77 (LZ77). The first results on the average size of suffix
tries when the infinite word is given by a symmetrical memoryless source are due
to Blumer et al. [1] and those on the height of the tree to Devroye [4]. Using
analytic combinatorics, Fayolle [6] has obtained the average size and total path
length of the tree for a binary word issued from a memoryless source (with some
restriction on the probability of each letter).
Here we are interested in the height Hn and the saturation level ℓn of a suffix
trie Tn containing the first n suffixes of an infinite word produced by a source
associated with a so-called Variable Length Markov Chain (VLMC) (see Rissanen
[11] for the seminal work, Galves-Löcherbach [8] for an overview, and [2] for
a probabilistic frame). One deals with a particular VLMC source associated
with an infinite comb, described hereafter. This particular model has the double
advantage to go beyond the cases of memoryless or Markov sources and to provide
concrete computable properties. The analysis of the height and the saturation
level is usually motivated by optimization of the memory cost. Height is clearly
relevant to this point; saturation level is algorithmically relevant as well because
internal nodes below the saturation level are often replaced by a less expansive
table.
All the tries or suffix tries considered so far in the literature have a height and a
saturation level both growing logarithmically with the number of words inserted,
to the best of our knowledge. For plain tries, when the inserted words are in-
dependent, the results due to Pittel [10] rely on two assumptions on the source
producing the words: first, the source is uniformly mixing, second, the probability
of any word decays exponentially with its length. Let us also mention the general
analysis of tries by Clément-Flajolet-Vallée [3] for dynamical sources. For suffix
tries, Szpankowski [12] obtains the same result, with a weaker mixing assumption
(still uniform though) and the same hypothesis on the measure of the words.
Our aim is to exhibit two cases when these behaviours are no longer the same.
The first example is the “logarithmic comb”, for which we show that the mixing
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is slow in some sense, namely non uniformly polynomial (see Section 3.2 for a
precise statement) and the measure of some increasing sequence of words decays
polynomially. We prove in Theorem 4.8 that the height of this trie is larger than
a power of n (when n is the number of inserted suffixes in the tree). The second
example is the “factorial comb”, which has a uniformly exponential mixing, thus
fulfilling the mixing hypothesis of Szpankowski [12], but the measure of some
increasing sequence of words decays faster than any exponential. In this case we
prove in Theorem 4.9 that the saturation level is negligible with respect to logn.

We prove more precisely that, almost surely, ℓn ∈ o
(

logn
(log logn)δ

)
, for any δ > 1.

The paper is organised as follows. In Section 2, we define a VLMC source associ-
ated with an infinite comb. In Section, 3 we give results on the mixing properties
of these sources by explicitely computing the suitable generating functions in
terms of the source data. In Section 4, the associated suffix tries are built, and
the two uncommon behaviours are stated and shown. The methods are based on
two key tools concerning pattern return time: a duality property and the compu-
tation of generating functions. The relation between the mixing of the source and
the asymptotic behaviour of the trie is highlighted by the proof of Proposition 4.7.

2 Infinite combs as sources

In this section, a VLMC probabilistic source associated with an infinite comb
is defined. Moreover, we introduce the two examples given in introduction: the
logarithmic and the factorial combs. We begin with the definition of a general
variable length Markov Chain associated with a probabilized infinite comb.
The following presentation comes from [2]. Let A be the alphabet {0, 1} and
L = A−N be the set of left-infinite words. Consider the binary tree (represented in
Figure 1) whose finite leaves are the words 1, 01, . . . , 0k1, . . . and with an infinite
leaf 0∞ as well. Each leaf is labelled with a Bernoulli distribution, respectively
denoted by q0k1, k > 0 and q0∞ . This probabilized tree is called the infinite comb.
The VLMC (Variable Length Markov Chain) associated with an infinite comb is
the L-valued Markov chain (Vn)n>0 defined by the transitions

P(Vn+1 = Vnα|Vn) = q←−pref (Vn)(α)

where α ∈ A is any letter and
←−
pref (Vn) denotes the first suffix of Vn (reading from

right to left) appearing as a leaf of the infinite comb. For instance, if Vn = . . . 1000,
then

←−
pref (Vn) = 0001. Notice that the VLMC is entirely determined by the data
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Figure 1: An infinite comb

q0∞ , q0k1, k > 0. From now on, denote c0 = 1 and for n > 1,

cn :=

n−1∏

k=0

q0k1(0).

It is proved in [2] that in the irreducible case i.e. when q0∞(0) 6= 1, there exists a
unique stationary probability measure π on L for (Vn)n if and only if the series∑
cn converges. From now on, we assume that this condition is fulfilled and we

call
S(x) :=

∑

n>0

cnx
n (1)

its generating function so that S(1) =
∑

n>0 cn. For any finite word w, we denote
π(w) := π(Lw). Computations performed in [2] show that for any n > 0,

π(10n) =
cn

S(1)
and π(0n) =

∑
k>n ck

S(1)
. (2)

Notice that, by stationarity π(0n) = π(0n+1) + π(10n) and by disjointness of
events, π(0n) = π(0n+1) + π(0n1) for all n > 1 so that

π(10n) = π(0n1). (3)
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If Un denotes the final letter of Vn, the random sequence W = U0U1U2 . . . is a
right-infinite random word. We define in this way a probabilistic source in the
sense of information theory i.e. a mechanism that produces random words. This
VLMC probabilistic source is characterized by:

pw := P(W has w as a prefix ) = π(w),

for every finite word w. Both particular suffix tries the article deals with are built
from such sources, defined by the following data.

Example 1: the logarithmic comb

The logarithmic comb is defined by c0 = 1 and for n > 1,

cn =
1

n(n + 1)(n+ 2)(n+ 3)
.

The corresponding conditional probabilities on the leaves of the tree are

q1(0) =
1

24
and for n > 1, q0n1(0) = 1−

4

n+ 4
.

The expression of cn was chosen to make the computations as simple as possible
and also because the square-integrability of the waiting time of some pattern will
be needed (see end of Section 4.3), guaranteed by

∑

n>0

n2cn < +∞.

Example 2: the factorial comb

The conditional probabilities on the leaves are defined by

q0n1(0) =
1

n+ 2
for n > 0,

so that

cn =
1

(n+ 1)!
.
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3 Mixing properties of infinite combs

In this section, we first precise what we mean by mixing properties of a random
sequence. We refer to Doukhan [5], especially for the notion of ψ-mixing defined
in that book. We state in Proposition 3.2 a general result that provides the
mixing coefficient for an infinite comb defined by (cn)n>0 or equivalently by its
generating function S. This result is then applied to our two examples. The
mixing of the logarithmic comb is polynomial but not uniform, it is a very weak
mixing; the mixing of the factorial comb is uniform and exponential, it is a very
strong mixing. Notice that mixing properties of some infinite combs have already
been investigated by Isola [9], although with a slight different language.

3.1 Mixing properties of general infinite combs

For a stationary sequence (Un)n>0 with stationary measure π, we want to measure
by means of a suitable coefficient the independence between two words A and B
separated by n letters. The sequence is said to be “mixing” when this coefficient
vanishes when n goes to +∞. Among all types of mixing, we focus on one of the
strongest type: ψ-mixing. More precisely, for 0 6 m 6 +∞, denote by Fm

0 the
σ-algebra generated by {Uk, 0 6 k 6 m} and introduce for A ∈ Fm

0 and B ∈ F∞0
the mixing coefficient

ψ(n,A,B) :=
π(A ∩ T−(m+1)−nB)− π(A)π(B)

π(A)π(B)

=

∑
|w|=n π(AwB)− π(A)π(B)

π(A)π(B)
, (4)

where T is the shift map and where the sum runs over the finite words w with
length |w| = n.
A sequence (Un)n>0 is called ψ-mixing whenever

lim
n→∞

sup
m>0,A∈Fm

0 ,B∈F∞0

|ψ(n,A,B)| = 0.

In this definition, the convergence to zero is uniform over all words A and B. This
is not going to be the case in our first example. As in Isola [9], we widely use the
renewal properties of infinite combs (see Lemma 3.1) but more detailed results
are needed, in particular we investigate the lack of uniformity for the logarithmic
comb.
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Notations and Generating functions

• For a comb, recall that S is the generating function of the nonincreasing se-
quence (cn)n>0 defined by (1).
• Set ρ0 = 0 and for n > 1,

ρn := cn−1 − cn,

with generating function

P (x) :=
∑

n>1

ρnx
n.

• Define the sequence (un)n>0 by u0 = 1 and for n > 1,

un :=
π(U0 = 1, Un = 1)

π(1)
=

1

π(1)

∑

|w|=n−1

π(1w1), (5)

and let
U(x) :=

∑

n>0

unx
n

denote its generating function. Hereunder is stated a key lemma that will be
widely used in Proposition 3.2. In some sense, this kind of relation (sometimes
called Renewal Equation) reflects the renewal properties of the infinite comb.

Lemma 3.1 The sequences (un)n>0 and (ρn)n>0 are connected by the relations:

∀n > 1, un = ρn + u1ρn−1 + . . .+ un−1ρ1

and (consequently)

U(x) =

∞∑

n=0

unx
n =

1

1− P (x)
=

1

(1− x)S(x)
.

Proof. For a finite word w = α1 . . . αm such that w 6= 0m, let l(w) denote the
position of the last 1 in w, that is l(w) := max{1 ≤ i ≤ m, αi = 1}. Then, the
sum in the expression (5) of un can be decomposed as follows:

∑

|w|=n−1

π(1w1) = π(10n−11) +
n−1∑

i=1

∑

|w|=n−1
l(w)=i

π(1w1).

Now, by disjoint union π(10n−1) = π(10n−11) + π(10n), so that

π(10n−11) = π(1)(cn−1 − cn) = π(1)ρn.
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In the same way, for w = α1 . . . αn−1, if l(w) = i then π(1w1) = π(1α1 . . . αi−11)ρn−i,
so that

un = ρn +
n−1∑

i=1

ρn−i
1

π(1)

∑

|w|=i−1

π(1w1)

= ρn +
n−1∑

i=1

ρn−iui,

which leads to U(x) = (1− P (x))−1 by summation. ⊓⊔

Mixing coefficients

The mixing coefficients ψ(n,A,B) are expressed as the n-th coefficient in the
series expansion of an analytic functionMA,B which is given in terms of S and U .
The notation [xn]A(x) means the coefficient of xn in the power expansion of A(x)
at the origin. Denote the remainders associated with the series S(x) by

rn :=
∑

k>n

ck, Rn(x) :=
∑

k>n

ckx
k

and for a > 0, define the “shifted” generating function

Pa(x) :=
1

ca

∑

n>1

ρa+nx
n = x+

x− 1

caxa
Ra+1(x). (6)

Proposition 3.2 For any finite word A and any word B, the identity

ψ(n,A,B) = [xn+1]MA,B(x)

holds for the generating functions MA,B respectively defined by:

i) if A = A′1 and B = 1B′ where A′ and B′ are any finite words, then

MA,B(x) =M(x) :=
S(x)− S(1)

(x− 1)S(x)
;

ii) if A = A′10a and B = 0b1B′ where A′ and B′ are any finite words and
a + b > 1, then

MA,B(x) := S(1)
ca+b

cacb
Pa+b(x) + U(x) [S(1)Pa(x)Pb(x)− S(x)] ;
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iii) if A = 0a and B = 0b with a, b > 1, then

MA,B(x) := S(1)
1

rarb

∑

n>1

ra+b+n−1x
n + U(x)

[
S(1)Ra(x)Rb(x)

rarbxa+b−2
− S(x)

]
;

iv) if A = A′10a and B = 0b where A′ is any finite words and a, b > 0, then

MA,B(x) := S(1)
1

carbxa+b−1
Ra+b(x) + U(x)

[
S(1)Pa(x)Rb(x)

carbxb−1
− S(x)

]
;

v) if A = 0a and B = 0b1B′ where B′ is any finite words and a, b > 0, then

MA,B(x) := S(1)
1

racbxa+b−1
Ra+b(x) + U(x)

[
S(1)Ra(x)Pb(x)

racbxa−1
− S(x)

]
.

Remark 3.3 It is worth noticing that the asymptotics of ψ(n,A,B) may not be
uniform in all words A and B. We call this kind of system non-uniformly ψ-
mixing. It may happen that ψ(n,A,B) goes to zero for any fixed A and B, but
(for example, in case iii)) the larger a or b, the slower the convergence, preventing
it from being uniform.

Proof. The following identity has been established in [2] (see formula (17) in
that paper) and will be used many times in the sequel. For any two finite words
w and w′,

π(w1w′)π(1) = π(w1)π(1w′). (7)

i) If A = A′1 and B = 1B′, then (7) yields

π(AwB) = π(A′1w1B′) =
π(A′1)

π(1)
π(1w1B′) = S(1)π(A)π(B)

π(1w1)

π(1)
.

So
ψ(n,A,B) = S(1)un+1 − 1

and by Lemma 3.1, the result follows.

ii) Let A = A′10a and B = 0b1B′ with a, b > 0 and a+ b 6= 0. To begin with,

π(AwB) =
1

π(1)
π(A′1)π(10aw0b1B′) =

1

π(1)2
π(A′1)π(10aw0b1)π(1B′).

9
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Furthermore, π(A) = caπ(A
′1) and by (3), π(0b1) = π(10b), so it comes

π(B) =
1

π(1)
π(0b1)π(1B′) =

π(10b)

π(1)
π(1B′) = cbπ(1B

′).

Therefore,

π(AwB) =
π(A)π(B)

cacbπ(1)2
π(10aw0b1).

Using π(1)S(1) = 1, this proves

ψ(n,A,B) = S(1)
va,bn

cacb
− 1

where

va,bn :=
1

π(1)

∑

|w|=n−1

π(10aw0b1).

As in the proof of the previous lemma, if w = α1 . . . αm is any finite word
different from 0m, we call f(w) := min{1 ≤ i ≤ m,αi = 1} the first place
where 1 can be seen in w and recall that l(w) denotes the last place where
1 can be seen in w. One has

∑

|w|=n−1

π(10aw0b1) = π(10a+n−1+b1) +
∑

1≤i≤j≤n−1

∑

|w|=n−1
f(w)=i,l(w)=j

π(10aw0b1).

If i = j then w is the word 0i−110n−i−1, else w is of the form 0i−11w′10n−1−j,
with |w′| = j − i− 1. Hence, the previous sum can be rewritten as

∑

|w|=n−1

π(10aw0b1) = π(1)ρa+b+n + π(1)
n−1∑

i=1

ρa+iρn−i+b

+
∑

16i<j6n−1

∑

w
|w|=j−i−1

π(10a+i−11w10n−1−j+b1).

Equation (7) shows

π(10a+i−11w10n−1−j+b1) =
π(10a+i−11)

π(1)

π(1w1)

π(1)
π(10n−1−j+b1)

= ρa+iρn−j+bπ(1w1).

10
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This implies:

va,bn = ρa+b+n +
n−1∑

i=1

ρa+iρn−i+b +
∑

1≤i<j≤n−1

ρa+iρn−j+b

∑

w,|w|=j−i+1

π(1w1)

π(1)
.

Recalling that u0 = 1, one gets

va,bn = ρa+b+n +
∑

1≤i≤j≤n−1

ρa+iρn−j+buj−i

which gives the result ii) with Lemma 3.1.

iii) Let A = 0a and B = 0b with a, b > 1. Set

va,bn :=
1

π(1)

∑

|w|=n−1

π(0aw0b).

First, recall that, due to (2), π(A) = π(1)ra and π(B) = π(1)rb. Conse-
quently,

ψ(n,A,B) =
π(1)va,bn+1 − π(A)π(B)

π(A)π(B)
= S(1)

v
a,b
n+1

rarb
− 1.

Let w be a finite word with |w| = n− 1. If w = 0n−1, then

π(AwB) = π(0a+n−1+b) = π(1)ra+b+n−1.

If not, let f(w) denote as before the first position of 1 in w and l(w) the
last one in w. If f(w) = l(w), then

π(AwB) = π(0a+f(w)−110n−1−f(w)+b)
= 1

π(1)
π(0a+f(w)−11)π(10n−1−f(w)+b) = π(1)ca+f(w)−1cn−1−f(w)+b.

If f(w) < l(w), then writing w = w1 . . . wn−1,

π(AwB) = π(0a+f(w)−11wf(w)+1 . . . wl(w)−110
n−1−l(w))

= 1
π(1)2

π(0a+f(w)−11)π(1wf(w)+1 . . . wl(w)−11)π(10
n−1−l(w)+b).

Summing yields

va,bn = ra+b+n−1 +

n−1∑

i=1

ca+i−1cn−1+b−i +

n−1∑

i,j=1
i<j

∑

w,
|w|=j−i−1

ca+i−1
π(1w1)

π(1)
cn−1+b−j

= ra+b+n−1 +
∑

1≤i≤j≤n−1

ca+i−1cn−1+b−juj−i,

which gives the desired result. The last two items, left to the reader, follow
the same guidelines. ⊓⊔

11
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3.2 Mixing of the logarithmic infinite comb

Consider the first example in Section 2, that is the probabilized infinite comb
defined by c0 = 1 and for any n > 1 by

cn =
1

n(n + 1)(n+ 2)(n+ 3)
.

When |x| < 1, the series S(x) writes as follows

S(x) =
47

36
−

5

12x
+

1

6x2
+

(1− x)3 log(1− x)

6x3
(8)

and

S(1) =
19

18
.

With Proposition 3.2, the asymptotics of the mixing coefficient comes from sin-
gularity analysis of the generating functions MA,B.

Proposition 3.4 The VLMC defined by the logarithmic infinite comb has a non-
uniform polynomial mixing of the following form: for any finite words A and B,
there exists a positive constant CA,B such that for any n > 1,

|ψ(n,A,B)| 6
CA,B

n3
.

Remark 3.5 The CA,B cannot be bounded above by some constant that does not
depend on A and B, as can be seen hereunder in the proof. Indeed, we show that
if a and b are positive integers,

ψ(n, 0a, 0b) ∼
1

3

(
S(1)

rarb
−

1

ra
−

1

rb
+

1

S(1)

)
1

n3

as n goes to infinity. In particular, ψ(n, 0, 0n) tends to the positive constant 13
6
.

Proof of Proposition 3.4.

For any finite words A and B in case i) of Proposition 3.2, one deals with U(x) =
((1− x)S(x))−1 which has 1 as a unique dominant singularity. Indeed, 1 is the
unique dominant singularity of S, so that the dominant singularities of U are 1
or zeroes of S contained in the closed unit disc. But S does not vanish on the
closed unit disc, because for any z such that |z| 6 1,

|S(z)| > 1−
∑

n>1

1

n(n+ 1)(n+ 2)(n+ 3)
= 1− (S(1)− 1) =

17

18
.

12
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Since

M(x) =
S(x)− S(1)

(x− 1)S(x)
= S(1)U(x)−

1

1− x
,

the unique dominant singularity of M is 1, and when x tends to 1 in the unit
disc, (8) leads to

M(x) = A(x)−
1

6S(1)
(1− x)2 log(1− x) +O

(
(1− x)3 log(1− x)

)

where A(x) is a polynomial of degree 2. Using the classical transfer theorem (see
Flajolet and Sedgewick [7, section VI]) based on the analysis of the singularities
of M , we get

ψ(n− 1, w1, 1w′) = [xn]M(x) =
1

3S(1)

1

n3
+ o

(
1

n3

)
.

The cases ii), iii), iv) and v) of Proposition 3.2 are of the same kind, and we
completely deal with case iii).

Case iii): words of the form A = 0a and B = 0b, a, b > 1. As shown in
Proposition 3.2, one has to compute the asymptotics of the n-th coefficient of the
Taylor series of the function

Ma,b(x) := S(1)
1

rarb

∑

n>1

ra+b+n−1x
n + U(x)

[
S(1)Ra(x)Rb(x)

rarbxa+b−2
− S(x)

]
. (9)

The contribution of the left-hand term of this sum is directly given by the asymp-
totics of the remainder

rn =
∑

k>n

ck =
1

3n(n+ 1)(n+ 2)
=

1

3n3
+O

(
1

n4

)
.

By means of singularity analysis, we deal with the right-hand term

Na,b(x) := U(x)

[
S(1)Ra(x)Rb(x)

rarbxa+b−2
− S(x)

]
.

Since 1 is the only dominant singularity of S and U and consequently of any Ra,
it suffices to compute an expansion of Na,b(x) at x = 1. It follows from (8) that
U , S and Ra admit expansions near 1 of the forms

U(x) =
1

S(1)(1− x)
+ polynomial +

1

6S(1)2
(1− x)2 log(1− x) +O(1− x)2,

S(x) = polynomial +
1

6
(1− x)3 log(1− x) +O(1− x)3,

13
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and

Ra(x) = polynomial +
1

6
(1− x)3 log(1− x) +O(1− x)3.

Consequently,

Na,b(x) =
1

6

(
1

ra
+

1

rb
−

1

S(1)

)
(1− x)2 log(1− x) +O(1− x)2

in a neighbourhood of 1 in the unit disc so that, by singularity analysis,

[xn]Na,b(x) = −
1

3

(
1

ra
+

1

rb
−

1

S(1)

)
1

n3
+ o

(
1

n3

)
.

Consequently (9) leads to

ψ(n− 1, 0a, 0b) = [xn]Ma,b(x) ∼
1

3

(
S(1)

rarb
−

1

ra
−

1

rb
+

1

S(1)

)
1

n3

as n tends to infinity, showing the mixing inequality and the non uniformity.
The remaining cases ii), iv) and v) are of the same flavour. ⊓⊔

3.3 Mixing of the factorial infinite comb

Consider now the second Example in Section 2, that is the probabilized infinite
comb defined by

∀n ∈ N, cn =
1

(n + 1)!
.

With previous notations, one gets

S(x) =
ex − 1

x
and U(x) =

x

(1− x)(ex − 1)
.

Proposition 3.6 The VLMC defined by the factorial infinite comb has a uniform
exponential mixing of the following form: there exists a positive constant C such
that for any n > 1 and for any finite words A and B,

|ψ(n,A,B)| 6
C

(2π)n
.

Proof.

14
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i) First case of mixing in Proposition 3.2: A = A′1 and B = 1B′.

Because of Proposition 3.2, the proof consists in computing the asymp-
totics of [xn]M(x). We make use of singularity analysis. The dominant
singularities of

M(x) =
S(x)− S(1)

(x− 1)S(x)

are readily seen to be 2iπ and −2iπ, and

M(x) ∼
2iπ

1− e

1− 2iπ
·

1

1− z
2iπ

.

The behaviour of M in a neighbourhood of −2iπ is obtained by complex
conjugacy. Singularity analysis via transfer theorem provides thus that

[xn]M(x) ∼
n→+∞

2(e− 1)

1 + 4π2

(
1

2π

)n

ǫn

where

ǫn =

{
1 if n is even
2π if n is odd.

ii) Second case of mixing: A = A′10a and B = 0b1B′.

Because of Proposition 3.2, one has to compute [xn]Ma,b(x) with

Ma,b(x) := S(1)
ca+b

cacb
Pa+b(x) +

1

S(x)
·

1

1− x

[
S(1)Pa(x)Pb(x)− S(x)

]
,

where Pa+b is an entire function. In this last formula, the brackets contain
an entire function that vanishes at 1 so that the dominant singularities of
Ma,b are again those of S−1, namely ±2iπ. The expansion of Ma,b(x) at
2iπ writes thus

Ma,b(x) ∼
2iπ

−S(1)Pa(2iπ)Pb(2iπ)

1− 2iπ
·

1

1− x
2iπ

which implies, by singularity analysis, that

[xn]Ma,b(x) ∼
n→+∞

2ℜ

(
1− e

1− 2iπ
·
Pa(2iπ)Pb(2iπ)

(2iπ)n

)
.

Besides, the remainder of the exponential series satisfies

∑

n>a

xn

n!
=
xa

a!

(
1 +

x

a
+O(

1

a
)

)
(10)

15
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when a tends to infinity. Consequently, by Formula (6), Pa(2iπ) tends to
2iπ as a tends to infinity so that one gets a positive constant C1 that does
not depend on a and b such that for any n > 1,

|ψ(n,A,B)| 6
C1

(2π)n
.

iii) Third case of mixing: A = 0a and B = 0b.

This time, one has to compute [xn]Ma,b(x) with

Ma,b(x) := S(1)
1

rarb

∑

n>1

ra+b+n−1x
n + U(x)

[
S(1)Ra(x)Rb(x)

rarbxa+b−2
− S(x)

]

the first term being an entire function. Here again, the dominant singular-
ities of Ma,b are located at ±2iπ and

Ma,b(x) ∼
2iπ

−S(1)Ra(2iπ)Rb(2iπ)

(1− 2iπ)rarb(2iπ)a+b−2
·

1

1− x
2iπ

which implies, by singularity analysis, that

ψ(n− 1, A, B) ∼
n→+∞

2ℜ

(
1− e

1− 2iπ
·
Ra(2iπ)Rb(2iπ)

rarb(2iπ)a+b−2

1

(2iπ)n

)
.

Once more, because of (10), this implies that there is a positive constant
C2 independent of a and b and such that for any n > 1,

|ψ(n,A,B)| 6
C2

(2π)n
.

iv) and v): both remaining cases of mixing that respectively correspond to words
of the form A = A′10a, B = 0b and A = 0a, B = 0b1B′ are of the same
vein and lead to similar results. ⊓⊔

4 Height and saturation level of suffix tries

In this section, we consider a suffix trie process (Tn)n associated with an infinite
random word generated by an infinite comb. A precise definition of tries and suffix
tries is given in section 4.1. We are interested in the height and the saturation
level of such a suffix trie.

16
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Our method to study these two parameters uses a duality property à la Pittel
developed in Section 4.2, together with a careful and explicit calculation of the
generating function of the second occurrence of a word (in Section 4.3) which can
be achieved for any infinite comb. These calculations are not so intricate because
they are strongly related to the mixing coefficient and the mixing properties
detailed in Section 3.
More specifically, we look at our two favourite examples, the logarithmic comb
and the factorial comb. We prove in Section 4.5 that the height of the first one is
not logarithmic but polynomial and in Section 4.6 that the saturation level of the
second one is not logarithmic either but negligibly smaller. Remark that despite
the very particular form of the comb in the wide family of variable length Markov
models, the comb sources provide a spectrum of asymptotic behaviours for the
suffix tries.

4.1 Suffix tries

Let (Yn)n≥1 be an increasing sequence of sets. Each set Yn contains exactly
n infinite words. A trie process (Tn)n≥1 is a planar tree increasing process
associated with (Yn)n>1. The trie Tn contains the words of Yn in its leaves. It
is obtained by a sequential construction, inserting the words of Yn successively.
At the beginning, T1 is the tree containing the root and the leaf 0 . . . (resp. the
leaf 1 . . . ) if the word in Y1 begins with 0 (resp. with 1). For n ≥ 2, knowing the
tree Tn−1, the n-th word m is inserted as follows. We go through the tree along
the branch whose nodes are encoded by the successive prefixes of m; when the
branch ends, if an internal node is reached, then the word is inserted at the free
leaf, else we make the branch grow comparing the next letters of both words until
they can be inserted in two different leaves. As one can clearly see on Figure 2 a
trie is not a complete tree and the insertion of a word can make a branch grow by
more than one level. Notice that an internal node exists within the trie if there
are at least two words in the set starting by the prefix associated to this node.
This indicates why the second occurrence of a word is prominent.

Let m := a1a2a3 . . . be an infinite word on A = {0, 1}. The suffix trie Tn (with
n leaves) associated with m, is the trie built from the set of the n-th first suffixes
of m, that is

Yn = {m, a2a3 . . . , a3a4 . . . , . . . , anan+1 . . .}.

For a given trie Tn, we are mainly interested in the height Hn which is the maximal
depth of an internal node of Tn and the saturation level ℓn which is the maximal
depth up to which all the internal nodes are present in Tn. Formally, if ∂Tn

17
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−→

Figure 2: Last steps of the construction of a trie built from the set
(000 . . . , 10 . . . , 1101 . . . , 001, . . . , 01110 . . . , 1100 . . . , 01111 . . .).

denotes the set of leaves of Tn,

Hn = max
u∈Tn\∂Tn

{
|u|

}

ℓn = max
{
j ∈ N| #{u ∈ Tn \ ∂Tn, |u| = j} = 2j

}
.

See Figure 3 for an example.

4.2 Duality

Let (Un)n>1 be an infinite random word generated by some infinite comb and
(Tn)n>1 be the associated suffix trie process. We denote by R the set of right-
infinite words. Besides, we define hereunder two random variables having a key
role in the proof of Theorem 4.8 and Theorem 4.9. This method goes back to
Pittel [10].
Let s ∈ R be a deterministic infinite sequence and s(k) its prefix of length k. For
n ≥ 1,

Xn(s) :=

{
0 if s(1) is not in Tn

max{k > 1 | the word s(k) is already in Tn \ ∂Tn},

Tk(s) := min{n > 1 | Xn(s) = k},

18
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Figure 3: Suffix trie T10 associated with the word 1001011001110 . . .. Here, H10 =
4 and ℓ10 = 2.

where “s(k) is in Tn \ ∂Tn” stands for: there exists an internal node v in Tn such
that s(k) encodes v. For any k > 1, Tk(s) denotes the number of leaves of the first
tree “containing” s(k). See Figure 4 for an example. Thus, the saturation level
ℓn and the height Hn can be described using Xn(s):

ℓn = min
s∈R

Xn(s) and Hn = max
s∈R

Xn(s). (11)

Moreover, Xn(s) and Tk(s) are in duality in the following sense: for all positive
integers k and n, one has the equality of the events

{Xn(s) > k} = {Tk(s) 6 n}. (12)

The random variable Tk(s) (if k > 2) also represents the waiting time of the
second occurrence of the deterministic word s(k) in the random sequence (Un)n≥1,
i.e. one has to wait Tk(s) for the source to create a prefix containing exactly two
occurrences of s(k). More precisely, for k > 2, Tk(s) can be rewritten as

Tk(s) = min
{
n > 1

∣∣UnUn+1 . . . Un+k−1 = s(k) and ∃!j < n such that

UjUj+1 . . . Uj+k−1 = s(k)
}
.
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Figure 4: Example of suffix trie with n = 20 words. The saturation level is
reached for any sequence having 1000 as prefix (in red); ℓ20 = X20(s) = 3 and
thus T3(s) 6 20. The height (related to the maximum of X20) is realized for any
sequence of the form 110101 . . . (in blue) and H20 = 6. Remark that the shortest
branch has length 4 whereas the saturation level ℓn is equal to 3.

Notice that Tk(s) denotes the beginning of the second occurrence of s(k) whereas
in [2], τ (2)

(
s(k)

)
denotes the end of the second occurrence of s(k), so that

τ (2)
(
s(k)

)
= Tk(s) + k. (13)

More generally, in [2] , for any r > 1, the random return times τ (r)(w) is defined
as the end of the r-th occurrence of w in the sequence (Un)n>1 and the generating
function of the τ (r) is calculated. We go over these calculations in the sequel.

4.3 Return time generating functions

Proposition 4.7 Let k > 1. Let also w = 10k−1 and τ (2)(w) be the end of the
second occurrence of w in a sequence generated by a comb defined by (cn)n>0.
Let S and U be the ordinary generating functions defined in Section 3.1. The
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probability generating function of τ (2)(w) is

Φ(2)
w (x) =

c2k−1x
2k−1

(
U(x)− 1

)

S(1)(1− x)
[
1 + ck−1xk−1(U(x)− 1)

]2 .

Furthermore, as soon as
∑

n>1 n
2cn <∞, the random variable τ (2)(w) is square-

integrable and

E(τ (2)(w)) =
2S(1)

ck−1
+ o

(
1

ck−1

)
, Var(τ (2)(w)) =

2S(1)2

c2k−1
+ o

(
1

c2k−1

)
. (14)

Proof. For any r > 1, let τ (r)(w) denote the end of the r-th occurrence of w

in a random sequence generated by a comb and Φ
(r)
w its probability generating

function. The reversed word of c = α1 . . . αN will be denoted by the overline
c := αN . . . α1

We use a result of [2] that computes these generating functions in terms of sta-

tionary probabilities q
(n)
c . These probabilities measure the occurrence of a finite

word after n steps, conditioned to start from the word c. More precisely, for any
finite words u and c and for any n > 0, let

q(n)c (u) := π
(
Un−|u|+|c|+1 . . . Un+|c| = u

∣∣U1 . . . U|c| = c
)
.

It is shown in [2] that, for |x| < 1,

Φ(1)
w (x) =

xkπ(w)

(1− x)Sw(x)

and for r ≥ 1,

Φ(r)
w (x) = Φ(1)

w (x)

(
1−

1

Sw(x)

)r−1

where

Sw(x) := Cw(x) +

∞∑

n=k

q
(n)
←−
pref (w)(w)x

n,

Cw(x) := 1 +

k−1∑

j=1

1{wj+1...wk=w1...wk−j}q
(j)
←−
pref (w) (wk−j+1 . . . wk)x

j .

In the particular case when w = 10k−1, then
←−
pref (w) = w = 0k−11 and π(w) =

ck−1

S(1)
. Moreover, Definition (4) of the mixing coefficient and Proposition 3.2 i)

21



Cénac, Chauvin, Paccaut, Pouyanne: uncommon suffix tries

imply successively that

q
(n)
←−
pref (w)(w) = π

(
Un−k−|w|+1 . . . Un+k = w

∣∣∣U1 . . . Uk =
←−
pref (w)

)

= π(w)
(
ψ
(
n− k,

←−
pref (w), w

)
+ 1

)

= π(w)S(1)un−k+1

= ck−1un−k+1,

This relation makes more explicit the link between return times and mixing. This
leads to

∑

n>k

q
(n)
←−
pref (w)(w)x

n = ck−1x
k−1

∑

n>1

unx
n = ck−1x

k−1
(
U(x)− 1

)
.

Furthermore, there is no auto-correlation structure inside w so that Cw(x) = 1
and

Sw(x) = 1 + ck−1x
k−1

(
U(x)− 1

)
.

This entails

Φ(1)
w (x) =

ck−1x
k

S(1)(1− x)
[
1 + ck−1xk−1

(
U(x)− 1

)]

and

Φ(2)
w (x) = Φ(1)

w (x)

(
1−

1

Sw(x)

)

=
c2k−1x

2k−1
(
U(x)− 1

)

S(1)(1− x)
[
1 + ck−1xk−1

(
U(x)− 1

)]2

which is the announced result. The assumption

∑

n>1

n2cn <∞

makes U twice differentiable and elementary calculations lead to

(Φ(1)
w )′(1) =

S(1)

ck−1
− S(1) + 1 +

S ′(1)

S(1)
, (Φ(2)

w )′(1) = (Φ(1)
w )′(1) +

S(1)

ck−1
,

(Φ(1)
w )′′(1) =

2S(1)2

c2k−1
+ o

(
1

c2k−1

)
and (Φ(2)

w )′′(1) =
6S(1)2

c2k−1
+ o

(
1

c2k−1

)
,

and finally to (14). ⊓⊔
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4.4 Logarithmic comb and factorial comb

Let h+ and h− be the constants in [0,+∞] defined by

h+ := lim
n→+∞

1

n
max

{
ln
( 1

π (w)

) }
and h− := lim

n→+∞

1

n
min

{
ln
( 1

π (w)

) }
, (15)

where the maximum and the minimum range over the words w of length n with
π (w) > 0. In their papers, Pittel [10] and Szpankowski [12] only deal with the
cases h+ < +∞ and h− > 0, which amounts to saying that the probability of
any word is exponentially decreasing with its length. Here, we focus on our two
examples for which these assumptions are not fulfilled. More precisely, for the
logarithmic infinite comb, (2) implies that π(10n) is of order n−4, so that

h− 6 lim
n→+∞

1

n
ln
( 1

π (10n−1)

)
= 4 lim

n→+∞

lnn

n
= 0.

Besides, for the factorial infinite comb, π(10n) is of order 1
(n+1)!

so that

h+ > lim
n→+∞

1

n
ln
( 1

π (10n−1)

)
= lim

n→+∞

n!

n
= +∞.

For these two models, the asymptotic behaviour of the lengths of the branches is
not always logarithmic, as can be seen in the two following theorems, shown in
Sections 4.5 and 4.6.

Theorem 4.8 (Height of the logarithmic infinite comb) Let Tn be the suf-
fix trie built from the n first suffixes of a sequence generated by a logarithmic
infinite comb. Then, the height Hn of Tn satisfies

∀δ > 0,
Hn

n
1
4
−δ

−→
n→∞

+∞ in probability.

Theorem 4.9 (Saturation level of the factorial infinite comb) Let Tn be
the suffix trie built from the n first suffixes of the sequence generated by a factorial
infinite comb. Then, the saturation level ℓn of Tn satisfies: for any δ > 1, almost
surely, when n tends to infinity,

ℓn ∈ o

(
log n

(log logn)δ

)
.

The dynamic asymptotics of the height and of the saturation level can be visu-
alized on Figure 5. The number n of leaves of the suffix trie is put on the x-axis
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while heights or saturation levels of tries are put on the y-axis. Plain lines rep-
resent a logarithmic comb while long dashed lines are those of a factorial comb
(mean values of 25 simulations).
Short dashed lines represent a third infinite comb defined by the data cn =
1
3

∏n−1
k=1

(
1
3
+ 1

(1+k)2

)
for n > 1. Such a process has a uniform exponential mixing,

a finite h+ and a positive h− as can be elementarily checked. As a matter of con-
sequence, it satisfies all assumptions of Pittel [10] and Szpankowski [12] implying
that the height and the saturation level are both of order logn. Such assumptions
will always be fulfilled as soon as the data (cn)n satisfy limn c

1/n
n < 1; the proof

of this result is left to the reader.
One can notice the height of the logarithmic comb that grows as a power of n.
The saturation level of the factorial comb, negligible with respect to log n is more
difficult to highlight because of the very slow growth of logarithms.

These asymptotic behaviours, all coming from the same model, the infinite comb,
stress its surprising richness.

4.5 Height for the logarithmic comb

In this subsection, we prove Theorem 4.8.
Consider the right-infinite sequence s = 10∞. Then, Tk(s) is the second occur-
rence time of w = 10k−1. It is a nondecreasing (random) function of k. Moreover,
Xn(s) is the maximum of all k such that s(k) ∈ Tn. It is nondecreasing in n. So,
by definition of Xn(s) and Tk(s), the duality can be written

∀n, ∀ω, ∃kn, kn 6 Xn(s) < kn + 1 and Tkn(s) 6 n < Tkn+1(s). (16)

Claim:
lim

n→+∞
Xn(s) = +∞ a.s. (17)

Indeed, if Xn(s) were bounded above, by K say, then take w = 10K and consider
TK+1(s) which is the time of the second occurrence of 10K . The choice of the
cn in the definition of the logarithmic comb implies the convergence of the series∑

n n
2cn. Thus (14) holds and E[TK+1(s)] < ∞ so that TK+1(s) is almost surely

finite. This means that for n > TK+1(s), the word 10K has been seen twice,
leading to Xn(s) > K + 1 which is a contradiction.

We make use of the following lemma that is proven hereunder.

Lemma 4.10 For s = 10∞,

∀η > 0,
Tk(s)

k4+η
−→
k→∞

0 in probability,
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and

∀η >
1

2
,

Tk(s)

k4+η
−→
k→∞

0 a.s. (18)

With notations (16), because of (17), the sequence (kn) tends to infinity, so that
(Tkn(s)) is a subsequence of (Tk(s)). Thus, (18) implies that

∀η >
1

2
,

Tkn

k
4+η
n

−→
n→∞

0 a.s. and ∀η > 0,
Tkn

k
4+η
n

P
−→
k→∞

0.

Using duality (16) again leads to

∀η > 0,
Xn(s)

n1/(4+η)

P
−→
n→∞

+∞.

In otherwords

∀δ > 0,
Xn(s)

n
1
4
−δ

P
−→
n→∞

+∞

so that, since the height of the suffix trie is larger than Xn(s),

∀δ > 0,
Hn

n
1
4
−δ

P
−→
n→∞

+∞.

This ends the proof of Theorem 4.8. ⊓⊔

Proof of Lemma 4.10.

Combining (13) and (14) shows that

E(Tk(s)) = E(τ (2)(w))− k =
19

9
k4 + o(k4) (19)

and

Var(Tk(s)) = Var(τ (2)(w)) =
361

162
k8 + o(k8). (20)

For all η > 0, write

Tk(s)

k4+η
=
Tk(s)− E(Tk(s))

k4+η
+

E(Tk(s))

k4+η
.

The deterministic part in the second-hand right term goes to 0 with k thanks to

(19), so that we focus on the term
Tk(s)− E(Tk(s))

k4+η
. For any ε > 0, because of

Bienaymé-Tchebychev inequality,

P

(
|Tk(s)− E[Tk(s)]|

k4+η
> ε

)
6
V ar(Tk(s))

ε2k8+2η
= O

(
1

k2η

)
.

This shows the convergence in probability in Lemma 4.10. Moreover, Borel-
Cantelli Lemma ensures the almost sure convergence as soon as η > 1

2
. ⊓⊔

25



Cénac, Chauvin, Paccaut, Pouyanne: uncommon suffix tries

Remark 4.11 Notice that our proof shows actually that the convergence to +∞
in Theorem 4.8 is valid a.s. (and not only in probability) as soon as δ > 1

36
.

4.6 Saturation level for the factorial comb

In this subsection, we prove Theorem 4.9.
Consider the probabilized infinite factorial comb defined in Section 2 by

∀n ∈ N, cn =
1

(n + 1)!
.

The proof hereunder shows actually that
(

ℓn log logn
logn

)
n
is an almost surely bounded

sequence, which implies the result. Recall that R denotes the set of all right-
infinite sequences. By characterization of the saturation level as a function of
Xn (see (11)), P (ℓn 6 k) = P (∃s ∈ R, Xn(s) 6 k) for all positive integers n, k.
Duality formula (12) then provides

P (ℓn 6 k) = P (∃s ∈ R, Tk(s) > n)

> P (Tk(s̃) > n)

where s̃ denotes any infinite word having 10k−1 as a prefix. Markov inequality
implies

∀x ∈]0, 1[, P (ℓn > k + 1) 6 P

(
τ (2)(10k−1) < n+ k

)
6

Φ
(2)

10k−1(x)

xn+k
(21)

where Φ
(2)

10k−1(x) denotes as above the generating function of the rank of the final
letter of the second occurrence of 10k−1 in the infinite random word (Un)n≥1.
The simple form of the factorial comb leads to the explicit expression U(x) =

x
(1−x)(ex−1)

and, after computation,

Φ
(2)

10k−1(x) =
ex − 1

e− 1
·

x2k−1
(
1− ex(1− x)

)
[
k! (ex − 1) (1− x) + xk−1

(
1− ex(1− x)

)]2 . (22)

In particular, applying Formula (22) with n = (k− 1)! and x = 1− 1
(k−1)!

implies
that for any k > 1,

P(ℓ(k−1)! > k + 1) 6

(
1− 1

(k−1)!

)2k−1

[
k!(e− 1) 1

(k−1)!

]2 ·
1

(
1− 1

(k−1)!

)(k−1)!+k
.
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Consequently, P
(
ℓ(k−1)! > k + 1

)
= O(k−2) is the general term of a convergent

series. Thanks to Borel-Cantelli Lemma, one gets almost surely

lim
n→+∞

ℓn!

n
6 1.

Let Γ−1 denote the inverse of Euler’s Gamma function, defined and increasing on
the real interval [2,+∞[. If n and k are integers such that (k+1)! 6 n 6 (k+2)!,
then

ℓn

Γ−1(n)
6

ℓ(k+2)!

Γ−1((k + 1)!)
=
ℓ(k+2)!

k + 2
,

which implies that, almost surely,

lim
n→∞

ℓn

Γ−1(n)
6 1.

Inverting Stirling Formula, namely

Γ(x) =

√
2π

x
ex log x−x

(
1 +O

(
1

x

))

when x goes to infinity, leads to the equivalent

Γ−1(x) ∼
+∞

log x

log log x
,

which implies the result. ⊓⊔
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Figure 5: Respective heights and saturation levels for a logarithmic comb (plain
lines), a factorial comb (long dashed lines) and a logn-comb (short dashed lines).
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