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We describe how to use refactoring tools to transform a Java program conforming to the Composite
design pattern into a program conforming to the Visitor design pattern with the same external behavior.
We also describe the inverse transformation. We use the refactoring tools provided by IntelliJ IDEA and

Eclipse.
Contents
1 Introduction
2 General Approach
2.1 Guidelines in the Literature . . . . . . .. ... .. ... ...
2.2 Automation . . . . .. ...
3 Composite+Visitor Transformation Scheme
3.1 Composite—Visitor Transformation . . . ... .. ... ...
3.2 Visitor—Composite Transformation . . . ... .. ... ...
3.3 Result after Round Trip Transformation . . . . . ... .. ..
4 Variants of Transformations for Various Pattern Instances
4.1 Methods with Parameters . . . . . . ... ... ... .....
4.1.1 Composite—Visitor Transformation . . ... ... ..
4.1.2 Visitor Program . . ... ... ... ... .....
4.1.3 Visitor—Composite Transformation . ... ... ...
4.2 Methods Returning Values . . . . . . .. .. ... ... ....
4.2.1 Composite—Visitor Transformation . .. ... .. ..
4.2.2 Visitor Program . . . ... ... ..., ... .....
4.2.3 Visitor—Composite Transformation . . ... ... ..
4.3 Interface instead of Abstract class in the Composite structure
4.3.1 Composite—Visitor Transformation . .. ... .. ..
4.3.2 Visitor Program . . ... ... ... ..........
4.3.3 Visitor—Composite Transformation . .. ... .. ..
4.4 Class Hierarchies with Several Levels . . . . . . . . ... ...
4.4.1 Composite—Visitor Transformation . ... ... ...
4.4.2 Visitor Program . . . ... ... ..., ... .....
4.4.3 Visitor—Composite Transformation . .. ... .. ..
5 Application to JHotDraw
6 Related work
6.1 Refactoring to Patterns . . . . . . . . ... ... ... .. ..
6.2 Building Complex Refactoring Operations . . . . . . .. . ..
6.3 Design Patterns Discovery . . . . . . .. .. ... .. ... ..
7 Conclusion
References

Bl EEEEEEEEEEEEEEEER Eosn oom =

Bl El



A Refactoring Operations 31]

A1 CreateEmptyClass . . . . . . . . 0 31
A.2 CreatelndirectionInSuperClass . . . . . . .. . ... L 31
A3 AddParameter . . . . . . . ... 31
A4 AddParameterWithReuse . . . . . . . . . .. .. 32
A5 AddParameterWithDelegate . . . . . . . . . . ... L 32
A6 MoveMethod . . . . . . . . e 32
A.7 MoveMethodWithDelegate . . . . . . . . . .. . . . L 3
A.8 RenameMethod . . . . . . . . . . . .. 3
A9 ExtractSuperClass . . . . . . . . . L 3
A.10 ExtractSuperClassWithGenerics . . . . . . . . . ... 4
A.11 GeneraliseParameter . . . . . . . . .. L 34
A.12 MergeDuplicateMethods . . . . . . . . . . L |
A 13 PullUpAbstract . . . . . . . o o e 33
A 14 PullUpConcrete . . . . . . o oo o e e e 35
A5 InlineMethod . . o . oot 36
A.16 InlineMethodInvocations . . . . . . . . . . L 34
A.17 AddSpecializedMethodInHierarchy . . . . . . . . .. ... L o L 34
A.18 DuplicateMethodInHierarchy . . . . . . . .. . ... . 31
A.19 DeleteMethodInHierarchy . . . . . . . . . .. L e 3
A20PushDownAll . .. oo ottt RE
A.21 PushDownlmplementation . . . . . . . . . . . . . . . [3d
A.22 pushDownNotRedefinedMethod . . . . . . . . . . .. .. ... [3d
A.23 ReplaceMethodDuplication . . . . . . . . ... L [3d
A24 DeleteClass . . . . . . o L e l4d
A.25 ExtractGeneralMethod . . . . . . . . oL lud
A26InlineClass . . . . .. L. e lud

1 Introduction

Composite and Visitor patterns have dual properties with respect to modularity: while the Composite
pattern (as well as Visitor pattern and classic class hierarchies) provides modularity along subtypes and
leaves operation definitions crosscut, the Visitor pattern provides modularity along operations and leaves
behavior definitions crosscutting with respect to subtypes [GHIV95].

One solution to have modularity along operations and subtypes would be to be able to transform
automatically a program conforming to the Composite pattern into a program with the same behavior, but
which structure would conform to the Visitor pattern, and vice-versa [CD11].

Chains of elementary refactorings can be used to make design patterns appear [OCN99, [Ker04], for
instance to introduce the Visitor pattern [MT04] [Ker(04], or to replace the Visitor pattern by the Interpreter
pattern [HKVDSV11]. However, such transformations are not automatic yet, which makes the proposal of
Cohen and Douence [CD11] not currently applicable in object oriented programs.

In this report we do preliminary work before automating refactoring based Composite< Visitor trans-
formations:

1. We give chains of refactoring operations that provide Composite— Visitor and Visitor—Composite
transformations for a simple Java program. Each refactoring operation is supported by at least one
refactoring tool.

2. We explain how to use the refactoring tools IntelliJ IDEA and Eclipse to perform the needed refactoring
operations (composition of several operations of the tools, specific options, applying some operations
before being able to perform another one, bugs to overcome, missing operations...).

3. We study variants of the transformations for several variations in the implementation of the patterns.

Our algorithms are validated on a running toy example and on the JHotDraw program [GI].



2 General Approach

We consider the Java program of Fig.[Il It contains a classic class hierarchy: the abstract class Graphic has
two subclasses, Square and FEllipse, and two methods, print and prettyprint implemented in the subclasses.
We also consider that two classes Printer and PrettyPrinter already exist in the program: they will become
visitor subclasses.

Graphic

print()
prettyprint()

A
| |

Ellipse Square
print() print()
prettyprint() prettyprint()

abstract class Graphic {
abstract public void print ();

abstract public void prettyprint();

class Square extends Graphic {
int |;
public void print() {

System.out. print (" Square(” + | + ")");
}

public void prettyprint (){
System.out. print (" Square.”);
}

class Ellipse extends Graphic{
int 11, 12;
public void print() {
System.out.print (" Ellipse: (" + I1 +"," + 12 + ")");
}

public void prettyprint (){
System.out. print (" Ellipse.”);
}

Figure 1: Base Program (classic class hierarchy)

In the following algorithms, we make abstraction of the class and method names and number: let LM be
the set of traversal functions, LC the set of concrete classes in the composite structure, and S the superclass
of the composite structure.

Here, LM = {print,prettyprint}, LC = {Ellipse,Square} and S=Graphic.

We also define a function V' that maps a name of visitor class to a name of method. We consider here
V(print) = Printer and V (prettyprint) = PrettyPrinter. We also define LV = V(LM) = {V(m)}mewm -



1. ForAll min LM, c in LC do
Let visitorname = V(m) in
MoveMethodWithDelegate(c, m, visitorname)
RenameMethod(visitorname, m, "visit")
done

2. AddAbstractSuperClass(" Visitor”, LV)

3. ForAll cin LC do
PullUpAbstract(LV, "visit", ¢, " Visitor")

4. ForAll cin LC do
ExtractMethod(c, LM, "accept”)

5. ForAll m in LM do
PullUpConcrete(LC, m, S)

Figure 2: Simple Class Hierarchy — Visitor transformation [MT04].

2.1 Guidelines in the Literature

We start by considering some guidelines given in the literature for introducing an instance of the Visitor pat-
tern into a typical object-oriented class hierarchy. We consider the guidelines of Mens and Tourwé [MT04],
rephrased in Fig.

To introduce a visitor pattern, the first obvious step is to move the business codd] from the class
hierarchy to visitor classes (we consider the target classes for the moved methods already exist in the
project). This is done in step [ (Fig. B)). We move the business code but we keep the original methods as
delegators to visitor’s methods in order not to change the interface of the class hierarchy (see Move Method
in Fowler [Fow99]).

The new methods in visitor classes are named visit so that the visitor classes will all be able to implement
the abstract class Visitor, which is added afterward (step ). In visitor classes, there is one method wvisit for
each concrete class of the class hierarchy LC (with overloading). They are introduced as abstract methods
in the Visitor class (step B).

To introduce the double dispatch, which is characteristic of the visitor pattern, without changing the
interface of the class hierarchy, another delegation is introduced inside the concrete classes of LC (step M.
The delegate method is named accept.

Since the initial methods are now delegators to accept, the overriding bodies are the same in the concrete
classes of LC, and it can be defined once for all in the super class (step [B).

The refactoring results in the program given in Figs. B and [l

2.2 Automation

If we refer to Fowler [Fow99)], a refactoring is manual with checks under the responsibility of the operator.
In the same way, these general guidelines (Fig. 2)) must be interpreted by someone which will adapt them
to his particular program.

We now consider that the operator uses a refactoring tool. We consider IntelliJ IDEA but the same
remarks will apply to Eclipse unless otherwise stated.

Prepare the move. A first problem occurs with the Move Method operation. The refactoring tool cannot
move instance methods to a class if there is no reference of the destination class in that method (parameters
or body).

The reason is that the receiver object cannot be inferred (this is an instance method).

We have to create delegates for these methods before moving them, then add a parameter of the
convenient visitor type to the delegates, then move them (see Fig. Bl step [I).

1We call business code the code that defines the operations, here print and prettyprint, which is spread over several classes
(with overriding).



abstract class Graphic {

public void print() {
accept(new PrintVisitor ());

public void prettyprint() {
accept(new PrettyPrintVisitor ());

public abstract void accept(Visitor v);

class Square extends Graphic {
int |;

public void accept(Visitor v) {
v.visit (this);
}

class Ellipse extends Graphic{
int 11, 12;

public void accept(Visitor v) {
v.visit (this);
}

Figure 3: Program with Visitor (classic class hierarchy)

public abstract class Visitor {
public abstract void visit(Square square);

public abstract void visit(Ellipse ellipse);

}

public class PrintVisitor extends Visitor {
public void visit(Square square) {
System .out. print (" Square(” + square.|l + ")");

}

public void visit(Ellipse ellipse) {
System .out.print (" Ellipse: (" + ellipse.Il 4+",” + ellipse.l2 4+ ")");
}
}

public class PrettyPrintVisitor extends Visitor {
public void visit(Square s){
System .out. print (" Square.”);

}

public void visit(Ellipse e){
System .out.print (" Ellipse.");
}
}

Figure 4: Program with Visitor (classic class hierarchy — visitor part)




1. ForAll (m,param) in LM, c in LC do
Let visitorname = V(m) in
AddParameterWithDelegate(c,m,param,visitorname)
MoveMethod(c, m, param+visitorname, visitorname)
RenameMethod(visitorname, m,param+-c, " visit" )
done

2. ExtractSuperClass(LV, "Visitor") // with visit abstract methods

3. ForAll cin LC do
ExtractGeneralMethod(c, LM, "accept”, " Visitor")

4. PullUpAbstract(LC, "accept”, "Visitor”", S)

5. ForAll m in LM do
PullUpConcrete(LC, m, S)

Figure 5: Simple Class Hierarchy — Visitor transformation (adapted to IntelliJ IDEA)

Restore object type after move. In our example, the pretty-print method does not access to any
instance variables or methods (see Fig.[Il) of the receiver object. In this case, when the prettyprint delegate
methods are moved, the tool does not make a parameter of type Ellipse or Square appear in the resulting
method.

This is problematic because we want overloaded wvisit methods (it’s a design choice, here we could also
use different method names) but the lack of these parameters introduces a name clash.

To solve this, it is sufficient to apply the Add Parameter refactoring to the methods which have been
moved. We do not make this appear into the algorithm of Fig. Bl because we encapsulate this behavior into
the Move Method operation. We consider Move Method is an abstract operation, which can be implemented
by a refactoring tool with a single operation or with a composition/chain of several basic operations. We
make the correspondence between abstract operation and tool operations in App. [A] (see App. [A.6).

ExtractSuperClass. Introducing a new superclass and pulling up methods (steps [2 and B] of Fig. 2)) is
known as Extract Superclass in Fowler [Fow99]. That composite operations is also available in IntelliJ IDEA
and Eclipse. For that reason, we use it in Fig. [ (step [2).

However, in IntelliJ IDEA, that operation cannot be applied to several classes simultaneously. We have to
extract a superclass from one class, then introduce inheritance manually. Since that operation is supported
in Eclipse, there is good hope that this feature could be implemented in IntelliJ IDEA, otherwise, we can
still use Eclipse for this stepE

Extract Method Accept. In the following code (from Square or Ellipse), the instruction o.visit(this)
occurs twice (with a different object o).

public void print() {
new PrintVisitor() .visit(this);

}

public void prettyprint() {
new PrettyPrintVisitor().visit(this);
}

That instruction has to be extracted into a method accept with o as a parameter, and the occurrences
of that expression will be replaced by accept(o).

The tool Intelli] IDEA will accept to extract a same method for the two instances only after we in-
troduce a same type for the receiver objects. In practice, we first introduce a new local variable for new
PrintVisitor() (resp. new PrettyPrintVisitor()), then change the type of that variable form PrintVisitor
(resp. PrettyPrintVisitor) to Visitor, and then the extraction of the method successes (the two instances

2Eclipse supports Extract Superclass for several classes, but not Extract Interface for several classes, and there is a non-
blocking bug on the introduction of @Owverride annotations.



are replaced by invocations of that method). The operations used in IntelliJ IDEA are Introduce Variable
and Type Migration (as many other refactoring operations Type Migration checks that the change is type
safe). One would may also find useful to rename the local variables or the parameter of accept to v or
visitor (operation Rename).

The local variables can be inlined afterward (operation Inline).

Note that the task of making accept act on Visitors is implied in the guidelines of Mens and Tourwé
(Fig2)). This task is not explained either by Fowler (Eztract Method [Fow99)).

Again, we encapsulate these elementary changes in the FExtractGeneralMethod refactoring operation,
defined in App. [A25

Pull Up. Note that when accept is pulled up (step @ of Fig. B, IntelliJ IDEA does not add the @Override
annotation to all the subclasses, but only in the one the operation is called on.

Also, when print and prettyprint are pulled up (step [l of Fig. B), the tool cannot take several classes
simultaneously into account, so that the pull up does not verifies that the code are the same in all the
concrete classes (in fact they are). Note that for Pull Up, Eclipse can take several classes into account (it
allows to remove overriding methods in these classes) but it does not checks that the behavior is preserved
by this change.

Visibility. In the example program, instance variables are public (package). If they were private or
protected, we would have had to make them public so that the moved methods can access them. This does
not depend on the way we implement the transformation, but rather to the nature of the Visitor pattern.
Note that Eclipse Move makes the change automatically while with IntelliJ IDEA you have to do it after or
before the Move.

Conclusion. We have seen that as soon as we consider a refactoring tool,
1. the guidelines have to be adapted and
2. an algorithm can be defined (at the moment the algorithm is not automatic).

We have seen also that some steps are implied in the guidelines, and that, on the opposite, some chains
of operations of the guidelines can be done with a single tool’s operation.

Finally, we have seen that we also have to adapt the chain of operation to characteristics of the initial
program. In the following, after having studied a reverse transformation to get the program back to its
initial structure, we will see how the algorithm is adapted to variations in the initial program.

3 Composite«>Visitor Transformation Scheme

We now consider an instance of the Composite pattern as the initial program (Fig. [l).

The difference between the classic object structure considered before and the Composite structure is
recursion: the data type is recursive (subclasses make references to the superclass) and the operations are
recursive (to traverse trees of that datatype which depth in unknown).

In this section, all the methods to handle take no parameter and do not return any result, and the
traversal process is stateless.

We also consider that the visitor classes are not part of the project in the Composite state (unlike in
previous section).

3.1 Composite— Visitor Transformation

Let us consider this part in the code of the CompositeGraphic class:

public void print() {
System.out.print("Composite: " + this + " with: (");
for (Graphic graphic : childGraphics) {
graphic.print();
}
System.out.println(")");



abstract class Graphic {
abstract public void print();

abstract public void prettyprint ();

class Ellipse extends Graphic{
public void print() {
System .out. printin (" Ellipse :" + this);
}

public void prettyprint(){
System .out.println (" Ellipse corresponding to the object " + this + ".
}

}

class CompositeGraphic extends Graphic {
private ArraylList<Graphic> mChildGraphics = new ArrayList<Graphic >();

public void print() {
System.out. println (" Composite:");
for (Graphic graphic : mChildGraphics) {
graphic.print ();
}

}

public void prettyprint(){
System .out. println (" Composite " + this + " composed of:");
for (Graphic graphic : mChildGraphics) {
graphic.prettyprint ();
}

System .out. println (

"

(end of composite)”);

}

public void add(Graphic graphic) {
mChildGraphics.add(graphic);
}

public void remove(Graphic graphic) {
mChildGraphics.remove(graphic);
}

Figure 6: Base Program (class hierarchy)




If we apply the previous transformation algorithm (Fig. [, after the operation AddParameter WithDel-
egate (step[ll), we get the following (with IntelliJ IDEA):

public void print() {
print (new PrintVisitor());

}

public void print(PrintVisitor v) {
System.out.print ("Composite: " + this + " with: (");
for (Graphic graphic : childGraphics) {
graphic.print();
}
System.out.println(")");
}

We observe that the recursive invocation to graphic.print() in the for loop has been left unchanged.
The code is still functionally correct, but it can be found problematic for the following reason: if we look at
the definition of Graphic.print() (at that moment of the transformation, you cannot tell which instance of
print() will be invoked because print() is abstract in the class Graphic, but we anticipate on the fact that
print(), as a delegator, will be pulled up to the class Graphic), we can see that each invocation of print()
will result in the construction of a new PrintVisitor object.

Here, if possible, one would choose to use a single PrintVisitor object instead of creating useless new
ones.

In fact, there is a means to do this with the IntelliJ IDEA refactorer, but, in order to do that, the print()
delegator method must be pulled upE which impacts the rest of the algorithm (for instance, the pull-up of
step [l is already done).

This shows that, as soon as we rely on a refactoring tool, the chain of refactoring operations depends
on the characteristics of the tool.

For this reason, here we cannot encapsulate the small change in the transformation into a variation
of one of the steps of the algorithm, but we have to adapt the whole algorithm. Our algorithm for basic
Composite—Transformation is given in Fig. [l

In Fig. [ to generate temporary names, we consider a function auz that takes a method name and
returns a method name. Here, aux(print) =printAux and auz(prettyprint) :prettyprintAuxH

Note that two bugs are encountered with IntelliJ IDEA 10.5.2 in this algorithm (see MoveMethod With-
Delegate and GeneraliseParameter, App. [A). Until these two bugs are solved, a manual intervention is
needed.

The result of this transformation is given in Figs. [§ and

3.2 Visitor—Composite Transformation

Composite— Visitor transformation is based on moving business code from the data-type class hierarchy to
the visitor classes. Now we do the opposite (move business code from visitor classes to composite classes).
We proceed with three steps (Fig [0):

1. We replace dynamic dispatch with static dispatch.
2. We in-line the business code from the wisitor structure to the composite structure.

3. We make some small changes to get the initial Composite pattern structure back.

Remove Dynamic Dispatch (Fig. 10, steps [l and [2]). We replace the accept(Visitor) method by
some overloaded methods accept, one for each subtype of Visitor. This removes all dynamic dispatch in
visit method invocations, so that their invocations can be inlined afterward. The wvisit methods can also be
removed from the Visitor class (but not from the concrete visitor classes before they are inlined).

The result of this is given in Figs. 1] and

3The trick is to first introduce an indirection (directly in the superclass), then inline the delegator invocation inside the
loop, then add the parameter to the delegate, so that the tool is able to insert as new parameter in invocations existing objects
instead of using a default value.

40f course, we should ensure that these names are not clashing with other names in the project.



1. ForAll m in LM do
Let visitorname = V(m) in
CreateEmptyClass(visitorname)

2. ForAll m in LM do
Let auxname = aux(m) in
CreatelndirectionInSuperClass(S,m, auxname)

3. ForAll m in LM, c in LC do
Let auxname = aux(m) in
InlineMethodInvocations(c, m, auxname)

4. ForAll m in LM do
Let visitorname = V(m) and auxname = auz(m) in
AddParameterWithReuse(S, auxname, visitorname, new visitorname())

5. ForAll m in LM, c in LC do
Let visitorname = V(m) and auxname = auz(m) in
MoveMethodWithDelegate(c, auxname, visitorname, "visit” )

6. ExtractSuperClass(LV, " Visitor")

7. ForAll m in LM do
Let visitorname = V(m) and auxname = auz(m) in
GeneraliseParameter(S, auxname, visitorname, " Visitor” )

8. Let LAUX = { auz(m) },c M in
MergeDuplicateMethods(S, LAUX, "accept”)

Figure 7: Base Composite— Visitor transformation

Move Business Code (Fig.[10, stepB). The business code in the visitor classes is inlined: invocations
of the wvisit methods in the composite classes are replaced by the corresponding body (the business code)
and the wvisit methods are deleted.

The result of this step is given in Fig. [[3] (visitor classes are empty).

Remove Visitors and Recover Initial Structure (Fig. [0, stepsdto[dI). Once the business code
has been moved into the convenient classes, the rest of the refactoring operations are common refactoring
operations allowing to recover the composite structure (the important part is done before).

The result of this step is given in Fig. [[4

3.3 Result after Round Trip Transformation

After this transformation, the program conforms to the Composite pattern (Fig. [I4]).

A few more refactorings are necessary to recover exactly the original program: make private the fields
that were made public during the Composite— Transformation, reorder method definitions.

Note also that some comments are altered or lost during the transformation (which is not shown by our
example).
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abstract class Graphic {

public void print() {
accept(new PrintVisitor ());
}

public void prettyprint() {
accept(new PrettyPrintVisitor ());
}

public abstract void accept(Visitor v);

class Ellipse extends Graphic{

public void accept(Visitor v) {
v.visit (this);
}

class CompositeGraphic extends Graphic {
ArrayList <Graphic> mChildGraphics = new ArraylList<Graphic >();
public void accept(Visitor v) {

v.visit (this);
}

public void add(Graphic graphic) {
mChildGraphics.add(graphic);
}

public void remove(Graphic graphic) {
mChildGraphics.remove(graphic);
}

Figure 8: Program with Visitor (data classes)
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public abstract class Visitor {
public abstract void visit(Ellipse ellipse);

public abstract void visit(CompositeGraphic compositeGraphic);

public class PrintVisitor extends Visitor {

public void visit(CompositeGraphic compositeGraphic) {
System .out. println (” Composite:”);
for (Graphic graphic : compositeGraphic. mChildGraphics) {
graphic.accept(this);
}

}

public void visit(Ellipse ellipse) {
System .out.println (" Ellipse :” + ellipse);
}

public class PrettyPrintVisitor extends Visitor {

public void visit(CompositeGraphic compositeGraphic) {
System .out. println (” Composite " + compositeGraphic + " composed of:");
for (Graphic graphic : compositeGraphic. mChildGraphics) {
graphic.accept(this);

System .out. println(” (end of composite)”);

}

public void visit(Ellipse ellipse) {
System .out.printin(”" Ellipse corresponding to the object " 4 ellipse + ".");
}

Figure 9: Program with Visitor (visitor classes)

12




10.

11.

. ForAll v in LV do

addSpecializedMethodInHierarchy(S,accept,” Visitor”, v)
deleteMethodInHierarchy(S,accept,” Visitor")

ForAll c in LC do
pushDownAll(" Visitor" " visit” ,c)

. ForAll vin LV, cin LC do

InlineMethod(v,visit,c)

. ForAll m in LM do

renameMethod(S,accept,V (m),auz(m))

. ForAll m in LM do

removeParameter(S,auxz(m),V(m))

. ForAll m in LM do

replaceMethodDuplication(S,m)

. ForAll m in LM do

pushDownlmplementation(S,m)

. ForAll m in LM do

pushDownAll(S,auz(m))

. ForAll m in LM, c in LC do

inlineMethod(c,auz(m))

ForAll v in LV do
deleteClass(v)

deleteClass(Visitor)

Figure 10: Base Visitor — Composite transformation
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abstract class Graphic {
public void print() {

accept(new PrintVisitor ());

public void prettyprint() {
accept(new PrettyPrintVisitor ());
}

public abstract void accept(PrintVisitor v);

public abstract void accept(PrettyPrintVisitor v);

class Ellipse extends Graphic{
public void accept(PrettyPrintVisitor v) {
v.visit(this);
}

public void accept(PrintVisitor v) {
v.visit (this);
}

class CompositeGraphic extends Graphic {
ArrayList <Graphic> mChildGraphics = new ArraylList<Graphic >();
public void accept(PrettyPrintVisitor v) {

v.visit(this);
}

public void accept(PrintVisitor v) {
v.visit (this);
}

public void add(Graphic graphic) {
mChildGraphics.add(graphic);
}

public void remove(Graphic graphic) {
mChildGraphics.remove(graphic);
}

Figure 11: Reverse-State 1 (data classes)
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public abstract class Visitor {

}

public class PrintVisitor extends Visitor {

public void visit(CompositeGraphic compositeGraphic) {
System .out. println (” Composite:”);
for (Graphic graphic : compositeGraphic. mChildGraphics) {

graphic.accept(this);
}

}

public void visit(Ellipse ellipse) {
System .out.println (" Ellipse :” + ellipse);
}

public class PrettyPrintVisitor extends Visitor {

public void visit(CompositeGraphic compositeGraphic) {

System .out.printin (" Composite " + compositeGraphic + " composed of:");
for (Graphic graphic : compositeGraphic. mChildGraphics) {
graphic.accept(this);

System .out.printin (" (end of composite)”);

}

public void visit(Ellipse ellipse) {

System .out.println (" Ellipse corresponding to the object " + ellipse + ".");
}

Figure 12: Reverse-State 1 (visitor classes)
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abstract class Graphic {
public void print() {
accept(new PrintVisitor ());

public void prettyprint() {
accept(new PrettyPrintVisitor ());
}

public abstract void accept(PrintVisitor v);

public abstract void accept(PrettyPrintVisitor v);

class Ellipse extends Graphic{

public void accept(PrettyPrintVisitor v) {
System .out.printin (" Ellipse corresponding to the object " + this + ".");

public void accept(PrintVisitor v) {
System.out. printin (" Ellipse :" + this);
}

class CompositeGraphic extends Graphic {
ArrayList <Graphic> mChildGraphics = new ArraylList<Graphic >();

public void accept(PrettyPrintVisitor v) {
System .out.printin (" Composite " + this + ” composed of:");
for (Graphic graphic : mChildGraphics) {
graphic.accept(v);
}

System .out. printin(”(end of composite)”);

}

public void accept(PrintVisitor v) {
System .out. println (" Composite:");
for (Graphic graphic : mChildGraphics) {
graphic.accept(v);
}

}

public void add(Graphic graphic) {
mChildGraphics.add(graphic);
}

public void remove(Graphic graphic) {
mChildGraphics.remove(graphic);
}

Figure 13: Reverse-State 2 (data classes)
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abstract class Graphic {
public abstract void print ();

public abstract void prettyprint();

class Ellipse extends Graphic{

public void print() {

System.out. printin (" Ellipse :" + this);
}
public void prettyprint() {

System .out.printin (" Ellipse corresponding to the object " + this + ".");
}

class CompositeGraphic extends Graphic {
ArrayList <Graphic> mChildGraphics = new ArraylList<Graphic >();

public void add(Graphic graphic) {
mChildGraphics.add(graphic);
}

public void remove(Graphic graphic) {
mChildGraphics.remove(graphic);
}

public void print() {
System .out. println (" Composite:”);
for (Graphic graphic : mChildGraphics) {
graphic.print ();
}

}

public void prettyprint() {
System .out.println (" Composite ” + this + " composed of:");
for (Graphic graphic : mChildGraphics) {
graphic.prettyprint ();
}

System .out. printin(”"(end of composite)”);

Figure 14: Result after Back Transformations
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4 Variants of Transformations for Various Pattern Instances

In this section we present many structures or variants of either Composite pattern or Visitor pattern. At
the same time we try to apply the basic algorithm of the switching among the two patterns in order to
satisfy the transformation of each variant of the indicated design patterns.

4.1 Methods with Parameters

In this section we consider that methods of interest have parameters. We consider a method setColor with
an integer as parameter in our example (see Fig. [[0]).

4.1.1 Composite—Visitor Transformation

abstract class Graphic {
public abstract void print();

public abstract void setColor(int c);

class Ellipse extends Graphic{
protected int color

public void print() {
System .out.printin (" Ellipse with color:"+ color);

}
public void setColor(int c){
this.color = c;
}
}

class CompositeGraphic extends Graphic{
private ArrayList<Graphic> mChildGraphics = new ArraylList<Graphic >();

public void print() {
System.out.printlin (" Composite:”);
for (Graphic graphic : mChildGraphics) {
graphic.print ();
}

}

public void setColor(int c){
for (Graphic graphic : mChildGraphics) {
graphic.setColor(c);
}

}

public void add(Graphic graphic) {
mChildGraphics.add(graphic);

public void remove(Graphic graphic) {
mChildGraphics.remove(graphic);

Figure 15: Composite with methods having parameters.
At the step Ml of the Composite— Visitor algorithm of Fig. [7, replace the application of the operation

addParameter WithReuse with parameters by the operation Introduce Parameter Object. This operation is
offered by refactoring tools (Eclipse and Intelli] IDEA). If we consider a method m(A a, B b, C c), it replaces
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abstract class Graphic {

public void print(){
accept(new PrintVisitor ());

public void setColor(int c) {
accept(new SetColorVisitor(c));
}

public abstract void accept(Visitor v);

class Ellipse extends Graphic {

protected int color

void accept(Visitor v) {
v.visit(this); }

}

class CompositeGraphic extends Graphic{
ArraylList <Graphic> mChildGraphics =
new ArrayList<Graphic >();
public void accept(Visitor v){
v.visit (this);
}

public void add(Graphic graphic) {
mChildGraphics.add(graphic);
}

public void remove(Graphic graphic) {
mChildGraphics.remove(graphic);
}

ArrayList <Graphic> getmChildGraphics () {
return mChildGraphics;
}

}

Figure 16: Visitor with methods having parameters (data classes)

the parameters by an object of a new class P it creates and which contains instances variables a, b and c.
Invocations m(a,b,c) are replaced by m(new P(a,b,c)).

4.1.2 Visitor Program
The result program is shown by the figures [[6 and 7]

4.1.3 Visitor—Composite Transformation
After performing the step [@ of the basic algorithm (Fig. Q) perform the following tasks :
1. Delete the superclass Visitor structure.
2. InlineClass(v) (for each visitor class v that corresponds to the business method with parameter).

After having performed the rest of the transformation of Fig. 10l we get the following code in the Ellipse
class:

public void setColor(int c) {

final int cl = c;
color = new Object () {
private final int ¢ = cl;

public int getC() {
return c;
}

}.getC();
}

Here, we have to replace new Object(){...cl...}.getC() by cl. The reason is that we have replaced a param-
eter by an object containing the parameter with Add Object Parameter during the Composite—Transformation,
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public class PrintVisitor extends Visitor {
public void visit(CompositeGraphic compositeGraphic) {
System .out. println (" Composite:”);
for (Graphic graphic : compositeGraphic. mChildGraphics) {
graphic .accept(this);

public void visit(Ellipse ellipse) {
System .out. printin(”" Ellipse with color:"4+ ellipse.color); }

public class SetColorVisitor extends Visitor{

private final int c;

public SetColorVisitor(int c) {
this.c = c;

public int getC() {
return c;

public void visit(CompositeGraphic compositeGraphic) {
for (Graphic graphic : compositeGraphic. mChildGraphics) {

graphic .accept(this);

} }

public void visit(Ellipse ellipse) {
ellipse.color = getC();

}

Figure 17: Visitor with methods having parameters (visitor classes)

and now we have to do the inverse, extract a component from an object. The same has to be done in Com-
positeGraphic. At the moment, we do this manually.

4.2 Methods Returning Values

In this section we consider that methods of interest return results, for instance we consider a method
perimeter that returns an Integer and toString that returns a String (see Fig. [I8).

This would require to have one accept method for each return type. To avoid this, we use generic types
(see the visitor structure in Figs. [[9 and 20)).

4.2.1 Composite— Visitor Transformation

At the step [0 of the base algorithm of Fig. [[l we use the operation FEztractSuperWithGenerics (see
App.[A10). This operation is used to extract a super-class that supports generic types.

4.2.2 Visitor Program

The result program is shown by the figures [[9 and

4.2.3 Visitor—»Composite Transformation

At the step [ of the base algorithm of the Fig. [0l we must specify the return type of each accept method
and replace the parameter type by the corresponding type (the operation addSpecializedMethodInHierarchy
must change the return type in addition to the parameter type).

4.3 Interface instead of Abstract class in the Composite structure

In this section we consider that the top of the Composite hierarchy in an interface instead of abstract class
(see Fig. 2I)). As we have to put some code in the superclass, we just introduce an abstract class in the
hierarchy.

4.3.1 Composite— Visitor Transformation

Before performing the base algorithm of Fig. [7] create an abstract class that implements the interface of
the Composite hierarchy. This is done as the following :

1. Extract a super-Class from composite classes.
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abstract class Graphic{
public abstract Integer perimeter ();
public abstract String toString ();

class Ellipse extends Graphic{
int perimeter;

public Ellipse (int perimeter){
this.perimeter=perimeter ;};

public Integer perimeter () {

return (perimeter);
}

public String toString () {
return (" Ellipse " + Integer.toString(perimeter));
}

class CompositeGraphic extends Graphic {
private ArrayList<Graphic> mChildGraphics = new ArrayList<Graphic >();

public Integer perimeter () {
int acc =0 ;
for (Graphic graphic : mChildGraphics) {
acc += graphic.perimeter ();
}

return acc;

}

public String toString (){
String s ;
s = new String (" Composite with: ");
for (Graphic graphic : mChildGraphics) {
s = s.concat(graphic.toString() + ", ");
}

System.out. printin (" (end)”);
return s;

}

public void add(Graphic graphic) {
mChildGraphics.add(graphic);
}

public void remove(Graphic graphic) {
mChildGraphics.remove(graphic);
}

Figure 18: Composite with methods returning types
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abstract class Graphic{
public Integer perimeter () {
return accept(new PerimeterVisitor());

public String toString() {
return accept(new ToStringVisitor());

public abstract <T> T accept(Visitor<T> v);

class Ellipse extends Graphic{
int perimeter;
public Ellipse (int perimeter){
this.perimeter=perimeter ;};

public <T> T accept(Visitor<T> v) {
return v.visit(this);
}

class CompositeGraphic extends Graphic {
ArraylList<Graphic> mChildGraphics =
new ArraylList<Graphic >();
public void add(Graphic graphic) {
mChildGraphics.add(graphic);
}

public void remove(Graphic graphic) {
mChildGraphics.remove(graphic);
}

ArrayList<Graphic> getmChildGraphics () {
return mChildGraphics;

public <T> T accept(Visitor<T> v) {
return v.visit(this);
}

}

Figure 19: Visitor with generics (data classes)

public class TotalPerimeterVisitor extends Visitor <Integer >{
public Integer visit(CompositeGraphic compositeGraphic) {
int acc = 0 ;
for (Graphic graphic : compositeGraphic. mChildGraphics) {
acc += graphic.accept(this);
}

return acc;

public Integer visit(Ellipse ellipse) {
return (ellipse.perimeter);
}

}

public class ToStringVisitor extends Visitor <String> {
public String visit(CompositeGraphic compositeGraphic) {

String s ;

s = new String (" Composite with: ");

for (Graphic graphic : compositeGraphic. mChildGraphics) {
s = s.concat(graphic.accept(this) + ", ");

}

System .out. printin (" (end)");
return s;

public String visit(Ellipse ellipse) {
return (" Ellipse " + Integer.toString(ellipse.perimeter));

}

Figure 20: Visitor with generics (visitor classes)
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interface Graphic {
abstract public void print();
abstract public void prettyprint ();

class Ellipse implements Graphic{
public void print() {

System .out.printin (" Ellipse :” + this);
}
public void prettyprint(){

System .out.printin (" Ellipse corresponding to the object " + this + ".");
}

class CompositeGraphic implements Graphic {
private ArrayList<Graphic> mChildGraphics = new ArraylList<Graphic >();
public void print() {
System .out. println (" Composite:”);
for (Graphic graphic : mChildGraphics) {
graphic.print ();

public void prettyprint(){
System .out. println (" Composite ” + this + " composed of:");
for (Graphic graphic : mChildGraphics) {
graphic.prettyprint ();

System .out. printin(”"(end of composite)”);

public void add(Graphic graphic) {
mChildGraphics.add(graphic);
}

public void remove(Graphic graphic) {
mChildGraphics.remove(graphic);
}

Figure 21: Composite with Interface
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interface Graphic {
void print ();
void prettyprint ();

public abstract class AbstractComposite implements Graphic {
public void print() {
accept(new PrintVisitor ());

public void prettyprint() {
accept(new PrettyPrintVisitor ());

public abstract void accept(Visitor v);

class Ellipse extends AbstractComposite implements Graphic{
public void accept(Visitor v){
v.visit (this);
}

class CompositeGraphic extends AbstractComposite implements Graphic {
ArrayList <AbstractComposite> mChildGraphics = new ArraylList <AbstractComposite >();
public void accept(Visitor v){
v.visit (this);

public void add(AbstractComposite graphic) {
mChildGraphics.add(graphic);
}

public void remove(AbstractComposite graphic) {
mChildGraphics.remove(graphic);
}

ArrayList <AbstractComposite > getmChildGraphics () {
return mChildGraphics;
}

Figure 22: Visitor structure for Interface instead of Abstract Composite (data classes)

2. Pull up the business methods as abstract methods to the super-Class.
3. Make the super-class implementing the interface of the Composite structure.

4. Change any use of type Interface to type super-Class (use Type Migration in IntelliJ IDEA to perform
this operation).

5. Push down business method from the interface of composite structure (this will help to avoid any
confusion or complexity of manipulating business methods in the abstract class).

After doing the previous tasks, perform the base algorithm to reach the Visitor structure.

4.3.2 Visitor Program
The result program is shown by the figures 22] and

4.3.3 Visitor—»Composite Transformation

After performing the basic algorithm of back transformation (Fig. [I0l), change any use of the super-class
type to the interface type (Type Migration in IntelliJ IDEA). Finally, delete the intermediate super-class.
4.4 Class Hierarchies with Several Levels

In this section we consider that the Composite class hierarchy has several levels (we add a subclass Col-
oredEllipse to Ellipse, which provides an overriding method for only one of the two business methods, see
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public class PrintVisitor extends Visitor{
public void visit(CompositeGraphic compositeGraphic) {
System .out. println (" Composite:”);
for (AbstractComposite graphic : compositeGraphic. mChildGraphics) {
graphic .accept(this);
}
}

public void visit(Ellipse ellipse) {
System .out.printin (" Ellipse :"” + ellipse);
}

public class PrettyPrintVisitor extends Visitor {

public void visit(CompositeGraphic compositeGraphic) {
System .out. println (" Composite ” + compositeGraphic + ” composed of:");
for (AbstractComposite graphic : compositeGraphic. mChildGraphics) {
graphic.accept(this);

}

System .out. printin(”(end of composite)”);
}
public void visit(Ellipse ellipse) {

System.out.printin (" Ellipse corresponding to the object " + ellipse + ".");
}

Figure 23: Visitor structure for Interface instead of Abstract Composite (visitor classes)

Fig. 24). The interest of this variant is that a subclass extends a composite and does not redefine all
business methods. This subclass exists in different depth of hierarchy as the main composite class.
4.4.1 Composite—Visitor Transformation

Before performing the base algorithm of Fig. [[, apply the operation pushDownNotRedefinedMethod (see
App. [A222) in order to push down the methods that exists in the composites but not redefined in the
sub-classes. After that, the basic algorithm applies.

4.4.2 Visitor Program

The result program is shown by the figures 25 and

4.4.3 Visitor—Composite Transformation

At the step B of the basic algorithm (see Fig. [I0) use the operation pushDownNotRedefinedMethod in order
to push down the auxiliary methods that exist in composites and are not redefined in their sub-classes.
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abstract class Graphic {

abstract public void print();
abstract public void prettyprint ();

class Ellipse extends Graphic{

public void print() {

System.out. printin(”" Ellipse :" + this);
}
public void prettyprint (){
System .out.printin(”" Ellipse corresponding to the object " 4+ this + ".");
}
}

class ColoredEllipse extends Ellipse{
int color;
public void print() {
System.out. printin (" Ellipse :" + color);
}

class CompositeGraphic extends Graphic {
private ArraylList<Graphic> mChildGraphics = new ArrayList<Graphic >();
public void print() {
System .out. println (" Composite:");
for (Graphic graphic : mChildGraphics) {
graphic.print ();
}

}

public void prettyprint (){

System .out.printin (" Composite ” + this + ” composed of:");

for (Graphic graphic : mChildGraphics) {
graphic.prettyprint ();

}

System .out.printin(”(end of composite)”);

}
public void add(Graphic graphic) {
mChildGraphics.add(graphic);

public void remove(Graphic graphic) {
mChildGraphics.remove(graphic);
}

}

Figure 24: Composite with multiple hierarchical levels.
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abstract class Graphic {
public void print() {
accept(new PrintVisitor ());

public void prettyprint() {
accept(new PrettyPrintVisitor ());

public abstract void accept(Visitor v);

class Ellipse extends Graphic{

public void accept(Visitor v) {
v.visit (this);
}

class ColoredEllipse extends Ellipse{
int color;

public void accept(Visitor v) {
v.visit (this);
}

class CompositeGraphic extends Graphic {
ArrayList <Graphic> mChildGraphics = new ArraylList<Graphic >();

public void add(Graphic graphic) {
mChildGraphics.add(graphic);
}

public void remove(Graphic graphic) {
mChildGraphics.remove(graphic);
}

ArrayList <Graphic> getmChildGraphics () {
return mChildGraphics;
}

public void accept(Visitor v) {
v.visit (this);
}

Figure 25: Visitor with multiple hierarchical levels (data classes)
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public class PrintVisitor extends Visitor {

public void visit(CompositeGraphic compositeGraphic) {
System .out. printin (" Composite:");
for (Graphic graphic : compositeGraphic. mChildGraphics) {
graphic.accept(this);

}

}

public void visit(Ellipse ellipse) {
System.out.println (" Ellipse :" + ellipse);

}

public void visit(ColoredEllipse coloredEllipse) {
System.out.println (" Ellipse :” + coloredEllipse.color);

}

public class PrettyPrintVisitor extends Visitor {
public void visit(CompositeGraphic compositeGraphic) {
System .out. println (" Composite ” + compositeGraphic + ” composed of:");
for (Graphic graphic : compositeGraphic. mChildGraphics) {
graphic .accept(this);

}
System .out. printin(”(end of composite)”);
}
public void visit(Ellipse ellipse) {
System.out.println (" Ellipse corresponding to the object " + ellipse + ".");
}
public void visit(ColoredEllipse coloredEllipse) {
System .out.println (" Ellipse :” + coloredEllipse.color);
}

Figure 26: Visitor with multiple hierarchical levels (visitor classes)

5 Application to JHotDraw

To validate our transformation algorithms, we apply them to JHotDraw [GI]. JHotDraw has been made to
illustrate the use of design patterns (this is still a toy example, but which is larger than the previous one
and which is not tailored to fit our transformation).

To know on which classes to apply the transformation, we can apply a pattern detection tool. We
have applied patternd [TCSHO6]: it reports a Composite structure with 6 operations and it reports the
superclass and the subclass that implements the “container”. The operations are defined by overriding
methods in 6 classes of the class hierarchy.

The Composite— Visitor transformation applies successfully with the help of variations studies in Sec. [,
except for primitive types which have to be transformed into object types for using generics (variation
Methods Returning Values , Sec. E2]).

A second instance of the pattern is found but we have not transformed it since it has only one operation
defined.

It took between 8 and 9 hours to apply the whole Composite— Visitor transformation. Most of time
time is due to interaction (selection the entities to transform, selecting the refactoring operation and giving
parameters) and can be automated. The computing time (check preconditions, generate transformed code,
save files) was between 3 and 4 minutes.

6 Related work

6.1 Refactoring to Patterns

Using chains of elementary refactoring operations to introduce design patterns into programs is not new.
The idea is first proposed by Batory and Takuda [BT95].

O Cinnéide [OCO0] give transformation to introduce several patterns but not the Visitor (he considers
in [OCO0] that automating the introduction of a visitor pattern is impractical).

Kerievsky [Ker04] proposes two sets of guidelines to introduce Visitor patterns. The first one is similar
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to the one from Mens and Tourwé [MT04] described in Sec. The second one applies to an “external
accumulation”: instead of transforming an operation defined by overriding methods in the class hierarchy,
it applies to an operation defined outside of the class hierarchy by a switch on the type of an object
with instanceof and type casts. Neither Mens and Tourwé [MTO04] nor Kerievsky [Ker04] give the inverse
transformation.

Hills et al. [HKVDSVTI] have transformed a program based on a Visitor pattern to introduce a Visitor
pattern instead (the Visitor pattern is similar to the Composite pattern). Their transformation is auto-
mated, with a few interactions with an user. As their transformation is dedicated to a specific program
and is not abstractly described, it requires some work to be applied to other programs.

Jeaon et al. [JLB02] provide automatic inference of sequence of refactoring operations allowing to reach
design pattern based versions of programs. Sudan et al. [PRSK10] provide an inference of a sequence of
refactoring operations allowing to pass from a given version of a program to a second given version. Such
tools could be used to infer variations of our transformation algorithms for variations in initial programs,
or to infer transformations between other patterns.

6.2 Building Complex Refactoring Operations

The transformations we aim at can be seen as complex/composed refactoring operations. As each refactoring
operation has specific preconditions, and as we use a large number of elementary transformations, assistance
for building such transformations would be valuable. Several works provide languages to build or compose
refactoring operations. O Cinnéide and Nixon [OCNOQO] show how to compose elementary refactoring
operations with pre/post-conditions, as well as Kniesel and Koch [KK04].

Verbaere et al. propose a language dedicated to building refactoring operations [VEAMO6], and Klint
et al. propose a language dedicated to program manipulation [KSV09], which they have used to build the
Visitor—Interpreter transformation [HKVDSVTI].

6.3 Design Patterns Discovery

To provide a fully automated transformation, detection of the occurrences of the initial design pattern must
be automated. Several work exist in that domain. Smith and Scott provide a tool that discovers variants
of a design pattern in a given program [SS03|. Such tools can be used to automatically provide inputs to
our transformations.

On the opposite, some tools detect pattern precursors, anti-patterns or code smells [RJ04, MGLO0G], but
here, we consider that the initial program has already a good design.

7 Conclusion

In this report:

e We have shown how to use refactoring operations to transform a Java program conforming to the
Composite pattern (or Interpreter pattern) into a program (still in Java) conforming to the Visitor
pattern and vice versa.

e We have explained how to use some refactoring tools (IntelliJ IDEA and Eclipse) to perform these
transformations. We have seen that some basic refactorings are not supported by these tools.

e We have discussed some variations in transformations to adapt to variations in the initial programs.

This work is a first step towards automation of these transformations so that the user does not have
to perform each basic refactoring with a refactoring tool. On the example of the JHotDraw program,
automation can reduce transformation time from 8 hours to a few minutes. This kind of automated
transformation can be used to provide different versions of a same programs with different properties with
respect to modularity [CD11].
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A Refactoring Operations

In this appendix, we define refactoring operations we use in our transformations. For each operation, we
describe its behavior, and how it is performed with IntelliJ IDEA or Eclipse. We give some preconditions
when an operation applies ounly in a specific case. These preconditions are neither minimal (they can be
refined into weaker conditions) nor complete (they are sufficient in our basic examples, but not in some
situations we have not considered). All preconditions dealing with name clashes are left implied.

In addition, when operations take a method name as parameter, we consider that method name can be
completed with parameter types to resolve overloading if needed.

A.1 CreateEmptyClass

CreateEmptyClass(classname ¢ ): Create an empty class c in the project.

Refactoring tools. new Class in Eclipse and IntelliJ IDEA.

A.2 CreatelndirectionInSuperClass

original code refactored code
abstract class S { abstract class S {
abstract int m(); abstract int maux();
> int m() { return maux(); }

}

class A extends S { class A extends S {

}int m () { return 1;} }int{ return 1;}

CreatelndirectionInSuperClass(class s, method m, newname n)

Refactoring tools. With IntelliJ IDEA: Use Change Signature on the method m in class s (specify to
“delegate via overloading method”, specify the new name n, specify the desired visibility).
With Eclipse:

e Use Change Method Signature on the method m in class s (specify to “keep original method as delegate
to changed method”, and specify the new name n).

e Use Pull Up to remove the delegator method code that have been introduced in subclasses (the
delegator code is the same in all the classes). Specify the method in the superclass must be removed
replaced by the pulled up method, which is the same.

e Restore method invocations in client classes that have been changed (initial method invocations have
been replaced by delegate method invocations that can be replaced by delegator invocations so that
the initial client code is left unchanged).

This step is manual, but it could be avoided by adapting Eclipse operation so that the client code is
left unchanged when the change in the method signature is hidden with a delegator.
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A.3 AddParameter

(Add Parameter in Fowler [Fow99] et [Koc02])
AddParameter(class ¢, method m, parameterType t, parameterName n, defaultvalue e): Add a parameter
of type t to a method m in class c. In method invocations, use the expression e as new parameter.

original code refactored code
public class A{ public class A{
public void[m1()|{ public void
block } + | block1
public void m2() { - publlc void m2
0| ) }

}

public class B{ public class B{

. .

Refactoring tools. Change Method signature in Eclipse tool and Change Signature in IntelliJ IDEA.

A.4 AddParameterWithReuse

Same as AddParameter, but instead of adding a default value for the additional parameter in invocations,
use any value with the specified type that is visible from the invocation site.

In IntelliJ IDEA, this is specified with the Any Var option in Change Signature. This is not supported
by Eclipse.

Note that when several variables of the specified type are visible, the result in unspecified. In the
example of use in this report, the type of the added parameter is a fresh type, and in recursive methods,
the only variable of this type is the parameter being introduced so that there is not ambiguity.

A.5 AddParameterWithDelegate

original code refactored code
public class A{ public class A{
public void m() { public void-m(B b)|{
block1 > block1

}

} i)ublic void m(){
m(new B ());

}
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A.6 MoveMethod

original code refactored code
public class A{ public class A{
public void m(B b){
block1
1
}
public class B{ public class Bf
public void m(A a){
[block1]
}
}
}

Refactoring tools. If the receiver object is not used in the body of the initial class, it will not be included
as parameter in the destination class, so that you have to add it (see AddParameter).

A.7 MoveMethodWithDelegate

(Move Method in Fowler [Fow99])
MoveMethodWithDelegate(class ¢, method m, targetclass t, newname n): Transform a method m of a class
c into a delegator to a method n in an other class t. The code of m has been moved to n (and adapted).

original code refactored code
public class A{ public class A{
public void m(B b){ public void m(B b){
block1 b.n(this);
1 1
}
public class B{ public class B{
public void n(A a){
[block1]
1
}

Refactoring tools. Move in Eclipse tool. In IntelliJ IDEA, first introduce a local delegate (with Change
Signature), then Move.

Preconditions: An object of the destination class must appear as a parameter of the method m.

A.8 RenameMethod

(Rename in Fowler [Fow99] et [Koc02])
RenameMethod(class ¢, method m, newname n): Rename the method m of class m into n.
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original code refactored code

public class A{ public class A{

public voidm(){ |—— | public void
block1 [block1]

} }

} }

Refactoring tools. Rename in Eclipse and IntelliJ IDEA.

A.9 ExtractSuperClass

(Extract Super Class in Fowler [Fow99] and [Koc02])
ExtractSuperClass(set of classes C, newname s)

original code refactored code

public abstract class S{

abstract void m();

}

public class A{ » | public class A{
void m(){...} void m(){...}
void na(){...} void na(){...}

} 1

public class B{ public class B{
void m(){...} void m(){...}
void nb(){...} void nb(){...}

} }

Refactoring tools. FExtract Superclass in Eclipse tool and IntelliJ IDEA. In IntelliJ IDEA, the Eztract
Superclass operation cannot be applied to several classes simultaneously, so that the inheritance link must
be set manually.

A.10 ExtractSuperClassWithGenerics

Same as FEztractSuperClass but unify different types in method parameters and return types by using
parametric polymorphism (Java Generic types).

Refactoring tools. This is not supported by Eclipse nor IntelliJ IDEA.

A.11 GeneraliseParameter

GeneraliseParameter(class ¢, method m, type t, newtype s)
Modify the parameter type t of method m in class ¢ by the type s.

Preconditions:
e The type t is a subtype of s.

e All method invocations on the parameter of type t in the body of the method must be possible on s.

34



original code refactored code

public class A{ public class A{
public void|m(B b) public void
block1 > block1

} }
} }

public class C {

}

public class B extends C{

}

Refactoring tools. Change Method Signature in Eclipse tool and Type Migration in IntelliJ IDEA (or
Change Signature).

A.12 MergeDuplicateMethods

MergeDuplicateMethods(class ¢, methods M, newname n)
Create one method which will replace a set of methods that have the same body.

original code refactored code
public class A{ public class A{
public void m1(){ public void m(){

block1 } > block1 }
public void m2(){

block } }
}

Refactoring tools. Rename, Replace Method duplication, FExtract Method, In-line in Eclipse, Rename,
Replace Method Code Duplicates, Pull Up, Inline in IntelliJ IDEA.

Preconditions: The two concerned methods must be semantically equivalent.

A.13 PullUpAbstract

PullUpAbstract(set of classes C, method m, interface s)
Pull up a method implemented in a set of classes C to their superclass s: do not move the definitions,
just declare the method abstract in s.
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original code refactored code

public class A { public class A {

} abstract void m()
}

class B extends A { class B extends A {

public void m(){ public void m(){
block1 block1
L }
} }

Refactoring tools. Pull Up in Eclipse tool and IntelliJ IDEA.

Preconditions:
e s is a superclass of each class in C.

e m is defined in all the classes of C

A.14 PullUpConcrete

PullUpconcrete(set of classes C, method m, interface s)
Pull up a method which has the same implementation in a set of classes C to their superclass s: move
the definition to s and remove it from the classes of C

Refactoring tools. Pull Up in Eclipse tool and IntelliJ IDEA.

Preconditions:
e s is a superclass of each class in C.

e If m is defined is several classes of C, the code is the same.

A.15 InlineMethod

(Inline Method in [Fow99])
InlineMethod(class ¢, method m, types): Replace one or all invocations of a given method by its body
and delete it.

original code refactored code
class A { class A {
public void m1(){ public void m1(){
block1-1 ; block1-1 ;
m2(); > | block2;
blocki1-2 ; block1-2 ;
} }
public void m2(){ }
block?2 ; —
}

Refactoring tools. In-line in Eclipse tool and IntelliJ IDEA.
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Preconditions: The method is not polymorphic (abstract or overridden) [Fow99).

A.16 InlineMethodInvocations

Inline only some invocations, do not delete the method definition.

Refactoring tools. Inline in Eclipse and IntelliJ IDEA: select an invocation to inline and specify you
want to inline only that one.

Preconditions: The method is not polymorphic (abstract or overridden) [Fow99].

A.17 AddSpecializedMethodInHierarchy

AddSpecializedMethodInHierarchy(class s, method m, type t, subtype t'): Get a new method from an existing
method m by specializing one of its parameters of type t into a type t' which is a subtype of t.
This new duplication takes place in s and in all its subclasses that override m.

original code refactored code
public class A { public class A {
public void m(B){ L [public void m(B){
block 1 |_block1 1
} public void m(C){
block1 }

}

public class C{
}

public class B extends C{

}

Refactoring tools. With IntelliJ IDEA:

1. Apply DuplicateMethodInHierarchy(c, m, temp-name) (see below).

2. Apply Change Signature on the method temp-name in the class s, to change the parameter type t into
t' (this change is propagated into subclasses). Note that the behavior preservation is not guaranteed
by this operation in general, but here we introduce a new method so the behavior is not changed. Note
also, that here we cannot use the operation Type Migration of IntelliJ IDEA: replacing a parameter
type by one of its subtypes is not safe in general.

3. Rename temp-name into m in s with Rename. Here, the renaming introduces an overloading that
could change the semantics of the program, but in this case, since the two methods have the same
body, the behavior is preserved (some invocation may be dispatched on the new method, but the
external behavior is the same).

Preconditions: t'is a subtype of t.

A.18 DuplicateMethodInHierarchy

Used only in AddSpecializedMethodInHierarchy.

DuplicateMethodInHierarchy(class ¢, method m, newname n)

This creates a duplicate of the method m in the class ¢ with a the name n. All overriding methods in
subclasses are also duplicated in these classes.
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Refactoring tools. With IntelliJ IDEA:

1. For each implementation of the method m in ¢ and its subclasses, duplicate m by applying Extract
Method on its body (give the new name, specify the desired visibility), then inline the invocation of
method n that has replaced the method’s body.

2. Use Pull Members Up to make the new method appear in classes where the initial method is declared
abstract (specify that it must appear as abstract) (see PullUpAbstract).

A.19 DeleteMethodInHierarchy

(Delete Method in Fowler [Fow99] and [Koc02])
DeleteMethodInHierarchy(class ¢, method m): Delete a method m from a class ¢ and its subclasses.

original code refactored code
public class A{ public class A{
public abstract void m1() public abstract void m1()
} }
public abstract void mZ2() o
} —
} }
public class B extends A{ public class B extends A{
public void m1(){ public void m1(){
block1 } block1 }
public void m2(){ o
block2 } -
public class C extends A{ public class C extends A{
public void m1(){ public void m1(){
block } block1 }
public void m2(){ o
block2 } -

Refactoring tools. Safe Delete in IntelliJ IDEA and Delete in Eclipse.

Preconditions: The method to be deleted must not be used.

A.20 PushDownAll

PushDownAll(class s, method m): Push down a method m from a class s to all its subclasses and delete that
method from s (in Push Down Method by Fowler [Fow99], methods are not necessarily pushed down to all
the subclasses).
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original code

public abstract class S{

public abstract void m(){ }

}

public class A extends S{
public void m(){

block1
}
}

public class B extends S{
public void m(){

block2
}
}

Variation for non-abstract methods:

original code

public abstract class S{

public void m(){
block0

}

Y

refactored code

public abstract class S{

}

public class A extends S{
public void m(){

block1
1
}

public class B extends S{
public void m(){

block2
1
}

refactored code

public class A extends S{
public void m(){

block1
1
}

public class B extends S{

Y

public abstract class S{

}

public class A extends S{
public void m(){

block1
}
}

public class B extends S{
public void m(){

block0
1
}

Refactoring tools. Push Down or Push member Down in Eclipse tool and IntelliJ IDEA.

Preconditions: The concerned method should not be used for the type s.

A.21 PushDownlmplementation
Same as PushDownAll but keep the method abstract in the superclass.
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original code

public void m(){
block0

}

public abstract class S{

public void m(){
block1

1

}

public class A extends S{

public class B extends S{

Preconditions: The method is not abstract.

Y

A.22 pushDownNotRedefinedMethod

pushDownNotRedefinedMethod(class ¢, method m)

refactored code

public abstract class S{

public abstract void m();

}

public class A extends S{
public void m(){

block1
1
}

public class B extends S{
public void m(){

block0
1
}

Duplicate the method m of class ¢ into its subclasses.

original code

public void m(){
block0

}

}

public abstract class S{

public void m(){
block1

1

}

public class A extends S{

public class B extends S{

Y

refactored code

public abstract class S{

public void m(){
block0

1

}

public class A extends S{
public void m(){

block1
1
}

public class B extends S{
public void m(){
block0

}

}

Refactoring tools. FExtract Method, Inline, Push Down, Rename in Eclipse and IntelliJ IDEA.

A.23 ReplaceMethodDuplication

ReplaceMethodDuplication(class ¢, method m): Replace any occurrence of method m’s body in ¢ by an
invocation of that method.
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original code refactored code

public class A{ public class A{

public void >| public void[mT1(){ |
block1 block1

1 1

public void m2(){ public void m2(){
block1 } > |this.m1(); }

1 1

Refactoring tools. Replace Method Duplication in IntelliJ IDEA.

Preconditions: The method m must not be abstract.

A.24 DeleteClass

DeleteClass(class c): Delete a class ¢ which is not used.
Preconditions: The class is not referenced in the project.

Refactoring tools. Safe Delete in IntelliJ IDEA, Delete in Eclipse.

A.25 ExtractGeneralMethod

original code

public abstract class C{

public void ma(){
new A().op(this);

public void mb(){
new B().op(this);

refactored code

public abstract class C{

public void m(S o){
o.op(this);
1
public void ma(){
m(new A());
1
public void mb(){
m(new B());
1
}

public class S{

public void op(C c){...}
}

public class S{

public void op(C c){...}
}

public class A extends S{

}...

public class A extends S{

}...

public class B extends S{

}...

public class B extends S{

}...

A.26 InlineClass

InlineClass(class c): Inline one or more references to a given class c.

Refactoring tools. Inline in Eclipse and IntelliJ IDEA.
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