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We study the nematic-smectic phase transition of a thermotropic liquid crystal confined to a
spherical shell. Far from the nematic-smectic phase transition temperature, TNS , we observe a
configuration with four +1/2 defects, as predicted by theory. Since in this case K1 ≈ K3, the four
defects are confined at the thinnest part of the shell to minimize the energy associated to the defect
cores. By contrast, near TNS, where K3 ≫ K1, bend distortions become prohibited and the defects
organize themselves along a great circle of the sphere, confirming recent theoretical and simulation
results. During this structural change, the defects associate in two pairs that behave independently.
In the smectic phase, we observe a new configuration displaying curvature walls.

PACS numbers: 61.30.Jf,61.30.Hn,64.75.Xc

Nematic liquid crystals are typically formed by rod-
like molecules displaying orientational order along an av-
erage direction, n, called the director. When a nematic
is confined to a spherical shell, the director field is nec-
essarily disrupted by the presence of topological defects
[1, 2]. These systems not only are rich systems to study
topological problems, but they also provide a promising
route for generating colloids with a valence [3], which is
an important goal in material science [4]. Different de-
fect structures have been observed, differing in the num-
ber and distribution of defects [5]. The associated elastic
energy is given by the Franck-Oseen free energy density
[6]:
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where K1 and K3 are the elastic constants associated to
splay and bend distortions. In the limit of a very thin
shell, the director can be regarded as a surface field, and
thus, the twist term associated to K2 can be neglected.
WhenK1 = K3, theory predicts a configuration with four
defects arranged in a tetrahedral fashion [7], as shown in
Fig.1(a). In this configuration, each defect has a topolog-
ical charge s = + 1

2 , reflecting the π rotation experienced
by n along a path encircling each defect. This is consis-
tent with a mathematical theorem due to Poincaré and
Hopf, which establishes that the total topological charge
for a nematic sphere is s = +2 [8]. Interestingly, a new
arrangement is expected when K3 ≫ K1, in which the
four s = + 1

2 defects are placed along a great circle of the
sphere [9, 10], as shown in Fig.1(b). These theoretical
expectations, however, have never been experimentally
tested nor the effect of the anisotropy in the elastic con-
stants been experimentally explored.
In this letter, we study the effect of the anisotropy in

elastic constants K1 and K3 by taking advantage of the
divergence of K3 near the nematic-smectic phase transi-
tion temperature, TNS [11]. Due to the heterogeneous

thickness of the experimental shells, the four s = + 1
2

defects characteristic of the nematic phase appear con-
fined in a small region of the shell and not arranged in
a tetrahedral configuration. By decreasing the temper-
ature toward TNS, the defects progressively separate to
eventually arrange themselves in a great circle. Below
TNS, the translational symmetry of the nematic phase is
broken and a smectic shell is formed.

FIG. 1: Arrangement of four s = + 1

2
disclinations on a

bi-dimensional shell (a) in a tetrahedral configuration when
K1 ≈ K3, and (b) along a great circle when K1 ≪ K3. (c)
Cross-section of an experimental shell with non-uniform thick-
ness.

To fabricate the liquid crystal shells, we generate dou-
ble emulsions in a microfluidic glass capillary device [12].
An inner aqueous droplet is encapsulated inside an outer
liquid crystal droplet, as schematically shown in Fig.1-
(c), which is in turn dispersed in a continuous aqueous
phase. The average thickness of the shell, h, is given by
the difference between the outer and inner radii, R−a. In
our experiments, R is within the (30−120)µm range and
h is typically (2− 3)% of R. The inner and outer phases
contain 1 wt% of polyvinyl alcohol (PVA, Mw ∼ 20.000
g mol−1), which stabilizes the double emulsion and im-
poses planar degenerate anchoring to the liquid crystal.
The middle phase is 4-n-octyl-4-cyanobiphenyl (8CB), a
liquid crystal displaying a nematic-smectic phase transi-
tion at TNS = 33.5◦C. Since the inner aqueous solution is
slightly denser than 8CB, the inner droplet sinks inside
the outer one, making the shell thinner at the bottom
and thicker at the top. In terms of thickness, the ex-
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FIG. 2: (a-g) Cross-polarized images of a 8CB nematic shell as temperature T decreases toward the nematic-smectic phase
transition temperature TNS . (h-k) Evolution of the director field and defect structure during the process, in which K3/K1

changes between 1 < K3/K1 <∞. Each panel shows the director field on the lower (left) and upper (right) hemispheres.

perimental shells are, thus, axisymmetric with respect
to the gravity direction, with a non uniform thickness
δ ≈ h(1 − cos θ) that depends on the zenithal angle θ
[Fig. 1(c)]. We fabricate and store the shells at 37◦C,
where 8CB is in the nematic phase. Due to the diver-
gence of K3 at TNS, an accurate control of temperature
is required to guarantee a quasistatic approach to the
nematic-smectic phase transition; we use a heating stage
with a Lakeshore controller to regulate the temperature
with a precision of 0.01◦C. Additionally, after changing
temperature, we wait for 20 minutes to ensure that the
system is indeed in an equilibrium state.

Figure 2(a-g) shows the birefringence texture of a ne-
matic shell with four defects as the temperature T is
quasi-statically decreased toward TNS . The evolution of
the defect positions and director fields is represented in
Fig.2(h-k). When T − TNS & 1◦C, the four defects ap-
pear confined at the bottom of the shell, as shown in
Fig. 2(a). However, as T approaches TNS , defects 1
and 2 start moving away from each other, while defects
3 and 4 only slightly increase their separation, as shown
in Figs. 2(a-d). It is only after defects 1 and 2 reach the
equatorial plane that defects 3 and 4 significantly move
away from each other to eventually reach the equatorial
plane too, as shown in Figs. 2(e-g). To quantify the
evolution of the defect pairs, we plot the ratio between
the angles subtended by defects 1-2 and 3-4 with respect
to the center of the shell, α12 and α34, as a function of
T − TNS. When T is far from TNS , the defects are al-
most located at the vertices of a square and α12 ≈ α34,
as shown in Fig. 3. Decreasing T causes the elongation
of the structure into a rhombus with α12 > α34. This
elongation becomes maximum at T −TNS = 0.06. Below
this, defects 3-4 progressively migrate toward the equato-
rial plane. As a result, α12/α34 decreases until eventually
the defects are located in a great circle and α12 ≈ α34

again, as shown in Fig. 3.

The α12/α34 ratio is closely related to the evolution of
K3 and K1 with T . Close to TNS, K3 diverges with re-
spect to K1, as shown in the inset of Fig.3(a), and thus,

bend distortions become energetically prohibited. This
forces n to align along great circles, which are the coun-
terparts of straight lines on the sphere. In this config-
uration, schematically represented in Figs.2(k), the four
defects are necessarily located on a great circle. For shells
homogeneous in thickness, all great-circle arrangements
are degenerated in energy. However, this degeneracy is
broken in our experimental shells that are heterogeneous
in thickness. In this case, the ground state is achieved
when the four defects are located on the equatorial plane,
along the only great circle in which δ is uniform.

Far from TNS, when K3 ≈ K1, the four defects are
confined at the thinnest part of the shell, as shown in
Fig.2-(a). This results from the non-uniform thickness of
these experimental shells [13]. Due to the non-vanishing
thickness of the shells, the +1/2 defects are disclination
lines that span the shell; to minimize their length, and
thus the energy of the system, they group together at
the thinner part of the shell. The approximate square
arrangement of the defects comes from the approximate
isotropy of the elastic constants at high temperatures. In
fact, ifK3/K1 = 1, the elastic energy associated with any
director field is invariant under a π

2 rotation in n, convert-
ing bend distortions into splay distortions and vice versa.
Therefore, the four defects must be located at the ver-
tices of a square in their equilibrium configuration when
K3/K1 = 1.

At intermediate temperatures, when 1 < K3/K1 <∞,
the energy invariance under a π

2 rotation of n is bro-
ken, and thus, the four defects are necessarily arranged
in a rhombus structure. Since K1 does not change much
in the temperature range studied, the motion of the de-
fects is mainly controlled by the energy term associated
to bend. To explain why the distance between defects
1-2 becomes larger than the distance between defects 3-
4 when K3/K1 increases, we investigate how increasing
K3 affects the equilibrium texture shown schematically
in Fig.2(h), where K3 ≃ K1 ≡ K. This nematic tex-
ture has a free energy that depends on K and the core
energies of the defects. Now, we consider an increase of



3

the bend constant from K to K3 = K +∆K3, while we
keep the position of the defects fixed. The additional
bend energy density, fb, associated to this increase in
the bend constant is mainly controlled by the radius of
curvature of the director lines on the sphere. For a longi-
tudinal director field such as the one shown in Fig.2(k),
fb is zero since the integral curves of the director field
are great circles, whereas fb = ∆K3 cot

2 θ/2R2 for a lat-
itudinal texture [14]. In Fig.2(h), the curvature of the
director lines is given by the locations of the defects,
which allow us to split the sphere into two caps. In
the lower cap, defined by the position of defects 3 and
4 [shaded region in Fig2(h)], the magnitude of fb is given

by f
(1)
b ≈ ∆K3 cot

2(α34/2)/2R
2, while for the remain-

ing part of the sphere, f
(2)
b ≈ ∆K3 cot

2(α12/2)/2R
2.

The corresponding energies, F
(1)
b and F

(2)
b , can be re-

spectively obtained as F
(1)
b =f

(1)
b V (1) and F

(2)
b =f

(2)
b V (1),

where V (1) and V (1) are the volumes corresponding
to the regions considered. In spherical coordinates,

V (1)=
∫ α34/2

0
2πR2h(1− cosθ) sin θdθ ≈ πR2hα4

34/64 and

V (2) ≈ 4πR2h. In the limit of small angular distances, we

obtain F
(1)
b ≈ πh∆K3α

2
34/32 and F

(2)
b ≈ 8πh∆K3/α

2
12.

The motion of the defects must be driven by the relax-

ation of this additional bent energy. Since F
(1)
b ∼ α2

34

and F
(2)
b ∼ α−2

12 , the system will spontaneously increase
α12 as K3 increases, as we observe experimentally.

FIG. 3: (a) Ratio between the angular distances α12 (between
defects 1-2) and α34 (between defects 3-4) as a function of
T − TNS . The inset shows the variation of K3 and K1 versus
T − TNS [11]. (b) Geometric definition of α34.

At TNS , the shell becomes smectic. In the smectic
phase, the molecules assemble in equispaced layers per-
pendicular to n. From a geometric point of view, the
nematic texture shown in Fig.2(k) can be readily con-
verted into a simple smectic texture that preserves the
four s = + 1

2 defects [15]. The resulting smectic tex-
ture is schematically represented in Fig.4(a), n is aligned
along great circles and the bi-dimensional layers follow
latitude lines. Experimentally, however, the texture de-
velops a series of additional distinctive patterns in time.
Just after the phase transition, a set of longitudinal lines

FIG. 4: (a) Longitudinal texture in a bi-dimensional smectic
shell. The schematic shows the director field (discontinuous
lines) and smectic layers (continuous lines) on the upper hemi-
sphere. (b) Birefringence texture observed in experimental
smectic shells, where curvature walls divide each hemisphere
in crescent domains. The inset in (b) shows that n is tilted
in opposite directions in adjacent domains. (c) Director field
corresponding to the texture shown in (b), where the walls
provoke a zig-zag modulation of the smectic layers. (e) Sec-
ondary curvature walls provoking a secondary optical modu-
lation inside crescent domains. (d) Primary curvature walls at
the thinner part of the shell. (f) Local 3-dimensional smectic
texture resulting from the bi-dimensional one shown in (a).
(g) Possible 3-dimensional texture in which the smectic layers
twist through the shell thickness. (h) In this configuration,
the effective layer thickness d′ increases at the outer sphere
compensating the effect of the different curvatures of the in-
ner and outer spheres. (i) This texture implies a large tilt
angle ψ with respect to the outer sphere normal.

form on the thicker part of the shell along the direction
of the former director field, as shown in Fig.4(b). These
lines connect defects 1 and 2 and divide the shell into
several crescent domains; one of those domains is high-
lighted in Fig.4(b). As the sample is rotated between
cross-polarizers, the extinction angle periodically changes
from −13◦ to +13◦ from one crescent domain to the next
one, as shown in the inset of Fig.4(b). Since n tilts in
opposite symmetric directions in adjacent domains, the
longitudinal lines can be identified as curvature walls
[16]. We note that the resultant zig-zag modulation of
the smectic layers reminds of the patterns observed after
a Helfrich Hurault instability, as schematically indicated
in Fig.4(c).

After formation of these curvature walls, we observe
that a secondary set of curvature walls form, but these
have a much smaller angular distortion, ≈ 1◦, than the
first. They extend across each domain perpendicularly
to the tilted director field and give rise to a dark/light
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striped pattern inside domains, as shown in Fig.4(d).
The transition ends with the formation of primary cur-
vature walls at the lower hemisphere, as shown in 4(e).
The description provided up to this point implicitly

considers that n is uniform through the shell thickness,
which is equivalent to a concentric stacking of the bi-
dimensional structure of Fig. 4(c). Within this picture,
the curvatures walls would stem from the significant splay
distortions in Fig. 4(a), which are released via the dila-
tion of the layers at the walls [6]. Alternatively, the walls
could result from the non-zero thickness of our experi-
mental shells, as explained bellow.
In a thick shell, where the inner and outer spheres have

significantly different radii, a strict planar anchoring can
be satisfied on the inner sphere but not on the outer one;
this results from the fact that having strong planar an-
choring on a curved surface is only compatible with a
bulk smectic texture without defects or layer dilations if
the smectic layers grow outwardly from the convex side of
the surface [15]. As a result, the smectic layers filling the
shell are necessarily tilted at the outer surface violating
the preferred planar anchoring and entailing an anchor-
ing energy cost. To illustrate this, we construct a local
bulk smectic texture from a surface texture with planar
anchoring in Fig.4(f); the result is a tilt angle, ψ, at the
outer surface. For typical R = 119µm and h = 4µm, we
obtain a typical tilt angle ψ = arccos(a/R) ≈ 15◦.
It is tempting to think that this supplementary an-

choring energy can be decreased if the smectic layer is
progressively twisted from the inner sphere to the outer
sphere in the way shown in Fig.4(g). The twist angle
is φ = 13◦ at the outer sphere and φ = 0 at the in-
ner sphere. Note that this twist implies a slight dila-
tion of the layers via curvature walls. The zig-zag of
the smectic layers at the surface sphere implies these are
longer than the corresponding smectic layers at the inner
sphere; this corresponds to a larger effective layer sepa-
ration, d′ = d/cosφ, with d is the spontaneous thickness
of the layer [see Fig.4(h)]. The number of smectic layers
on both surfaces is the same when d′/d = R/a or equiv-
alently when cosφ = a/R. For typical values of R and a,
we obtain a twist angle at the outer surface of φ = 15◦,
consistent with our experimental observations. Such an
arrangement, however, also induces a tilt in the layers at
the outer surface. Accommodating φ = 0 at the inner
surface and φ = 13◦ at the outer surface without layer
dilation entails tilting the smectic layer by an angle ψ,
with maximal value given by tanψ = h/(p tanΦ), where
p is the width of the corresponding crescent domain [see
Fig. 4(i)]. Using the experimental values p ≈ 15 µm,
φ ≈ 13◦ and h ≈ 4µm), we obtain ψ = 45◦, implying
there is also an important penalty in anchoring energy
in the case of the considered twisted structure. Detailed
energy calculations are required in order to elucidate the

ultimate origin of the observed curvature walls.

Nematic shells undergo significant configurational
changes as K3/K1 is varied. When K3/K1 ≈ 1, the four
s = + 1

2 defects appear confined in the thinnest part of the
shell, approximately located at the vertices of a square.
By contrast, when K3/K1 ≫ 1, the four defects relocate
on the equatorial plane, confirming recent theoretical and
simulation expectations [9, 10]. The transition between
these two limiting configurations proceeds continuously
through a series of equilibrium states in which the defects
typically arrange in a rhombus whose diagonals ratio de-
pends on the value of K3/K1. This offers new possibil-
ities for controlling the position of defects, and eventu-
ally, if these are functionalized, the directionality of the
interactions between shells. New types of defects, not
observed in shells before, appear when the nematic order
is replaced by smectic order. At this point, we observe
the formation of primary and secondary curvature walls,
whose origin we have discussed by considering two pos-
sible scenarios. Our results open the way to rigorous
theoretical calculations and exemplify the richness of be-
haviors that can be obtained when the elasticity of the
material or the degree of order in the shell is changed.
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