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Abstract. We perform a multimode treatment of spin squeezing in-
duced by interactions in atomic condensates, and we show that, at finite
temperature, the maximum spin squeezing has a finite limit when the
atom number N → ∞ at fixed density and interaction strength. To cal-
culate the limit of the squeezing parameter for a spatially homogeneous
system we perform a double expansion with two small parameters: 1/N
in the thermodynamic limit and the non-condensed fraction 〈Nnc〉/N
in the Bogoliubov limit. To test our analytical results beyond the Bo-
goliubov approximation, and to perform numerical experiments, we use
improved classical field simulations with a carefully chosen cut-off, such
that the classical field model gives for the ideal Bose gas the correct
non-condensed fraction in the Bose-condensed regime.

1 Introduction

A two-level atom can be described as an effective spin 1/2. Here, to describe an
ensemble of atoms in two different internal states a and b, that are typically two
hyperfine states, we use the picture of a “collective spin”. This spin, of length N/2, is
simply the sum of the effective spins 1/2 that describe the internal degrees of freedom
of each atom. In the second quantized formalism the three hermitian spin components

Ŝx, Ŝy and Ŝz are defined by:

Ŝ+ ≡ Ŝx + iŜy =

∫

d3r ψ̂†
a(r )ψ̂b(r ) (1)

Ŝz =
N̂a − N̂b

2
(2)

where the bosonic field operators ψ̂a,b obey the usual commutation relations, N̂a =
∫

d3r ψ̂†
a(r )ψ̂a(r ) is the atom number in component a and the same for b. The spin

operators are dimensionless and obey the commutation relations [Ŝx, Ŝy] = iŜz and

cyclic permutations. Physically Ŝz is the population difference between a and b states,
while Ŝx and Ŝy describe one-body coherence between them.

a e-mail: alice.sinatra@lkb.ens.fr
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Spin squeezing [1] is about creating quantum correlations, in such an ensemble of
atoms, that can be useful for metrology. In particular spin squeezed states can be used
to improve the accuracy of atomic clocks beyond the so called “standard quantum
limit” that has been already reached in the most precise clocks [2]. The resulting gain
for metrology is quantified by a spin squeezing parameter ξ2 [3,4]:

ξ2 =
N∆S2

⊥,min

|〈S 〉|2 , (3)

where N is the total atom number and ∆S2
⊥,min is the minimal variance of the collec-

tive spin orthogonally to the direction of its mean value 〈S 〉. The state is squeezed if
and only if ξ2 < 1. As explained in [3], in an atomic clock experiment using Ramsey
population spectroscopy, ξ directly gives the reduction in the statistical fluctuations
of the measured frequency ωab with respect to using uncorrelated atoms (for the same
atom number N and the same Ramsey time T ):

∆ωsq
ab = ξ∆ωunc

ab =
ξ√
NT

(4)

The parameter ξ in Eq.(3) is in fact the properly normalized ratio between the “noise”
∆S⊥,min and the “signal” |〈S〉|. In experiments ∆S⊥,min is directly measured by

measuring Ŝz after an appropriate state rotation and |〈S〉| is separately deduced from
the Ramsey fringes contrast.

Very recently experimental breakthroughs in spin squeezing have been achieved
using either the interaction between atoms and light in an optical cavity [5] or atomic
interactions in bimodal Bose-Einstein condensates [6], [7]. The ultimate limits of
the different paths to spin squeezing are still objects of active studies [8,9,10,11,12].
We address here the issue of non-zero temperature and of the influence of the non
condensed fraction for spin squeezing schemes using Bose-Einstein condensates.

We face the following physical problem: An interacting Bose gas, prepared at fi-
nite temperature in the internal state a, is subjected to a sudden π/2 mixing pulse
that puts each atom in a coherent superposition of two different internal states a and
b. From this out of equilibrium state, with factorized spin and motional variables,
quantum correlations and spin squeezing are created dynamically by the atomic in-
teractions [1], [4]. Let us first sketch how this happens in a simple two-mode picture,
i.e. assuming that all the atoms in a or b share the same wave function for their
motional degrees of freedom. After the mixing pulse, the two condensates in a and
b have a well defined relative phase, with a relative phase distribution whose width
scales as 1/

√
N , and fluctuations in the relative particle number difference scaling

as
√
N . In a two-mode picture, the initial state can be expanded over Fock states

|Na, N − Na〉 with Na particles in state a and N − Na particles in state b. Due to
atom-atom interactions, each Fock state acquires a phase in the evolution that is
proportional to Na −Nb [1,13,14]. This situation is completely equivalent to the evo-
lution of a coherent state in a Kerr medium in optics. During the evolution, due to
the different phase shifts of the different Fock states, the relative phase distribution
starts to spread. At the same time, quantum fluctuations orthogonal to the mean
spin direction get distorted and, before the relative phase distribution has sensibly
spread, spin squeezing is created in the sample. Our aim is to include the two-mode
quantum dynamics that we just described, and the effect of the thermally excited
non-condensed modes within the same formalism. The thermal modes also provide
a condensate phase spreading [15],[16],[17],[18] and are expected to affect the spin
squeezing generated in the system at non-zero temperature [9]. For a review of spin
squeezing and decoherence see also [11].
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A central issue is the scaling of the squeezing as the system gets large, i.e. in
the thermodynamic limit. Most studies are based on a two-mode description [1]. In
this frame the squeezing parameter minimized over time ξ2min tends to zero (infinite

metrology gain) for N → ∞ as ξ2min ∼ N−2/3. Although some studies beyond the
two-mode theory were performed [4,19,20] they could not prove or disprove the two-
mode scaling of spin squeezing in real condensates. Here we can go further. We find
that for realistic atom numbers, the two-mode scaling ξ2min ∼ N−2/3 is meaningless at
finite temperature and that the spin squeezing parameter ξ2min at the thermodynamic
limit has a finite non-zero value that we calculate explicitly. In this paper we present
a detailed derivation of the results given in [9] and we present new improved classical
field simulations, with a carefully chosen cut-off such that the classical field model
gives for the ideal Bose gas the correct non-condensed fraction in the Bose-condensed
regime. We also present results for the squeezing that would be measured by detecting
only the condensed particles, which we call the “condensate squeezing”, and we show
that it is much worse than the squeezing of the total field for reasons that we explain
in the paper.

In section 2 we formalize the problem and expose our approach to solve it. In
section 3 we proceed with two numerical experiments. These experiments show (i)
the existence of a non-zero thermodynamic limit for the squeezing parameter in con-
trast with the predictions of the two-mode theory, and (ii) the universal scaling with
the temperature of the squeezing in the thermodynamic and weakly interacting limit.
Analytical calculations are performed in section 4. By performing a double expansion
of ξ2 in terms of two small parameters, the inverse atom number 1/N controlling the
thermodynamic limit and the non-condensed fraction controlling the weakly interact-
ing limit, we obtain explicitly the minimal squeezing parameter that it is possible to
achieve by this method as a function of the initial temperature and the interaction
strength. A physical interpretation of the results is given in section 5. In that section
we also show that the squeezing defined for the total field and the squeezing defined
for the condensate mode only are very different and we give a physical explanation.
We conclude in section 6.

2 The problem

2.1 The Quantum Model

We consider a spatially homogeneous system of N bosons in two internal states that
interact with short range binary interactions. We take for simplicity identical in-
teractions in components a and b and no crossed a-b interactions 1. The system is
discretized on a cubic lattice of lattice spacing l, with periodic boundary condition
of period L along each direction x, y, z. For numerical convenience, L/l = nmax is
an even integer. There are in total N ≡ V/dV lattice points, where V = L3 is the
system volume and dV = l3 the unit cell volume. The Hamiltonian for one separate
spin component, e.g. component a, reads

Ĥa =
∑

k

~
2k2

2m
â†
k
âk +

g0
2
dV
∑

r

ψ̂†
a(r)ψ̂

†
a(r)ψ̂a(r)ψ̂a(r) (5)

In the kinetic energy term we have expanded the field operator over plane waves

ψ̂a(r) =
∑

k

âk
eik·r√
V

(6)

1 In 87Rb atoms this may be done by spatial separation of the spin states [7] or by Feshbach
tuning of the a-b scattering length [6].
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and âk annihilates a particle of wave vector k belonging to the first Brillouin zone
(FBZ) [−π/l, π/l[3 of the lattice, so that along each direction ν, kν ∈ 2π

L {−L/(2l), . . .,
L/(2l) − 1}. Since we consider a lattice model, the field operator here obeys the
discrete bosonic commutation relations (76). The second term in (5) represents atomic
interactions modeled by a purely on-site interaction with a bare coupling constant on
the lattice g0. In practice, to recover the continuous space physics, l is taken to be
smaller than both the healing length ξheal and the thermal de Broglie wavelength λdB.
In the weakly interacting regime, |a| ≪ ξheal, λdB, one can further take l ≫ |a| so that
in the following we will identify g0 with the effective coupling constant g = 4π~2a/m
where a is the s-wave scattering length 2.

Initially at t < 0, all the N atoms are in the internal state a in thermal equilibrium
described by the canonical density operator

ρ̂ =
1

Z
e−βĤa (7)

with β = 1/(kBT ) and T ≪ Tc where Tc is the transition temperature for Bose-
Einstein condensation.

At t = 0 an electromagnetic pulse mixes the states a and b. The pulse Hamiltonian
acting during a time interval tpulse is

V̂p =
~Ω

2i

∑

r

dV (ψ̂†
aψ̂b − ψ̂†

b ψ̂a) (8)

In practice the timescale tpulse is shorter than all the relevant timescales in the original
Hamiltonians Ha,b so that we can take the limit tpulse → 0, Ω → ∞ with Ωtpulse =
π/2. After integration of the Heisenberg equations of motion during tpulse, it is found
that the fields are transformed by the π/2 pulse as follows:

ψ̂a(0
+) =

1√
2
[ψ̂a(0

−)− ψ̂b(0
−)] (9)

ψ̂b(0
+) =

1√
2
[ψ̂a(0

−) + ψ̂b(0
−)] (10)

We are interested in the squeezing and quantum correlations that develop during the
non-equilibrium dynamics following the pulse for t > 0.

2.2 Our Approach

The problem of the scaling of the squeezing for N → ∞ in the multimode case
implies the solution of the non-equilibrium quantum dynamics for a large number
of atoms and a large number of modes. We cannot solve exactly this problem even
numerically. However, what can be solved exactly on a computer is the “classical
field equivalent” of our problem. We then adopt the strategy summarized in Table 1.
We use the classical field model to (i) perform numerical experiments and (ii) test
a perturbative solution that we can generalize to the quantum case. The quantum
perturbative solution is then used to get quantitative predictions on the real physical
system.

2 The exact relation between the bare coupling constant and the effective coupling constant

is 1/g = 1/g0 +
∫

FBZ
d3k

(2π)3
m

~2k2 , where FBZ=[−π/l, π/l[3.
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Table 1. We cannot solve exactly the problem in the quantum case but we find an analytical
perturbative solution. We check our perturbative approach in the classical case where we
can solve the model exactly (numerically).

Quantum field solution Classical field solution
model available ? model available ?

Ĥ[ψ̂a(r), ψ̂b(r)] no H [ψa(r), ψb(r)] yes
l

Perturbative yes Perturbative yes

2.3 Classical field model

The classical field model [21,22] is obtained by replacing the quantum fields with
classical fields in the Hamiltonian 3

ψ̂†
a, ψ̂a, ψ̂

†
b , ψ̂b → ψ∗

a, ψa, ψ
∗
b , ψb. (11)

In the equations of motion the commutators are then replaced by Poisson brackets.
The classical field model is useful when the interesting physics is given by low-energy
highly populated modes [23,24,25]. For our classical field simulations, we assume that
this is the case in the equilibrium state before the pulse, with all the particles in state

a. The initial field ψ
(0)
a then randomly samples the thermal equilibrium classical field

distribution for the canonical ensemble at temperature T

ρcl =
1

Z
e−βH (12)

where H is the classical Hamiltonian, which is a discrete version of the Gross-
Pitaevskii energy functional:

H =
∑

k

~
2k2

2m
a∗
k
ak +

g

2
dV
∑

r

ψ∗
a(r)ψ

∗
a(r)ψa(r)ψa(r) (13)

For the initially empty state b, inspired by the Wigner quasi-probability distribution
of the quantum density operator and the truncated Wigner approach [26,27,28,29]

we represent the vacuum by a classical field ψ
(0)
b having in each mode independent

Gaussian complex fluctuations of zero mean and variance 1/2: More precisely, we set

b
(0)
k

= X + iY where the independent real random variables X and Y have the same
Gaussian probability distribution

P (x) =

√

2

π
e−2x2

(14)

At t = 0 the fields are mixed by the pulse according to (9)-(10). At later times, the
fields, ψa and ψb evolve independently according to the discrete non-linear Schrödinger
equation (ν = a, b)

i~ ∂tψν =

[

−~
2∆

2m
+ g|ψν(r, t)|2

]

ψν (15)

3 In this classical limit, the substitution g0 → g is required, since the difference between
1/g0 and 1/g is due to quantum fluctuations.
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where the discrete Laplacian ∆ has the plane waves exp(ik ·r) on the lattice as eigen-
vectors of eigenvalues −k2. The lattice model automatically provides a momentum
cut-off to the classical field model, corresponding to the boundaries of the first Bril-
louin zone FBZ=[−π/l, π/l[3. The various observables have a more or less pronounced
dependence on the cut-off. Here, guided by our analytical results (see section 4) we
choose the cut-off such that, in the thermodynamic limit, the non-condensed density
for an ideal gas in continuous space in the Bose condensed regime (zero chemical
potential) is exactly reproduced by the classical field model:

∫

R3

d3k

(2π)3
1

eβEk − 1
=

∫

FBZ

d3k

(2π)3
kBT

Ek
(16)

where Ek = ~
2k2/2m is the kinetic energy, the mode occupation numbers are given

by the Bose formula for the quantum case and by the equipartition formula for the
classical case. As revealed by the change of integration variable K = λdBk, the con-
dition (16) is an equation for l/λdB with λdB = [2π~2/(mkBT )]

1/2 the thermal de
Broglie wavelength. The integrals on both sides of (16) can be calculated analytically,
see e.g. [30] for the integral in the right-hand side, and the usual factor ζ(3/2) appears
in the left-hand side (where ζ is the Riemann Zeta function). The condition (16) then
gives Emax

k ≃ 2.695kBT with Emax
k is the maximal kinetic energy on the grid, here

Emax
k = 3~2(π/l)2/(2m) 4.

3 Numerical Experiments

3.1 Dimensional analysis

As specified in subsection 2.1, when the lattice model approaches the continuous space
physics for our observable (the spin squeezing), the physical parameters of the model
are the atom mass m, the effective coupling constant g characterizing low energy
binary interactions between the atoms, the temperature T , the total atom number N
and system volume V :

~
2

m
, g , kBT , N , V (17)

The spin squeezing parameter optimized over time, ξ2min, is a dimensionless quantity.
It is therefore a function of the independent dimensionless combinations that we can
form from the ensemble (17):

ξ2min = f(N,
√

ρa3,
kBT

ρg
) (18)

Here
√

ρa3 is the “small parameter” such that
√

ρa3 ≪ 1 characterizes the weakly
interacting limit, and ρg is the mean field chemical potential of the gas (at T = 0).
The same dimensional analysis and the same general form of ξ2min hold for the classical
field model.

4 In the classical field simulations, to ensure maximal ergodicity, we did not use a cubic
lattice. We used the following aspect ratios for the quantization box, L2

x : L2
y : L2

z =
√
2 :

(1+
√
5)/2 :

√
3, and we discretized the positions with the same even number of points nmax

along each direction. This corresponds in condition (16) to a slightly asymmetric FBZ.
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Fig. 1. (Color online). Minimal squeezing parameter (that is, minimized over time)
for four different temperatures and increasing system sizes in the thermodynamic limit
N → ∞, ρ, g, T = constant. Squares: classical field simulations result. kBT/ρg =

1.13(a), 0.78(b), 0.50(c), 0.28(d). For all the points
√

ρa3 = 1.32 × 10−2. The horizontal
dashed lines are analytical results in the thermodynamic and weakly interacting limit (21)
that are the classical field equivalent of (62). The grid sizes (number of points per direction)
are nmax = 12, 16, 20, 32, 36 for (a), nmax = 10, 12, 16, 32, 40 for (b), nmax = 12, 16, 24, 36, 40
for (c) and nmax = 6, 8, 12, 16, 24, 32 for (d).

3.2 Existence of a thermodynamic limit for ξ2

We have performed classical field simulations, increasing the system size in the ther-
modynamic limit

N → ∞ ; V → ∞ ; ρ, g, T = constant , (19)

In Fig.1 we show the result for four different temperatures. The squeezing parameter,
minimized over time, converges to a finite value. According to the general form (18),

ξ2min then depends on kBT/ρg and
√

ρa3. The first parameter kBT/ρg is varied in

Fig.1, whereas the parameter
√

ρa3 defining the weakly interacting regime is main-
tained constant in that figure. Note that for curves (a)-(c) the limit is already almost
reached for N = 3 × 104 while a larger system is needed for the lowest temperature
curve (d).

3.3 Weakly interacting limit of ξ2

Starting from a point that is already at the thermodynamic limit for each temperature,
we have performed other simulations, going more deeply in the weakly interacting

limit ρ→ ∞, g → 0, ρg, T = constant [31] 5. In this limit the small parameter
√

ρa3

tends to zero. In Fig.2, for a fixed value of kBT/ρg, we show the squeezing parameter

divided by
√

ρa3 as a function of a rescaled time, for various values of
√

ρa3. It is

5 In our simulations (with finite size systems) we increase N and decrease g while V , T
and Ng are fixed.



8 Will be inserted by the editor

0 2 4 6 8 10 12 14
ρgt(ρa

3
)
1/4

//h

0

2

4

6

8
ξ2 /(
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Fig. 2. (Color online). Squeezing parameter ξ2 divided by
√

ρa3 as a function of a rescaled
time, in the weakly interacting limit: ρ → ∞, g → 0 with ρg, T = constant. Solid lines:
classical field simulations. Parameters: kBT/ρg = 0.5 and nmax = 32 for all the curves. (a)

N = 3 × 104,
√

ρa3 = 1.32 × 10−2; (b) N = 105,
√

ρa3 = 3.96 × 10−3; (c) N = 3 × 105,
√

ρa3 = 1.32×10−3; (d) N = 6×105,
√

ρa3 = 6.59×10−4. Horizontal line: analytical result
(21).

apparent that the rescaled minimal squeezing is nearly constant in the figure. For

weak interactions, ξ2min/
√

ρa3 is thus a function of kBT/ρg only.

3.4 Spin squeezing as a function of the temperature

From the numerical experiments described in 3.2 and 3.3, we conclude that, in the
double thermodynamic plus weakly interacting limit, the squeezing parameter mini-

mized over time is equal to
√

ρa3 times a universal function of kBT/ρg:

ξ2min =
√

ρa3 F

(

kBT

ρg

)

(20)

We show the universal scaling of the minimal squeezing parameter in the thermody-
namic limit in Fig.3, where we collect the results of several simulations for different
temperatures and interaction strengths. In the following section we shall develop the
analytical theory that gives the explicit expression of the function F appearing in
(20). The analytical result for the classical field theory is represented as a full line in
Fig.3. It reads:

ξ2min =

∫

FBZ

d3k

(2π)3
s4k
2ρ
n
(0)
k

(

(s
(0)
k )2

s4k
+

s4k

(s
(0)
k )2

)

(21)

Here ρ = N/V is the total density, sk = Uk + Vk, s
(0)
k = U

(0)
k + V

(0)
k are Bogoliubov

functions defined in (30) and (28), n
(0)
k = kBT/ǫ

(0)
k are the equilibrium occupation
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T/ρg

0,01

1

100

ξ2 m
in

/(
ρa

3 )1/
2

Fig. 3. Minimal squeezing parameter ξ2min divided by
√

ρa3 as a function of kBT/ρg. Sym-

bols: classical field simulations with
√

ρa3 = 1.32 × 10−2 (squares), 1.94 × 10−3 (disks),

and
√

ρa3 = 4.17× 10−4 (triangles). Solid line: Analytical classical field result (21). Dashed
line: Quantum result (62). The grid sizes, for increasing kBT/ρg are nmax = 32, 36, 40, 36 for
squares, nmax = 24, 32, 32 for disks and nmax = 32 for triangles. The initial non condensed
fractions in component a before the pulse are 〈Nnc〉/N = 0.01, 0.02, 0.04, 0.07 for squares,
〈Nnc〉/N = 0.01, 0.02, 0.04 for disks and 〈Nnc〉/N = 0.01, 0.02, 0.05 for triangles.

numbers of Bogoliubov modes before the pulse with ǫ
(0)
k = [Ek(Ek +2ρg)]1/2 and the

integral is restricted to the first Brillouin zone FBZ with kν ∈ [−kmax
ν , kmax

ν [ for the
three directions ν = x, y, z. We note a very good agreement between the analytics
and the simulations for all the points. For comparison, we also show the analytical
result for the quantum field (62), in the zero-lattice spacing limit, as a dashed line.
Note how well the classical results with the cut-off prescription (16) reproduce the
quantum analytical results for kBT > ρg.

4 Analytical results

We want here to address the fully quantum case and calculate analytically the func-

tion F (kBT/ρg) = ξ2min/
√

ρa3 of (20) using Bogoliubov theory. In 4.1 we present
a modulus-phase reformulation of the Bogoliubov theory generalized for a bimodal
condensate; in 4.2 and 4.3 we derive the expansion of the spin squeezing parameter
in the thermodynamic limit, and we discuss the final analytical results in 4.4.

4.1 Modulus-phase Bogoliubov formalism for bimodal condensates

We generalize here to two-components the U(1)-symmetry preserving Bogoliubov
theory of [31], see also [4]. As spin squeezing in bimodal condensates is due to phase
dynamics, we rephrase the theory in terms of the relative phase operator of the a and
b condensates. This is a crucial step that allows us to obtain results by a perturbative
expansion in powers of that relative phase. The relative phase is simply the difference

of the condensate phases θ̂a,b introduced as hermitian operators conjugate to the
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condensate atom numbers [32,33]. This is a valid description in the subspace excluding
the vacuum state (no particles) for the condensate modes, which is sufficient here: as
we suppose initially T ≪ Tc, both condensates are highly populated after the mixing
pulse with 〈Na〉 = 〈Nb〉 = N/2. Some useful expressions involving the Bogoliubov
amplitudes and some commutation relations are given in Appendix A.

Within each atomic internal state a or b, we split the bosonic field operator into
the condensate and non condensed modes contributions:

ψ̂a =
â0√
V

+ ψ̂a⊥ , ψ̂b =
b̂0√
V

+ ψ̂b⊥ (22)

For the annihilation operators in the condensate modes we introduce the modulus-
phase representation

â0 = eiθ̂a
√

N̂a0 , [N̂a0, θ̂a] = i (23)

b̂0 = eiθ̂b
√

N̂b0 , [N̂b0, θ̂b] = i , (24)

while for the non condensed modes we introduce the number conserving fields [31,34]

Λ̂a = e−iθ̂aψ̂a⊥ ; Λ̂b= e−iθ̂bψ̂b⊥ (25)

that we expand over Bogoliubov modes with amplitudes ĉak and ĉbk. To perform this
expansion, one has to distinguish the time before the pulse and the time after the
pulse.

Before the pulse, at time t = 0−, all the N atoms are in the internal state a, with
a zero-temperature mean field chemical potential µ = ρg, and we expand the number
conserving field Λ̂a(t = 0−) over the Bogoliubov modes:

Λ̂(0)
a =

∑

k 6=0

[

U
(0)
k ĉ

(0)
ak + V

(0)
k (ĉ

(0)
a−k

)†
] eik·r√

V
(26)

Here the exponent (0) over the operators indicates that the operators are considered

at time t = 0−. The bosonic operator ĉ
(0)
ak annihilates a Bogoliubov quasi-particle of

wave vector k, and eigenenergy

ǫ
(0)
k = [Ek(Ek + 2ρg)]1/2 (27)

where we recall that Ek = ~
2k2/(2m) is the kinetic energy contribution. The cor-

responding amplitudes of the Bogoliubov mode, correctly normalized as [U
(0)
k ]2 −

[V
(0)
k ]2 = 1, are given by

s
(0)
k ≡ U

(0)
k + V

(0)
k =

1

U
(0)
k − V

(0)
k

=

(

Ek

Ek + 2ρg

)1/4

(28)

Before the pulse, the field in the b state is in the vacuum state, so the modal expansion
is performed over the usual single particle plane wave eigenbasis.

After the pulse, at t ≥ 0+, the particles are on average equally distributed among
the two internal states a and b, 〈Na〉 = 〈Nb〉 = N/2. There are now two condensates,
with interaction constants gaa = gbb = g among atoms of same internal state, and no
interaction (gab = 0) among atoms of different internal states. Similarly to (26), we
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perform after the pulse the modal decomposition of the number conserving fields in
each internal state σ = a, b:

Λ̂σ =
∑

k 6=0

[

Uk ĉσk + Vk ĉ
†
σ−k

] eik·r√
V

(29)

where ĉσk annihilates a Bogoliubov quasi-particle of wave vector k in internal state
σ. The Bogoliubov mode amplitudes Uk, Vk and the eigenenergies ǫk do not depend
on the internal state and are deduced from the ones at t = 0− by replacing the mean
field term ρg by ρg/2:

sk ≡ Uk + Vk =
1

Uk − Vk
=

(

Ek

Ek + ρg

)1/4

(30)

ǫk = [Ek(Ek + ρg)]1/2 , (31)

Note that this involves an approximation: In principle, the Bogoliubov modes in in-
ternal state σ = a or b depend on the actual number of particles Nσ in that state,
which has small ≈ 1/

√
N relative fluctuations since, after the pulse, Nσ has a bi-

nomial distribution peaked around N/2. Taking into account this effect changes the
mathematical structure of the theory, since the Bogoliubov amplitudes Uk and Vk,
and thus the quasi-particle annihilation operators ĉσk, would then depend on the to-
tal number operator N̂σ in state σ, which is beyond the scope of the present work. We
nevertheless verified numerically on the complete Bogoliubov theory (in the classical
field model) that this fixed-Bogoliubov-mode approximation is extremely accurate
both at short and long times, introducing (for the typical parameters considered in
our figures) a relative error on ξ2 lower than 10−2 comparable to our statistical error
bars with 105 realizations. Another important point is that the Bogoliubov quasi-
particles are not at thermal equilibrium after the pulse, so that, for example, their
mean occupation numbers are not given by the Bose formula. At the level of the Bo-
goliubov approximation, the quasi-particles do not interact and cannot thermalize,
the corresponding quasi-particle creation operators evolve in Heisenberg picture with
simple phase factors:

ĉσk(t) =
t>0

e−iǫkt/~ĉσk(0
+) (32)

for σ = a, b. The validity of this no-thermalization approximation is discussed in
subsection 4.4.

To express the evolution of the particle annihilation operators â0 and b̂0 in the
condensate modes, we use the modulus-phase representation (23, 24). For the mod-
ulus, one simply uses the conservation of the total atom number in each internal
state,

N̂σ0 = N̂σ − N̂σ⊥ = N̂σ −
∑

r

dV Λ̂†
σΛ̂σ (33)

so that N̂σ0 can be expressed in terms of the quasi-particle operators ĉσk. For the
phase, we use within each internal state σ = a, b the equation of motion derived for a
single component in [16] and truncated at the level of the Bogoliubov approximation:

d

dt
θ̂σ = −χ

(

N̂σ − 1

2

)

− χ

2

∑

r

dV
(

Λ̂2
σ + 2Λ̂†

σΛ̂σ + Λ̂†2
σ

)

(34)

where we have introduced χ ≡ g/(~V ). Replacing the operators Λ̂σ by their modal
expansion (29), one gets contributions that do not oscillate in time, and contributions
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such as ĉσkĉσ−k that oscillate in time (at the frequency 2ǫk/~ in the example). As
we shall need the value of the phase operators at long times t (typically ǫkt/~ ≫ 1)
rather than the value of its derivative, we argue as in [16] that the oscillating terms
in (34), after temporal integration, give a negligible contribution to the squeezing
parameter. We have checked this approximation analytically: The expression for ξ2

fully including the oscillating terms in the phase difference operator is given in the
Appendix E, it corrects the approximate expression (60) of ξ2 by typically a sub-
percent effect at intermediate times, and by a vanishing amount at large times. These

oscillating terms in θ̂a − θ̂b are thus of little physical relevance for the spin squeezing.
Keeping only the non-oscillating terms gives for the relative phase operator of the
two condensates at time t:

(θ̂a − θ̂b)(t) = (θ̂a − θ̂b)(0
+)− χt

[

N̂a − N̂b + D̂
]

(35)

D̂ =
∑

k 6=0

(Uk + Vk)
2(n̂ak − n̂bk)(0

+) (36)

where we have introduced the quasi-particle number operators n̂σk = ĉ†σkĉσk, which
are constants of motion in the Bogoliubov approximation, see (32). The multimode

contribution D̂ (36) to the relative phase (35) will play a central role in what follows.
It is indeed because of this term (neglected in the usual two-mode models) that the
squeezing parameter is bounded from below by a non-zero value in the thermodynamic
limit.

The last step is to relate the various operators at time t = 0+ to their values just
before the pulse. Since the state of the system is known at t = 0−, this fully specifies
the “initial” conditions for the time evolution of the operators after the pulse. The
derivation and the more precise results are given in the Appendix B. Here we give
the main conclusions. The initial value of the condensate phase difference is, in the
large N limit:

(θ̂a − θ̂b)(0
+) =

i

2

{

(

N̂
(0)
a0

)−1/2

,
(

b̃
(0)
0

− h.c.
)

}

+O

(

1

N3/2

)

(37)

where b̃
(0)
0

≡ e−iθ(0)
a b̂

(0)
0

and { , } stands for the anticommutator. This results from
the coherent mixing of the initial condensate amplitude with the vacuum noise fluc-
tuations in the initially empty internal state b, in the same spatial mode as the initial
condensate in state a, that is in the plane wave with zero wave vector. Similarly, the
quasi-particle annihilation operators just after the pulse are coherent superpositions
of the initial field fluctuations, mainly thermal fluctuations Â in a and only vacuum
fluctuations B̂ in b. In the large N limit,

cσk(0
+) =

Âk ∓ B̂k√
2

+O

(

1

N1/2

)

(38)

where the − sign is for σ = a and the + sign is for σ = b. The expression of Âk in
terms of t = 0− operators of the a internal state, and the expression of B̂k in terms
of t = 0− operators of the b internal state, naturally appear in the calculations of
Appendix B:

Âk ≡ (UkU
(0)
k − VkV

(0)
k ) c

(0)
ak + (UkV

(0)
k − VkU

(0)
k ) c

(0)†
a−k

(39)

B̂k ≡ Uke
−iθ̂(0)

a b̂
(0)
k

− Vke
iθ̂(0)

a b̂
(0)†
−k

(40)

In Appendix C, it is pointed out that these number conserving operators obey bosonic
commutation relations and all their second moments are explicitly evaluated.
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4.2 Double expansion method in the thermodynamic and weakly interacting limit

We shall now apply the Bogoliubov theory developed in section 4.1 to the calculation
of the time-dependent squeezing parameter ξ2 defined in (3). For the configuration
that we consider, symmetric under the exchange of a and b, the mean spin is always
aligned along x. The minimum transverse spin variance is then

∆S2
⊥,min =

1

2

[

〈Ŝ2
y〉+ 〈Ŝ2

z 〉 −
√

(〈Ŝ2
y〉 − 〈Ŝ2

z 〉)2 + 〈{Ŝz, Ŝy}〉2
]

, (41)

where { , } is the anticommutator. From the definition (2) it appears that Ŝz is a
constant of motion, its variance can thus be evaluated just after the pulse, at t = 0+.
According to (9,10), the pulse applies to the collective spin a rotation of angle π/2
around y axis, so that

Ŝz(t > 0) = −Ŝ(0)
x and 〈Ŝ2

z 〉 =
N

4
(42)

To obtain the spin variance 〈Ŝ2
y〉 and the spin correlation 〈{Ŝy, Ŝz}〉, the challenge is

to determine, as a function of time, the operator Ŝy, or equivalently the antihermitian

part of the operator Ŝ+ introduced in (1) (in its discrete version for the lattice model),

since Ŝy = (Ŝ+ − h.c.)/(2i). In the expression of Ŝ+, one applies the splitting (22) of
the bosonic fields in the condensate and the non-condensed contributions, one uses
the modulus-phase representation (23, 24) for the condensate part and one introduces

the number-conserving fields Λ̂σ for the non-condensed part, to obtain:

Ŝ+ = e−i(θ̂a−θ̂b)

(

N

2
+ F̂

)

with (43)

F̂ =

√

(N̂a0 + 1)N̂b0 − N

2
+
∑

r

dV Λ̂†
aΛ̂b (44)

Guided by the numerical experiments in section 3, we have developed a systematic

double expansion technique to determine 〈Ŝ2
y〉 and 〈{Ŝy, Ŝz}〉. The two small param-

eters controlling the large system size limit [i.e. the thermodynamic limit (19)] and
the Bogoliubov limit are

ǫsize =
1

N
and ǫBog ≡ 〈Nnc〉

N
(45)

where 〈Nnc〉 = 〈N̂ (0)
a⊥ 〉 is the mean number of non-condensed particles in the initial

state, which is indeed much smaller than N for a weakly interacting gas at T ≪ Tc.
For the Bogoliubov expansion, we will keep terms up to order one included in ǫBog;
keeping higher order terms would not be consistent with the use of the quadratic
Bogoliubov Hamiltonian. To determine the required order of the large system size
expansion, we note that 〈Ŝx〉 in the denominator of (3) remains close to its t = 0+

value N/2 over the relevant time scales (that are finite in the thermodynamic limit
with ρgt/~ ≪ N1/2), so that ξ2 ≈ 4∆S2

⊥,min/N . To have a vanishingly small error on

ξ2 in the thermodynamic limit, we will keep in 〈Ŝ2
y〉/N and 〈{Ŝy, Ŝz}〉/N terms up

to order zero included in ǫsize, that is we can neglect the contributions that tend to
zero when ǫsize → 0.

The systematic technique to determine the order of an operator is to estimate its
mean value and its standard deviation in the quantum state of the system. This is
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safer than a simple guess, in particular when the operator has a vanishing expectation
value. A relevant example is the operator D̂ defined in (36), that will play a crucial
role in the best achievable squeezing. After a superficial look at (36), one may believe

that D̂ scales as N in the thermodynamic limit, since it involves a sum over all modes,
and that it scales as ǫBog in the Bogoliubov limit since it involves the quasi-particle
number operators n̂σk. However, it is actually the differences n̂ak − n̂bk that matter,
and for the particular state resulting from a π/2 pulse applied on a gas initially in

the a internal state. As a consequence, the expectation value of D̂ is zero, it is the
variance of D̂ which scales as N , so D̂ scales as N1/2 in the thermodynamic limit.
To determine its scaling with ǫBog, we keep the leading term (38) in the value of the
quasi-particle annihilation operator just after the pulse, to obtain

D̂ ≃ −
∑

k 6=0

(Uk + Vk)
2(Â†

k
B̂k + B̂†

k
Âk) (46)

This scales with N as N1/2 since each term has a zero mean. Intuitively, this scales

with ǫBog as ǫ
1/2
Bog: B̂k is of order unity since it corresponds to vacuum field fluctuations

in the initial empty state b, and Âk is of order ǫ
1/2
Bog since it corresponds to the initial

non-condensed field fluctuations in state a. We thus conclude that

D̂ ≈ (NǫBog)
1/2 (47)

This is confirmed by the correlation functions of Â and B̂ given in the Appendix C,
that allow an explicit calculation of 〈D̂2〉/N , which is indeed ≈ ǫBog, see Eqs.(61,62).

The same analysis is applied to the various operators appearing in the antihermi-
tian part of (43), writing for simplicity F̂ = F̂R+iF̂I , where F̂R and F̂I are hermitian.
It is found in the Appendix D that

θ̂a − θ̂b ≈
1

N1/2
(48)

F̂I ≈ (NǫBog)
1/2 (49)

F̂R ≈ NǫBog ± (NǫBog)
2/3 (50)

Contrarily to the first two operators, F̂R has a non-zero expectation value, and the
writing of its estimate in (50) corresponds to its mean value plus or minus its standard

deviation. It turns out that the fluctuations of F̂R are negligible so that the operator
can be replaced by its mean value. The weak value of the phase difference operator
shows that its exponential in (43) can be expanded to first order, which substantially
simplifies the calculations. The final result, up to zeroth order included in ǫsize and
up to first order included in ǫBog, is

〈Ŝx〉 =
N

2

(

1 + 2
〈F̂R〉
N

)

(51)

〈Ŝ2
y〉
N

=
〈F̂ 2

I 〉
N

+ 〈(θ̂a − θ̂b)
2〉
(

N

4
+ 〈F̂R〉

)

− 1

2
〈{F̂I , θ̂a − θ̂b}〉 (52)

〈{Ŝy, Ŝz}〉
N

= − 1

2N

(

N

2
+ 〈F̂R〉

)

〈{N̂a − N̂b, θ̂a − θ̂b}〉 (53)

Note that these expressions hold independently of the approximation performed in
the phase difference operator (that neglects the oscillating terms).
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4.3 Results of the expansion method for ξ2(t)

To obtain an expression for ξ2 in the double thermodynamic and Bogoliubov limit,
it remains to explicitly evaluate (51,52,53) and to insert the result in (3,41). The
required operators have their expression given in useful form in the Appendix D, and
by (35,37,46) for the phase difference operator.

We have first evaluated (51,52,53) at time t = 0+, and we have checked that one

recovers the exact relations 〈Ŝx〉(0+) = N/2, 〈Ŝ2
y〉(0+) = N/4 and 〈{Ŝy, Ŝz}〉(0+) = 0.

At finite time, squaring (35), one realizes that the crossed term, linear in time, has a
zero expectation value since

〈(θ̂a − θ̂b)(0
+)(N̂a − N̂b)〉 = 〈(θ̂a − θ̂b)(0

+)D̂〉 = 0 (54)

This is due to the fact that the phase difference operator at t = 0+ is proportional to

the antihermitian part iŷ of e−iθ̂(0)
a b̂

(0)
0

, whereas N̂a − N̂b only involves the hermitian

part x̂ and D̂ does not depend on that operator. As a consequence, the spreading
of the relative phase is purely ballistic within our Bogoliubov approximation, that it
ignores the interactions among the quasi-particles

〈(θ̂a − θ̂b)
2〉 = 〈(θ̂a − θ̂b)

2〉(0+) + (χt)2〈(N̂a − N̂b + D̂)2〉 (55)

(the inclusion of these interactions within a quantum kinetic framework introduces a
diffusive component in the phase spreading [18]). Another simplification takes place,
for similar reasons,

〈F̂I(N̂a − N̂b + D̂)〉 ∈ iR (56)

so the last term of (52) reduces to its t = 0+ value. Using (42), and the fact that

〈F̂R〉, 〈D̂2〉 and 〈{Ŝz, D̂}〉 are all ≈ NǫBog, and neglecting contributions in ǫ2Bog, we
finally obtain

〈Ŝ2
y〉 − 〈Ŝ2

z 〉
N

= τ2

(

1 +
〈D̂2〉
N

)

+
〈F̂R〉
N

(57)

〈{Ŝy, Ŝz}〉
N

= τ (58)

where we have introduced a dimensionless “time”

τ(t) ≡ ρgt

2~

(

1 +
2〈F̂R(t)〉+ 〈{Ŝz, D̂}〉

N

)

(59)

that is slightly renormalized by a time dependent contribution of order ǫBog. The

expectation values 〈F̂R(t)〉 and 〈{Ŝz, D̂}〉 appearing in (59) are given in the Appendix
D, they are respectively uniformly bounded in time and time independent. Note that
the long-time behaviors of (57,58) were expected: As the squeezing dynamic occurs,

Ŝy indeed grows quadratically in time while Ŝz stays constant.
Finally, expanding (41) up to order one included in ǫBog at any fixed τ gives the

squeezing parameter as a function of time in the thermodynamic limit (in particular
for τ ≪ N1/2):

ξ2(t) ≃ 1− 4 〈F̂R〉
N

(τ +
√
1 + τ2)2

+
2
(

〈D̂2〉
N τ2 + 〈F̂R〉

N

)

(τ +
√
1 + τ2)

√
1 + τ2

(60)
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Fig. 4. (Color online) Black solid line: Squeezing parameter in the thermodynamic and
weakly interacting limit (60) as a function of the renormalized time τ (59). Parameters:

kBT/ρg = 1 and
√

ρa3 = 10−3. Black dashed line: asymptotic value (61). Red solid line:
two-mode model prediction.

As we show in Fig.4, the squeezing parameter ξ2(t) decreases in time essentially as
in the two-mode model [this is the first term in the right hand side of (60) without

the 〈F̂R〉/N term, see e.g. equation (52) in [11])] until a renormalized time τ ≈
1/

√
ǫBog ≫ 1 is reached, when the multimode effects [the second term] start limiting

the squeezing. At such times, the contribution of 〈D̂2〉/N dominates over the one of

〈F̂R〉/N by a factor ≈ 1/ǫ2Bog, which shows that 〈D̂2〉/N constitutes the real actor in
the process of squeezing limitation.

4.4 Minimal squeezing and best squeezing time

From the central result (60) of the previous subsection, it appears that the minimal
squeezing ξ2min is reached in the thermodynamic and Bogoliubov limits at “infinite”
time and it is given by

ξ2min =
〈D̂2〉
N

(61)

An explicit calculation gives:

ξ2min=

∫

d3k

(2π)3
s4k
2ρ

[

(

n
(0)
k +

1

2

)

(

(s
(0)
k )2

s4k
+

s4k

(s
(0)
k )2

)

− 1

]

(62)

where we have introduced the mean occupation numbers n
(0)
k = 1/[exp(βǫ

(0)
k ) − 1]

of the Bogoliubov quasi-particles in the initial (t = 0−) thermal equilibrium gas in
internal state a. The prediction of (62) is shown as a dashed line in Fig.3 and as a
full line in Fig.5. In Fig.5 we show that the minimal squeezing parameter given by

(62) is always lower than the non condensed fraction 〈Nnc〉/N where 〈Nnc〉 ≡ 〈N̂ (0)
a⊥ 〉

is the mean number of non condensed atoms in component a before the pulse:

〈Nnc〉 =
∑

k 6=0

[

(

U
(0)
k

)2

+
(

V
(0)
k

)2
]

n
(0)
k +

(

V
(0)
k

)2

(63)

Asymptotically, for kBT ≫ ρg (but always T ≪ Tc) the minimal squeezing parameter
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Fig. 5. (Color online). Minimal squeezing (black solid line) ξ2min and non condensed fraction

(red dashed line) 〈Nnc〉/N , both divided by
√

ρa3, as a function of kBT/ρg.

ξ2min reaches the non condensed fraction. In the opposite limit, for kBT/ρg → 0, the
squeezing tends to a constant value.

ξ
2 (T=0)
min
√

ρa3
=

√

8

π

[

19

6

√
2− 3

2
ln(

√
2 + 1)− π

]

≃ 0.02344 (64)

Although non zero, ξ
2 (T=0)
min is very small for practical purposes. Indeed ρa3 < 10−6

in present squeezing experiments so that (64) predicts ξ
2 (T=0)
min

<∼ 2× 10−5.
The fact that the minimal squeezing is obtained at infinite time is a limitation of

our Bogoliubov approach, that neglects the interactions between the quasi-particles
and effectively assumes that the corresponding collision time is diverging, see discus-
sion below. However, since the numerical squeezing curve ξ2(t) is quite flat around
its minimum (see Fig.8), it suffices in practice to determine a “close to best” squeez-
ing time tη defined as ξ2(tη) = (1 + η)ξ2min, where η > 0. Then, according to (60)
expanded for large τ up to order τ−2 included, tη is finite and given for η ≪ 1 by

ρg

~
tη ≃ 1

√

ηξ2min

(65)

The “close to best” squeezing time tη (65) for η = 0.2 is shown in Fig.6 as a full line
and compared to simulations (filled symbols).

An important issue is that of thermalization that brings the system back to equi-
librium after the pulse. Thermalization is neglected in the Bogoliubov theory and in
our analytics but it is included in the classical field simulations. It is thus possible
to reach ξ2 = (1 + η)ξ2min only if tη given by (65) is shorter than the thermalization
time:

tη < ttherm (66)

We show the thermalization times, that we extract from the classical simulations as
explained in [9], as empty symbols in Fig.6. For the points we considered they are
indeed longer than the close to best squeezing times and the condition (66) is satisfied.
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Fig. 6. Universal scaling of the “close to best” squeezing time tη with η = 0.2. Filled

symbols: classical field simulations with
√

ρa3 = 1.32× 10−2 (squares), 1.94 × 10−3 (disks)

and
√

ρa3 = 4.317×10−4 (triangles). Solid line: analytical result (65) using (21). The empty
symbols (squares, circles and triangles) show the thermalization times ttherm extracted from
the simulations as explained in [9]. Parameters are as in Fig.3.

We can also estimate ttherm from Landau-Beliaev damping rates of Bogoliubov modes
[17,35]. The damping rate of the mode q is

Γq =
g

2π2~ξ3heal

(

Γ̌L
q + Γ̌B

q

)

(67)

where the healing length ξheal is defined by ρg = ~
2/(2mξ2heal) and the rescaled Landau

and Beliaev damping rates Γ̌L
q and Γ̌B

q are dimensionless functions of kBT/ρg only,
given e.g. in equations (A7) and (A13) of [17]. Concentrating on the pre-factor in
(67), for fixed kBT/ρg, this gives

ρgttherm
~

≃ ρg

~Γq
=

√

π

128

(

Γ̌L
q + Γ̌B

q

)−1 1
√

ρa3
(68)

The scaling with (ρa3)−1/2 of the thermalization time is shown in Fig.7. On the other
hand, the close to best squeezing time tη scales as

ρgtη
~

∝ 1

(ρa3)1/4
so that

tη
ttherm

∝ (ρa3)1/4 (69)

and (66) is satisfied in the weakly interacting limit.

5 Physical interpretation

5.1 Limit to the squeezing

In the spin squeezing scheme with condensates that we consider, the useful quantum
correlations are built through mean field interactions that introduces a phase shift
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Fig. 7. Scaling with (ρa3)−1/2 of the thermalization times extracted from the classical field

simulations.
√

ρa3 = 1.32 × 10−2 (squares), 1.94× 10−3 (circles) and
√

ρa3 = 4.317 × 10−4

(triangles).

for each atom that depends on the collective variable Na −Nb. In the collective spin
picture, we can say that in a given realization of the experiment, the component Ŝy

becomes an enlarged copy of Ŝz so that correlations build up in the Sy-Sz plane,
orthogonally to mean spin. To explain this fact in a simple reasoning, we can identify

Ŝy with the condensate relative phase: Ŝy ≃ N
2 (θ̂a − θ̂b) and look at equation (35)

that we rewrite here replacing χ by its expression χ = g/(~V ):

θ̂a − θ̂b = (θ̂a − θ̂b)(0
+)− ρgt

~N

[

N̂a − N̂b + D̂
]

(70)

Initially, at t = 0, the phase difference (θ̂a−θ̂b)(0+) is of order 1/
√
N andNa−Nb is of

order
√
N . As soon as ρgt/~ ≫ 1, the time dependent term in (70) dominates over the

initial condition. In the absence of the multimode contribution to the phase difference

(i.e. for D̂ = 0), θ̂a − θ̂b and thus Ŝy become an enlarged copy of Ŝz = (N̂a − N̂b)/2.

This is the scenario in the two-mode theory. Correlations between Ŝy and Ŝz becomes
perfect in the long time limit. In this case there is no limit to the squeezing and
ξ2min → 0 when N → ∞. On the other hand, in the presence of D̂ this is not possible.

Looking at squeezing in the long time limit where |Ŝy| ≫ |Ŝz| and keeping only the
leading (0th) order in 1/t in equation (60), we can write

ξ2(t) ≃ 〈Ŝ2
y〉〈Ŝ2

z 〉 − 〈{Ŝy, Ŝz}/2〉2

〈Ŝ2
y〉〈Ŝ2

z 〉
≃ 〈D̂2〉

N
= ξ2min (71)

The only contribution left in ξ2min is the variance of D̂ that is the part of θa − θb that

is not proportional to Na −Nb. But what is the physical origin of D̂, given by (36) ?
It comes from the fact that the mean field interaction for a condensed atom with and
another condensed atom or with an atom in an excited mode is not the same. This
is particularly clear in the Hartree-Fock limit where Vk → 0 and Uk → 1. In this case
D̂ reduces to N̂a⊥ − N̂b⊥ that is the non-condensed atom number difference. In this
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limit we have
(

θ̂a − θ̂b

)

HF
≃ − ρgt

~N

[

N̂a0 − N̂b0 + 2
(

N̂a⊥ − N̂b⊥

)]

(72)

the factor 2 is the Hartree-Fock factor that doubles the effective strength of the
condensate-non condensate interaction with respect to the condensate-condensate
interaction.

5.2 Squeezing of the condensate mode

In Fig.8, for two temperatures: kBT ≫ ρg and kBT < ρg, we compare the squeezing
of the total field ξ2, that we have been considering so far, with the squeezing of the
condensate mode ξ20 , constructed with a spin operator involving the condensate mode

only: Ŝ0x + iŜ0y = â†
0
b̂0 and Ŝ0z = N̂a0 − N̂b0:

ξ20 =
〈Na0〉∆S2

0⊥,min

|〈S0 〉|2
, (73)

This is the squeezing that would be obtained by “selecting” only the condensed par-
ticles for the squeezing measurement. Besides the classical field simulations, in Fig.8a
and Fig.8b we also show as dashed curves results obtained in the Bogoliubov approx-
imation 6. Clearly ξ2 ≪ ξ20 in both graphs. Particularly striking is the case in Fig.8b
where ξ20min/ξ

2
min ≃ 60 while the non condensed fraction is only 〈Nnc〉/N = 0.02. We

explain here why this is the case. In order to have condensate squeezing we need to

build up correlations between Ŝ0y, that is still proportional to θ̂a − θ̂b, and Ŝ0z. Ac-

cording to (70), at long times θ̂a− θ̂b differs from Ŝ0z by the quantity N̂a⊥− N̂b⊥+ D̂
that prevents the correlations to become perfect at long times. Indeed, we find at long
times and for a large system that

ξ20(t) ∼
Var

[(

N̂a⊥ − N̂b⊥

)

+ D̂
]

N
(74)

The evaluation of the minimal achievable values of ξ20 from (74) is more involved than

for ξ2 because the quantity N̂a⊥−N̂b⊥, contrarily to D̂, is not a constant of motion. A
detailed discussion is beyond the scope of this paper, but one can give simple reasons
explaing why the minimal value of ξ20 is numerically found to be much larger than the

one of ξ2. Let us first forget about the time dependence of N̂a⊥ − N̂b⊥ and evaluate
it at time t = 0+. It is found that the variance of N̂a⊥ − N̂b⊥ at t = 0+ is simply

〈N (0)
a⊥ 〉, that is the mean number 〈Nnc〉 of non-condensed particles before the pulse.

In the Hartree-Fock limit kBT ≫ ρg, D̂ reduces to N̂a⊥ − N̂b⊥. One then expects
that the minimal ξ20 is four times the non-condensed fraction, that is four times larger

than ξ2min. In the low temperature regime kBT ≪ ρg, 〈D̂2〉 ≪ 〈Nnc〉, so the ratio of
condensate to total field squeezing is expected to be even larger.

Let us now take into account the time dependence of N̂a⊥ − N̂b⊥. This makes the
situation even worse for the condensate mode squeezing: Whereas the operator D̂ has

6 Before the pulse, we start with a thermalized field sampling (12). After the pulse,
we evolve the condensate phase with the classical equivalent of (34), also performing in
that equation the approximation of neglecting the oscillating terms, and the Bogoliubov
amplitudes with (32). The condensate atom numbers are obtained by the classical equivalent
of (33).
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normal fluctuations with a variance scaling as the volume V of the system, it is found
that N̂a⊥ − N̂b⊥ has anomalous fluctuations at long times. If one replaces discrete

sums over k by integrals in the expression (117) of the variance of N̂a⊥ − N̂b⊥, as
usual in the thermodynamic limit, one finds converging integrals but the variance
diverges linearly in the long time limit:

[

Var (N̂a⊥ − N̂b⊥)

N

]

therm.lim.

∼ 3

2
(2πρa3)1/2

kBT t

~
(75)

This result obtained within the Bogoliubov theory of course fails for times larger
than the thermalisation time. In practice, it is more physical to consider a finite
size system. One then finds that, in the long time limit, the variance is dominated
by the contribution of the low-k terms in the sum over k in (117): The variance

of N̂a⊥ − N̂b⊥ grows from its extensive t = 0+ value 〈N̂ (0)
a⊥ 〉 to a super-extensive

value ≃ 10(kBT/ρg)(mcL/2π~)
4 7 in a time scaling as L/c where L = V 1/3 is the

system size and c =
√

ρg/m is the initial sound velocity. After this time, the variance
oscillates around the super-extensive value with a period again scaling as L/c, given
by the fundamental Bogoliubov modes in the box. This explains the oscillations of
ξ20 and its temporal mean value in Fig.8b. In Fig.8a the oscillations are less visible as

the anomalous contribution to the variance is smaller than its t = 0+ value 〈N̂ (0)
a⊥ 〉.

6 Conclusion

We have shown that, in a multimode theory, the spin squeezing that can be obtained
dynamically using interactions in condensates is finite in the thermodynamic limit.
This is contrary to the results of the currently used two-mode theory that predicts
an infinite metrology gain for N → ∞. Using a convenient reformulation of the
Bogoliubov theory, we could calculate the temperature and interactions dependent
limit of the spin squeezing parameter analytically for a spatially homogeneous system.
We performed non perturbative classical field simulations to test our analytical results
including interactions among Bogoliubov modes and thermalization that are neglected
in the perturbative treatment.

At temperatures kBT ≪ ρg the limit that we find for the squeezing parameter
optimized over time, ξ2min, is very small and in particular much smaller than what is
currently measured in present experiments. Nevertheless it represent the fundamental
limit of this squeezing scheme and we hope that the temperature dependent limita-
tion to spin squeezing will be soon within reach of experiments. We explained that
the physical origin to this limit of the squeezing lies in the difference of mean field
interactions between condensate-condensate and condensate-non condensed atoms.

A.S. acknowledges useful discussions with J. Reichel and J. Estève. E.W. acknowl-
edges support from CNRS and Polish GRF: N N202 128539.

A Some useful relations

Here we collect useful commutation relations and recall the expression of the Bogoli-
ubov quasi-particle annihilation operators ĉσk after the mixing pulse in terms of the
atomic annihilation and creation operators.

7 The numerical coefficient in this formula is given for a cubic quantization box with
periodic boundary conditions, see discussion in section 7.8 of [36].
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Fig. 8. (Color online). Condensate squeezing ξ20 (blue upper curves) and squeezing of the
total field ξ2 (red middle curves) as a function of time. Full lines: classical field simulation.
Dashed lines: Complete classical field Bogoliubov approximation implemented numerically.
The two-mode result (black lowest dotted lines) is shown for comparison. Upper graph:

kBT/ρg = 7.83, 〈Nnc〉/N = 0.05, N = 983040, ρg = 693.6~2/mV 2/3,
√

ρa3 = 4.17 × 10−4.

Lower graph: kBT/ρg = 0.5, 〈Nnc〉/N = 0.02, N = 2733750, ρg = 13715.9~2/mV 2/3,
√

ρa3 = 1.32 × 10−2.

Commutation relations: In our lattice model, the field operators obey discrete
bosonic commutation relations:

[ψ̂σ(r), ψ̂
†
σ′ (r

′)] =
δr,r′ δσ,σ′

dV
∀σ, σ′ = a, b (76)

The hermitian condensate number and phase operators obey, for σ, σ′ = a, b:

[N̂σ0, θ̂σ′ ] = iδσ,σ′ (77)
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The fields of the non-condensed modes, orthogonal to the condensate wavefunction,
obey

[ψ̂σ⊥(r), ψ̂
†
σ′⊥(r

′)] =
δσ,σ′δr,r′

dV
− δσ,σ′

V
(78)

The non-condensed fields do not commute with the the total atom number but they
commute with all the condensate operators:

[N̂σ0, ψ̂σ′⊥(r)] = [θ̂σ, ψ̂σ′⊥(r)] = 0 (79)

The number-conserving operators Λ̂σ obey the same commutation relations (78) as
the non-condensed fields, e. g.

[Λ̂σ(r), Λ̂
†
σ(r

′)] =
δr,r′

dV
− 1

V
∀σ = a, b (80)

but, contrarily to them, they commute with the total atom number operators in each
component:

[

Λ̂σ(r), N̂σ′

]

= 0 ∀σ, σ′ = a, b (81)

Their commutation relations with the condensate operators are, for σ, σ′ = a, b:

[

Λ̂σ(r), θ̂σ′

]

= 0 ,
[

Λ̂σ(r), N̂σ′0

]

= −Λ̂σ(r) δσ,σ′ (82)

Finally, from the relation e−iθ̂af(N̂a0) e
iθ̂a = f(N̂a0 − 1) resulting from (77), for a

generic function f , we have in the large N , and thus large N̂a0 limit:

[
√

N̂a0, e
iθ̂a

]

= −eiθ̂a 1

2
√

N̂a0

+O

(

1

N3/2

)

(83)

Bogoliubov transformations: By projecting (29) over the plane waves, we obtain
after the pulse (t > 0):

âk = eiθ̂a
(

ĉak Uk + ĉ†a−k
Vk

)

(84)

b̂k = eiθ̂b
(

ĉbk Uk + ĉ†b−k
Vk

)

(85)

where âk and b̂k annihilate an atom with internal state a, b and wave vector k. The
inverse relations are useful:

ĉak = e−iθ̂a âk Uk − â†−k
eiθ̂aVk (86)

ĉbk = e−iθ̂b b̂k Uk − â†−k
eiθ̂bVk (87)

with Uk, Vk given by (30). Note that it is often convenient to express Uk and Vk in
terms of sk, so that for example

U2
k + V 2

k =
1

2
(s2k + s−2

k ) and 2UkVk =
1

2
(s2k − s−2

k ) (88)
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B After-pulse values of the condensate phases and quasi-particle

annihilation operators

To determine the condensate phase operator for the internal state σ at time t = 0+

in terms of operators at t = 0−, we use the fact resulting from (9,10) that a0(0
+) =

[a
(0)
0

− b
(0)
0

]/
√
2 and b0(0

+) = [a
(0)
0

+ b
(0)
0

]/
√
2. Then the definition (23) leads to

eiθ̂σ(0
+) = eiθ̂

(0)
a

(
√

N̂
(0)
a0 ∓ b̃

(0)
0

) ∣

∣

∣

∣

√

N̂
(0)
a0 ∓ b̃

(0)
0

∣

∣

∣

∣

−1

(89)

where the upper sign (−) is for σ = a and the lower sign (+) for σ = b, the modulus

operator of an operator X̂ is

|X̂ | ≡
(

X̂†X̂
)1/2

(90)

and we have introduced the number conserving operator b̃
(0)
0

= e−iθ̂(0)
a b̂

(0)
0

. By ex-

panding in the large N̂
(0)
a0 limit, we obtain :

θ̂σ(0
+)− θ̂(0)a = Herm

[

∓ŷ
(

N̂
(0)
a0

)−1/2

− 1

2
{x̂, ŷ}

(

N̂
(0)
a0

)−1

+ O

(

1

N3/2

)]

(91)

We have introduced the decomposition b̃
(0)
0

= x̂ + iŷ, where x̂ and ŷ are hermitian

operators, the usual notation { , } for the anticommutator and the notation Herm X̂ =

(X̂ + X̂†)/2 for the hermitian part of an operator X̂ . This leads to (37).
To determine the quasi-particle annihilation operators ĉσk at time t = 0+ in

terms of operators at time t = 0−, we use the relations (86,87) to express them in
terms of the atomic creation and annihilation operators at time t = 0+, that are in
turn expressed in terms of their values at 0− thanks to (9,10). One also needs the

expansion exp[iθ̂σ(0
+)] = exp[iθ̂

(0)
a ][1+ i(θ̂σ(0

+)− θ̂(0)a )+O(1/N)] deduced from (91)

and the Hausdorf formula. With the short-hand notations ã
(0)
k

= exp(−iθ̂(0)a )â
(0)
k

and

b̃
(0)
k

= exp(−iθ̂(0)a )b̂
(0)
k

:

ĉσk(0
+) =

Ukã
(0)
k

− Vkã
(0)†
−k√

2
∓ Uk b̃

(0)
k

− Vk b̃
(0)†
−k√

2

− i
[

θ̂σ(0
+)− θ̂(0)a

]

[

Ukã
(0)
k

+ Vk ã
(0)†
−k√

2
∓ Uk b̃

(0)
k

+ Vk b̃
(0)†
−k√

2

]

+ O

(

1

N

)

(92)

where the upper, − sign is for σ = a and the lower, + sign if for σ = b. One then
introduces the operators

Âk = Ukã
(0)
k
−Vkã(0)†−k

and B̂k = Ukb̃
(0)
k
−Vkb̃(0)†−k

(93)

This directly gives (40). Expressing ã
(0)
k

and ã
(0)†
−k

in terms of the pre-pulse quasi-

particle annihilation and creation operators thanks to the t = 0− equivalent of (84),
gives (39). Restricting the accuracy of (92) to O(1) included, gives (38).

C Correlations of Âk and B̂k

Some useful properties of the operators defined in (39,40) [or equivalently in (93)] are
given here. The commutation relations of these operators are bosonic. This means
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that the only non-zero commutators (considered among all possible values of k) are

[

Âk, Â
†
k

]

=
[

B̂k, B̂
†
k

]

= 1 (94)

To calculate averages of products of Â and B̂ operators (here at equal times) one

can use the Wick theorem as the initial density operator for {c(0)ak } and {b(0)
k

} is a

Gaussian. All the non-zero correlations involving the Âk can be deduced from

〈Â†
k
Âk〉 =

1

2

(

n
(0)
k

+
1

2

)

[

s
(0)2
k

s2k
+

s2k

s
(0)2
k

]

− 1

2
(95)

〈ÂkÂ−k〉 =
1

2

(

n
(0)
k

+
1

2

)

[

s
(0)2
k

s2k
− s2k

s
(0)2
k

]

(96)

with s
(0)
k and sk defined by (28,30). All the non-zero correlations involving the B̂k

can be deduced from

〈B̂†
k
B̂k〉 = V 2

k =
1

4

(

s2k +
1

s2k

)

− 1

2
(97)

〈B̂kB̂−k〉 = −UkVk = −1

4

(

s2k − 1

s2k

)

(98)

All the crossed second moments, for example of the form 〈ÂB̂〉 or 〈Â†B̂〉, are zero.

D Double expansion of some operators

As explained in the main text, to have a vanishing error on the squeezing parameter
ξ2 in the thermodynamic limit, it suffices to determine the operators Ŝy and Ŝz up

to ≈ N1/2 included.
Case of Ŝz: The operator Ŝz = (N̂a − N̂b)/2 is a constant of motion, it can be
evaluated at t = 0+, and related with (9,10) to the fields at t = 0−. Then one uses
the modulus-phase representation for the condensate operator in a and one introduces

the number-conserving fields Λ̂
(0)
a and e−iθ̂(0)

a ψ
(0)
b⊥ for the non-condensed modes, whose

Fourier components can be expressed in terms of the operators Âk and B̂k through

(93). The only approximation is then to neglect the commutator of ŷ with (N̂
(0)
a0 )1/2,

which is O(1/N3/2), to obtain

N̂a − N̂b ≃ −
{

x̂,

√

N̂
(0)
a0

}

−
∑

k 6=0

[

(U2
k + V 2

k )(Â
†
k
B̂k + ÂkB̂

†
k
)

+2UkVk(Â
†
k
B̂†

−k
+ ÂkB̂−k)

]

(99)

We recall than x̂ and ŷ are defined below (91). The operator Ŝz has a zero expectation
value, and a variance exactly equal to N/4, as already found by a more direct method
in (42), so we reach the estimate

Ŝz ≈ N1/2 (100)



26 Will be inserted by the editor

With more lengthy calculations, we now deduce Ŝy from the antihermitian part

of Ŝ+ written in the form (43) and we then obtain Ŝ2
y and {Ŝy, Ŝz}.

The phase difference: We first evaluate the scaling of the phase difference θ̂a − θ̂b
in the thermodynamic limit from the writing (35). The contribution of the phase
difference at time t = 0+ scales as 1/N1/2 according to (37). The contribution pro-

portional to N̂a−N̂b scales in the same way, since the total number difference ≈ N1/2

for the binomial distribution after the π/2 pulse. The same conclusion holds for the

contribution proportional to D̂, see (47). We reach the important conclusion that, for
a finite time t in the thermodynamic limit,

θ̂a − θ̂b ≈
1

N1/2
(101)

As N
2 + F̂ is O(N), it suffices to expand the exponential in (43) to first order included

in the phase difference to obtain

Ŝ+ =

[

1− i(θ̂a − θ̂b) +O

(

1

N

)](

N

2
+ F̂R + iF̂I

)

(102)

where we have split F̂ = F̂R + iF̂I in terms of the hermitian operators F̂R and F̂I .

The antihermitian part of F̂ : The operator F̂I directly contributes to the anti-
hermitian part of Ŝ+, so it has to be evaluated up to ≈ N1/2 included. Its exact
expression is

F̂I =
1

2i

∑

r

dV
(

Λ̂†
aΛ̂b − Λ̂†

bΛ̂a

)

=
1

2i

∑

k 6=0

(

ĉ†akĉbk − h.c.
)

(103)

This corresponds to a complex scalar product between the bicomponent fields (Λ̂a, Λ̂
†
a)

and (Λ̂b, Λ̂
†
b). The Bogoliubov equations of motion for spin state σ conserve this scalar

product [31]. Due to the a − b symmetry, the coefficient of Bogoliubov equations of

motion are the same for the two internal states, and F̂I is a constant of motion
within Bogoliubov theory. We can thus evaluate it at time 0+, taking into account
the corrections to ĉkσ(0

+) due to the small condensate phase change induced by the
pulse, as in (92):

F̂I ≃ 1

2i

∑

k 6=0

(Â†
k
B̂k − B̂†

k
Âk)−

1

2







ŷ,
N̂

(0)
a⊥ − N̂

(0)
b⊥

√

N̂
(0)
a0







(104)

where the operator ŷ is defined below (91). This correction involving ŷ is important to

ensure that 〈S2
y(0

+)〉 = N/4 as it should be. The operator F̂I has a zero expectation

value, this is why the same phenomenon as for the operator D̂ occurs. Calculating its
variance, which is dominated by the contribution of the sum over k in (103),

〈F̂ 2
I 〉 =

〈N̂ (0)
a⊥ 〉
4

=
1

4

∑

k 6=0

V
(0)2
k + n

(0)
k

[

U
(0)2
k + V

(0)2
k

]

(105)

we get as in (47) the estimate

F̂I ≈ (NǫBog)
1/2 (106)
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The hermitian part of F̂ : Contrarily to F̂I , the operator F̂R alone cannot contribute
to the antihermitian part of Ŝ+, it has to be multiplied at least once by the phase

difference operator. To obtain Ŝy up to ≈ N1/2 included, we thus need F̂R up to ≈ N

included. To this end we decompose N̂σ0 after the pulse, for σ = a or b, as follows:

N̂σ0 =
N

2
+ ˆδNσ , ˆδNσ =

(

N̂σ − N

2

)

− N̂σ⊥ (107)

and we expand the square root in F (44) in the large N limit to obtain :

√

(N̂a0 + 1)N̂b0 =
N

2
+

1

2
(1 + ˆδNa + ˆδN b)

− (1 + ˆδNa − ˆδN b)
2

4N
+ . . . (108)

In the second contribution in the right-hand side of (108), we can replace N̂a + N̂b

with N . Since ˆδNa − ˆδN b scales as N1/2, the third contribution scales as N0 and is
thus negligible at the required order. The terms in the . . . are of too high order in
ǫsize or in ǫBog to be relevant. We conclude that, for our purposes, we can take

F̂R ≃ −1

2

∑

r

dV (Λ̂†
a − Λ̂†

b)(Λ̂a − Λ̂b) (109)

By expanding the fields Λ̂a and Λ̂b over the Bogoliubov modes, we obtain F̂R in terms
of the quasi-particle annihilation operators ĉσk at time t > 0. Using (32) we can relate
these operators to their value at time 0+, that we can replace by the leading order
expression (38) to obtain

F̂R ≃ −
∑

k 6=0

[

V 2
k + (U2

k + V 2
k )B̂

†
k
B̂k + UkVk

(

e−2iǫkt/~B̂kB̂−k + h.c.
)]

(110)

Its expectation value is

〈F̂R〉 = −
∑

k 6=0

4U2
kV

2
k sin2 ωkt (111)

with ωk = ǫk/~. Even if the B̂’s correspond to vacuum fluctuations, we still find
(replacing the sum by an integral over R

3, which is convergent, and making the

change of variable k = K/ξheal, where ξheal is the healing length) that 〈F̂R〉/N scales
as (ρa3)1/2, which is O(ǫBog). For simplicity, we shall forget about this detail and

consider that 〈F̂R〉 ≈ NǫBog. Using Wick’s theorem we have also determined the

variance of F̂R,

Var F̂R =
∑

k 6=0

8U2
kV

2
k sin2 ωkt

(

1 + 4U2
kV

2
k sin2 ωkt

)

(112)

Since (UkVk)
4 diverges as k−4 for k → 0, with a similar reasoning as for the discussion

around (75), we find that Var F̂R is O
(

(NǫBog)
4/3
)

uniformly in time. We summarize
these estimates by the writing

F̂R ≈ NǫBog ± (NǫBog)
2/3 (113)
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As we said, we need to estimate F̂R up to ≈ N included. This means that the fluctu-
ations of F̂R, that are N

1/3 times smaller, are negligible and the operator F̂R can be

replaced by its mean value 〈F̂R〉.
Operators Ŝy, etc: From the antihermitian part of (102), and from the estimates

(101,113, 106), we can approximate Ŝy up to the terms ≈ N1/2 included as

Ŝy ≃ F̂I −
1

2

{

θ̂a − θ̂b,
N

2
+ 〈F̂R〉

}

(114)

Squaring this expression, and neglecting terms of order larger than one in ǫBog, we

finally obtain the expectation value 〈Ŝ2
y〉/N with an accuracy up to ≈ ǫ0size and ≈

ǫBog included, see (52). Taking the anticommutator of (114) with Ŝz and then the

expectation value gives (53), with the additional simplification that 〈F̂I Ŝz〉 is purely
imaginary and cancels out in the anticommutator [this results from (99) and (104),
and in particular from 〈ŷx̂〉 = 1/(4i)].

To conclude this Appendix, we give an expectation value useful for subsection 4.3:

〈{Ŝz, D̂}〉 =
∑

k 6=0

s2k

(

〈Â†
k
Âk〉 − V 2

k

)

(115)

where the Â†Â expectation value is given by (95). We also give the expression of the
difference of non-condensed atom number operators at t > 0:

N̂a⊥ − N̂b⊥ = −
∑

k 6=0

[

(U2
k + V 2

k )(Â
†
k
B̂k + B̂†

k
Âk)

+ 2UkVk

(

ÂkB̂−ke
−2iωkt + h.c.

) ]

(116)

and the corresponding variance written as a sum of non-negative terms, useful for the
discussion below Eq.(74):

Var (N̂a⊥ − N̂b⊥) = 〈N (0)
a⊥ 〉+

∑

k 6=0

1

2

(

n
(0)
k +

1

2

)

sin2 ωkt

[

(

s4k −
1

s4k

)

(

s4k

s
(0)2
k

− s
(0)2
k

s4k

)

+

(

s2k −
1

s2k

)3
(

s
(0)2
k

s2k
− s2k

s
(0)2
k

)

cos2 ωkt

]

(117)

E With the oscillating terms in θ̂a − θ̂b

As announced above (35), we give here the analytical result for ξ2(t) (with the double
expansion technique) without performing the approximation used in the main text of
the paper. The temporally oscillating terms in the phase difference operator are now
kept, which amounts to replacing D̂ in (35) with D̂tot = D̂+ D̂osc with the oscillating
contribution

D̂osc(t) = −
∑

k 6=0

s2k
sinωkt

ωkt

(

e−iωktÂkB̂−k + h.c.
)

(118)

where ωk = ǫk/~. In the renormalized time (59) one has also to replace D̂ with D̂tot,
which involves the new expectation value

〈{Ŝz, D̂osc}〉 =
∑

k 6=0

s2k
sin 2ωkt

2ωkt

(

〈ÂkÂ−k〉+ UkVk

)

(119)
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that will thus be added to the contribution (115) [see (95) for the Â†
k
Â−k expectation

value]. One can show that t〈{Ŝz, D̂osc}〉 is uniformly bounded in time, so it contributes
to τ as a time dependent small temporal shift. The result (60) is replaced by

ξ2tot(t) ≃
1− 4 〈F̂R〉

N

(τ +
√
1 + τ2)2

+
2
(

〈D̂2
tot〉
N τ2 + 〈F̂R〉

N + ζ(t)
)

(τ +
√
1 + τ2)

√
1 + τ2

(120)

As expected, again, D̂ was replaced by D̂tot. There is also an extra term, ζ(t), which
is simply the value of the last term of (52) at time t minus its value at time 0+. This

difference is no longer zero, because (56) no longer holds when D̂ is replaced with

D̂tot, since D̂tot has imaginary components. We find

Nζ(t) = −
∑

k 6=0

sin2 ωkt
ρg

~ωk
s2kU

(0)
k V

(0)
k

(

n
(0)
k +

1

2

)

(121)

Note that ζ(t) is uniformly bounded in time, as 〈F̂R〉/N , it is thus not particularly
relevant.

More significant deviations may come from the occurrence of 〈D̂2
tot〉 that differs

from the original 〈D̂2〉 by the two terms

〈{D̂, D̂osc}〉=
∑

k 6=0

sin 2ωkt

2ωkt

(

s
(0)2
k − s8k

s
(0)2
k

)

(n
(0)
k +

1

2
) (122)

〈D̂2
osc〉=

∑

k 6=0

(

sinωkt

ωkt

)2

s4k

[

(U2
k + V 2

k )〈Â†
k
Âk〉

+U2
k − 2UkVk〈ÂkÂ−k〉 cos 2ωkt

]

(123)

These two terms however are O(ǫBog/τ
2) in the long time limit. At the relevant times

τ ≈ 1/ǫ
1/2
Bog, where the multimode nature of the field starts limiting the squeezing,

their contributions to ξ2tot are O(ǫ
2
Bog) and negligible.

To summarize, the inclusion of the non-oscillating terms in the phase difference
operator does not change at all the long time limit of ξ2 (which, importantly, is its
infimum in the Bogoliubov approximation): Eq. (61) is unchanged. At intermediate
times, it gives small deviations. For the extreme case kBT/ρg = 10 and (ρa3)1/2 =
10−3, where the non-condensed fraction reaches 10%, we find a maximal relative
deviation of 2% between ξ2(t) of (60) and the more accurate ξ2tot(t), at a time ρgt/~ ≃
1.5 when ξ2 is still a factor ≃ 4 above its minimal value ≃ 0.1.
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